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Abstract

In this article we consider Hamiltonian lattice differential equations
and investigate the existence of travelling waves near solitary wave so-
lutions. We focus on the case where the solitary wave profile induces a
homoclinic solution of the associated traveling wave equation, which is
a typical scenario in the Fermi-Pasta-Ulam lattice. We will then show
the existence of finitely many scalar bifurcation equations, such that
zeros of these equations correspond to multi-pulses or periodic traveling
waves of the original lattice equation that are located near the primary
solitary wave. Compared to previous works, we will have to overcome
technical complications which result from the lack of hyperbolicity of
the asymptotic steady state.

We use our results to prove the existence of periodic travelling waves
accompanying a family of stable solitary waves in the Fermi-Pasta-Ulam
lattice, where properties of the latter waves have been recently investi-
gated by Pego and Friesecke [8]. As we will show, these waves persist
under small reversible perturbations of the FPU lattice, where they in-
duce a family of solitary waves.

1 Introduction

We investigate the set of bounded travelling waves near solitary wave solutions
of Hamiltonian lattice differential equations. Our work contributes to the the-
oretical understanding of travelling waves in lattice differential equations and
provides an interesting method for proving the existence of periodic travelling
waves in the FPU lattice via bifurcation theory. In order to clearly separate
our results concerning the theoretical understanding of the dynamics near soli-
tary waves of general lattices from the results which are only valid within the
framework of the Fermi-Pasta Ulam lattice, we divide the introduction into
two sections. Let us start with the theoretical part.

1.1 The detection of travelling waves near solitary waves

in LDEs

We want to investigate one-dimensional lattice differential equation (LDE)

∂tu
i(t) = F (ui−M(t), . . . , ui(t), . . . , ui+M(t)), (1)
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where each oscillator interacts with its M nearest neighbors. For the moment,
let us not assume any additional structure in (1). Interesting solutions are
travelling waves. These are solutions of the form ui(t) = ψ(i − ct), c �= 0,
which solve a non-trivial advance delay equation

−cψ′(τ) = F (ψ(τ −M), . . . , ψ(τ), . . . , ψ(τ +M)), (2)

where τ = i − ct. In order to solve the associated initial value problem, we
have to specify a function on the interval [−M,M ] and typically one considers
initial data in the space C0 := C0([−M,M ],RN ). However, the initial value
problem is ill-posed [18]!
Advance delay equations have been studied almost exclusively over the past
ten years [13, 14, 15, 18, 27, 29, 30] among with the pioneering work [32]. Let
us now assume the existence of a solitary wave solution

ui(t) = ψ(i− c∗t) (3)

where the profile ψ(τ) induces a homoclinic solution of (2). We recall that
such solutions are globally defined and approach a specific steady state, say
zero, as τ → ±∞. Although the travelling wave equation (2) is ill-posed, exis-
tence proofs of solitary waves for broad classes of lattice differential equations
relying on variational methods [7, 1], center manifold reductions [20, 21] or
perturbation methods [8] are known.
It is now the aim of this work to provide a method of detecting bounded so-
lutions of (2) for c ≈ c∗ close to the homoclinic orbit. Via ansatz (3) such
solutions induce travelling waves with wave speed c of the original lattice dif-
ferential equation. Depending on the shape of the profile these waves can then
be periodic travelling waves (the profile is periodic) or multipulse solutions
(the profile possesses finitely many humps) for example.
In order to present our results, let us recall the main result of [17] on which we
will build upon. For simplicity, the reader should think of the travelling wave
equation as an ordinary differential equation for the moment. It has then been
shown in [17] that generically the existence of 2ω periodic solutions near ψ is
equivalent to a zero of ξ = ξ(ω, c) for some specific function

ξ : R × (c∗ − ε, c∗ + ε) → R.

Furthermore, it could be constructed a bifurcation function ξ̃ such that the
existence of multipulse solutions near the solitary wave is equivalent to a zero
of ξ̃ : Rk−1×(c∗−ε, c∗+ε) → Rk. Here, multipulse solutions refer to travelling
waves of (1) that induce homoclinic solutions in the travelling wave equation
which intersect a local Poincaré section k times for some k ≥ 2. In either
case, the equations ξ = 0 and ξ̃ = 0 should be seen as bifurcation equations,
which, depending on the number of independent variables and equations, de-
termine the ”dimension” of the bifurcation problem. Likewise, we can use these
equations in order to investigate the persistence of the homoclinic solution ψ
whenever an external parameter is varied. This has be done in the context of
reversible LDEs in [16]. Roughly speaking, the bifurcation functions in [17]
were obtained by constructing suitable solutions of (2), which are defined and
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close to the primary homoclinic solution ψ on suitable large time intervals
[−ωj , ωj]. Moreover, these j-dependent solutions have been constructed in
such a way that a concatenation of them defines a globally piecewise smooth
solution of (2) undergoing discontinuities only along a finite-dimensional vector
space, which determines the number of scalar bifurcation equations.
In the context of ordinary differential equations, the described reduction pro-
cedure is known as Lin’s method [2, 23, 22, 24, 25, 26, 33] and was extended
only recently to the context of advance delay differential equations [17] in full
generality. As a technical issue, hyperbolicity of the asymptotic steady state
zero was assumed in the latter work [17]. Here, hyperbolicity refers to the
absence of purely imaginary eigenvalues of the linearization at the asymptotic
steady state zero (where the reader should again think of (2) as an ordinary
differential equation). However, such an assumption is often violated in the
framework of Hamiltonian LDEs like the Fermi-Pasta-Ulam lattice and the
Klein Gordon lattice [16, 20, 21]. Moreover, most existence results of solitary
waves such as the result of Friesecke and Wattis [7] rely on variational methods
and refer to equations where the hyperbolicity assumption is violated. It is
therefore desirable to extent Lin‘s method also to the context of lattice dif-
ferential equations, where hyperbolicity of the steady state may be absent as
in the Fermi-Pasta-Ulam lattice. That this is possible, is the main result of
this work. Our main result provides the existence of solutions of the travelling
wave equation, which stay near the homoclinic solution ψ undergoing possible
jumps along a fixed (1 + m)-dimensional vector space. Hence, if these jumps
vanish for some sequence {ωi}i then we obtain a globally defined solution of
(2). The main difference of theorem 1 compared to the results in [17] stems
from the m-dimensional center eigenspace of the linearization at the steady
state. This difference manifests itself in the fact that the number of bifurca-
tion equations increases to m + 1 (compare with property b) of the theorem
below). Indeed, in the hyperbolic scenario m = 0 the jump functions ξj gener-
ically take values in a one-dimensional vector space which reflects the fact the
the homoclinic solution itself is a codimension-one-phenomenon (i.e. the sum
of tangent spaces of stable and unstable manifold has codimension one in the
ambient space). In the nonhyperbolic case there are now m additional vari-
ables ηj

1, . . . , η
j
m appearing in the bifurcation functions ξj. We can think of

these m variables as directions within a Poincaré section, for which we could
not a priori solve our bifurcation equations.
We now want to state the main result of this article and we refer to theorem
3 for a formulation which lists all assumptions explicitly. For the statement of
this result, we represent DF (0) for any φ ∈ C0 in the form

DF (0)φ =
M∑

j=−M

Ljφ(j)

for suitable M ×M-matrices Lj .

Theorem 1
Assume that there exists a homoclinic solution of (2) for c = c∗ to the steady

3



state zero such that the characteristic function

det

(
λ · id − 1

c∗

M∑
j=−M

Ljejλ

)

possesses m purely imaginary zeros λ counting multiplicity (in the case of
ODEs this means that the linearization at zero possesses a m-dimensional
center eigenspace). Then, for every δ0 under generic assumptions there exists
positive constants ω∗, δ∗ and parameters ηj

1, . . . , η
j
m ≈ 0 with the following

properties. For all c ∈ Bδ∗(c∗) and {ωj}j∈Z, with ωj ∈ (ω∗,∞) ∪ {∞} for all
j ∈ Z, there are (ηj

k-dependent) functions

xj
+ : [−M,M + ωj) → R

N ,

xj
− : [−M − ωj−1,M) → R

N , j ∈ Z,

such that

a) xj
+, xj

− solve (6) on (0, ωj) and (−ωj−1, 0), respectively (see also section
3 for a precise definition of a solution).

b) xj
+(ωj + •)∣∣

[−M,M ]
= xj+1

− (−ωj + •)∣∣
[−M,M ]

in C0([−M,M ],RN ).

c) The value

ξj({ωj}j, c, η
j
1, . . . , η

j
m) := xj

+(·)∣∣
[−M,M ]

−xj
−(·)∣∣

[−M,M ]
∈ C0([−M,M ],RN )

lies in a j-independent (m + 1)−dimensional vector space. For the
smoothness properties of ξj we refer to theorem 3.

d) For any given bounded interval I, the values xj
+(τ), xj+1

− (τ) approaches
the value ψ(τ) uniformly with respect to τ ∈ I as ωj → ∞.

e) It is true that

sup
[−M,M+ωj]

|xj
+(τ) − ψ(τ)| < δ0, sup

[−M−ωj−1,M ]

|xj
−(τ) − ψ(τ)| < δ0.

Finally, the solutions {xj
±}j∈Z are unique once the parameters {ηj

k}j∈Z are
fixed.

In the course of constructing the jump functions we will derive an explicit
representation for the ξj, see for example lemma 12. This expression mainly
involves integral equations similar to the variation-of-constants formula and
can be very helpful when calculating a partial derivative of the jump func-
tions; see for example [17] where the derivative with respect to the wave speed
c has been investigated. The formula of the jump functions also indicates that
in particular geometric informations are important to investigate the zero set
of the ξj’s with respect to the flight times ωj−1, ωj. With ”geometric” informa-
tion we mean informations regarding the relation of center stable and center
unstable manifolds along the homoclinic solution ψ, i.g. how these manifolds
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are twisted along the homoclinic solution ψ or how the center part of these
manifolds approaches the steady state and we refer to [24, 25, 26, 22] for more
information and background in this respect in the framework of ordinary dif-
ferential equations. However, there is yet another nice property of the jump
functions which shows up when we consider time-reversible or Hamiltonian
LDEs: Here, more structure is present in the bifurcation equations ξj = 0 that
eases the analysis of the zero-set. For example, if the LDE is reversible and
the homoclinic solution intersects the fixpoint space of the reversibility R, then
in the study of periodic solutions the associated jump function will only take
values in the fixpoint space of −R, see lemma 12. This property is important
since it helps significantly to reduce the number of bifurcation equations a pri-
ori without computation and we refer to section 6 in order to see how this is
done in the context of the Fermi-Pasta-Ulam lattice. A straightforward appli-
cation of this last observation is the blue sky catastrophe; i.e. the coexistence
of a one-parameter family of periodic orbits close the homoclinic orbit in the
hyperbolic case m = 0, see [3, 5, 17], where the reversible structure forces all
jump functions to vanish identically. Also conserved quantities, i.e. functions
which stay constant along solutions, have implications for the investigation of
periodic functions. Typically, each conserved quantity then reduces the num-
ber of bifurcation functions by one, see the argumentation after hypothesis 5.
We use these observations to prove the existence of periodic travelling waves in
the Fermi-Pasta-Ulam lattice as explained in more detail in the next section.

1.2 Periodic travelling waves in the Fermi-Pasta-Ulam
lattice

An important lattice differential equation is the Fermi-Pasta Ulam equation

ün(t) = V(un+1(t) − un(t)) − V(un(t) − un−1(t)), (4)

where un(t) ∈ R and the potential V ∈ C3 satisfies V(0) = V ′(0) = 0,
V ′′(0) �= 0. Its popularity stems from the fifties, where Fermi, Pasta and
Ulam used this model to show the relaxation to equipartition of the distri-
bution of energy among modes [6]. Surprisingly, their numerical simulation
yielded an unexpected result: At least at low energy, the energy of the system
remained confined among the initial modes instead of spreading to all modes.
Concerning exact dynamics in the Fermi-Pasta-Ulam lattice it was proved only
recently by Friesecke and Wattis [7] that (4) exhibits solitary wave solutions,
i.e. localized coherent modes. Here, localization refers to the fact that the rel-
ative displacements of the adjacent lattice sites rn(t) := un+1(t) − un(t) decay
to zero for fixed n as t→ ±∞. Note that rn(t) solves the equation

r̈n(t) = V(rn+1(t)) − 2V(rn(t)) + V(rn−1(t)). (5)

However, no informations about stability or long-time behaviour of nearby ini-
tial data, was obtained. But very recently Friesecke and Pego [8, 9, 10, 11]
have constructed a family of supersonic solitary waves rn of (5) which appear
stably in the lattice equation. More precisely, it was shown that each initial
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value close to rn in a proper sense induces a solution of (5) that asymptoti-
cally approaches a translated copy of the original solitary wave (typically with
slightly different wave speed).

Since the waves rn have the form rn(t) = ψ(n−ct) for some c �= 0 the associated
profile ψ(τ) solves the travelling wave equation which is an advance delay and
in fact induces a homoclinic solutions. Equation (5) is time-reversible; hence
the travelling wave equation is also (we refer to section 3.3 for a definition of
reversibility in this context). We are now interested in the question whether
the homoclinic solution, which is induced by the solitary wave, is accompa-
nied by periodic solutions. Note that these induce periodic travelling wave
solutions of the original lattice equation (5) via the travelling wave ansatz (3).
Thinking of a reversible ordinary differential equation, such a scenario would
typically occur provided the steady state approached by the homoclinic so-
lution is hyperbolic [3, 5, 17]. However, for the travelling wave equation of
the FPU-lattice two major differences arise: First of all the travelling wave
equation is an advance delay equation and in particular ill-posed. Moreover
the linearization at the steady state zero possesses a two-dimensional center
eigenspace, see section 6.1.1, and therefore the steady state is not hyperbolic.
However, as we show in section 6 the reversible and Hamiltonian structure are
strong enough to enforce the existence of a family of periodic solutions of large
period that are close to the primary homoclinic solution, see theorem 4. The
term ”close” here refers to orbitally close meaning that the orbits of the peri-
odic solutions are close to the homoclinic orbit. This does not contradict the
asymptotic stability of the solitary wave as a solution of (38), where stability
is defined in terms of suitably weighted norms. In particular, the distance of
two solutions can be large with respect to some fixed weighted norm but their
orbits can be close to each other.
In the course of proving our main result, we first investigate the existence
of periodic travelling waves in equation (5) near any solitary wave satisfying
generic assumptions. In particular, we do not assume that the primary solitary
wave has to be small or close to an equilibrium in some sense. In this respect,
our bifurcation scenario is rather general and in principal not restricted to the
Fermi-Pasta-Ulam lattice. We will then validate all necessary assumptions for
a special family of solitary waves in section 6.2, whose properties have recently
been investigated by Friesecke and Pego [8, 9, 10, 11]. Moreover, we show that
the periodic waves persist under small reversible perturbations of the FPU
lattice and induce a family of solitary waves in the perturbed FPU lattice. For
more details of this bifurcation scenario and more properties of the bifurcating
waves we refer to section 6.
The existence of periodic travelling waves of the Fermi-Pasta-Ulam lattice (5)
has also been shown by Pankov [31] using variational methods. Let us also
mention that Iooss and Kirchgässner [21] showed the existence of oscillatory
solutions in (4), which do not necessarily induce periodic travelling waves of
(5). In any case, our existence proof is important in view of various aspects.
First of all, our results cover a slightly more general class of potentials V than
considered in [31], see theorem 4. Furthermore, our constructed family of pe-
riodic waves (of fixed period) depends differentiable on the wave speed − a
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property which cannot be deduced easily from variational methods. But even
more important, the bifurcating periodic waves are related to the family of
stable solitary waves in the sense that the associated travelling wave profiles
are orbitally close. In this respect we also expect that our methods are able
to relate stability properties of the bifurcating periodic travelling wave to the
stability of the original wave; first steps toward this directions have already
been achieved by Pego and Friesecke [8] and Benzoni-Gavage et al [12]. With
the methods introduced in this work, we aim at extending these results in the
near future and thereby introducing a stability analysis which resembles the
theory from Sandstede and Scheel in the context of reaction-diffusion equa-
tions [34, 35, 36]. Finally, we want to emphasize that our approach shows
how dynamical systems methods and in particular bifurcation theory can be
applied in order to detect periodic waves near solitary waves; a method which
to the knowledge of the author has not been used within the framework of
Hamiltonian lattice differential equations before.

1.3 Organisation of the article

The set up of the article is as follows. We will introduce some notation in
the next section. In section 4 we will then set up our problem in a suitable
functional analytic framework, where we collect some background concerning
linear and nonlinear advance-delay equations as well as the abstract formu-
lation in section 3. The main result is stated in chapter 5. In section 5.1.1
we give a brief outline of the proof of this result. Its rigorous proof is then
postponed to the next section 5.1. We apply our reduction procedure to prove
the existence of periodic travelling waves in the Fermi-Pasta-Ulam lattice in
chapter 6. In section 6.3 we also will discuss the existence of linearly stable
solitary waves in slightly perturbed FPU-lattices which still are reversible.

2 Important function spaces

We define the function xt ∈ L2([−M,M ],RN ) for an integrable function x :
R → RN . This function is given by xt(θ) := x(t+ θ) for any t ∈ R. Hence, for
the rest of this work xt will not mean a derivative!

We also abbreviate the space C0([−M,M ],RN ) often by C0. Also the following
spaces will be frequently used throughout this paper:

Y := R
N × L2([−M,M ],RN ),

X := {(ξ, ϕ) ∈ Y | ϕ ∈ H1([−M,M ],RN ) and ϕ(0) = ξ}
X̃ := {(ξ, φ) ∈ R

N × C0([−M,M ],RN ) : φ(0) = ξ}

As a convention, if subspaces are furnished with an additional ˜, they are
regarded as subspaces of X̃ with the induced norm.
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3 Background on advance delay equations

In this section we collect some results concerning the abstract formulation of
advance-delay equations which will be used in the sequel.

3.1 The abstract formulation of advance delay equa-
tions

Let us consider the traveling wave equation

ẋ(t) =
1

c
F (x(t−M), . . . , x(t), . . . , x(t+M)) (6)

for c �= 0 where we assume from now on that F ∈ BC2(RN(2M+1) × R; RN)
and F (0) = 0. We make the following definition.

Definition 1 (Solution)
We call a function x ∈ L2([−M, τ),CN ) a solution of (6) for some M < τ � ∞
to the initial condition φ ∈ L2([−M,M ],CN ), if x ∈ H1

loc([0, τ),C), x0 = φ
and (6) is satisfied for almost every t ∈ [0, τ).

However, instead of working with (6) directly, we prefer to work with the
abstract equation

U̇(t) = F(ξ(t), φ(t, ·))
=

(
1
c
F (φ(t,−M), . . . , φ(t, 0), . . . , φ(t,M)))

∂θφ(t, θ)

)
.

(7)

This approach has first been used in [20, 21] although with a slightly different
choice of state spaces X, Y . We refer the reader to section three of [17] for
some motivations of studying the abstract equation or even to the nice text
book [4], which addresses this topic for delay differential equations.

Definition 2
• We call a continuous function U(t) : [t1, t2) → Y a solution of (7) on

(t1, t2), where −∞ < t1 < t2 � ∞, if t→ U(t) is continuous regarded as
a map on (t1, t2) with values in X, if t→ U(t) is differentiable regarded
as a map on (t1, t2) with values in Y and (7) is satisfied on (t1, t2).

• We call a differentiable function U(t) : (−∞, t2) → Y a solution of (7)
on (−∞, t2) and t2 ∈ R, if t→ U(t) is continuous regarded as a map on
(−∞, t2) with values in X and (7) is satisfied on (−∞, t2).

• We call a continuous function U : [t1, t2) → X̃ a weak solution of (7), if

U(t) = (x(t), xt)

for some function x ∈ C0([t1 −M, t2 + M),RN ) ∩ C1((t1, t2 + M),RN)
which solves the equation ẋ(t) = F (xt, λ) on (t1, t2).
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The next lemma clarifies the connection between solutions of (7) and our orig-
inal equation (6). The proof can be found in [13, 14].

Lemma 1
Let

U(t) =

(
ξ(t)
ϕ(t)(·)

)
be a solution of (7) on (t1 − M, t2 + M). Then ϕ(t)(θ) = ξ(t + θ) for all
t ∈ (t1 − M,M + t2) and θ ∈ [−M,M ] with t + θ ∈ (t1 − M, t2 + M).
Furthermore ξ(t) solves (6) on the interval (t1, t2).

3.2 Linear equations

In this section we collect some known facts about linear functional differential
equations of mixed type which we will use in the sequel, see also [29, 18]. We
investigate the linear equation

ẏ(t) = L(t)yt, (8)

where we have set yt(θ) := y(t+ θ) for any θ ∈ [−M,M ] and where

L(t)φ =
M∑

j=−M

Lj(t)φ(j) (9)

for φ ∈ C0([−M,M ],RN ) and some Lj(·) ∈ BC0(R, L(CN ,CN)) where we
assume that limt→∞ L(t) = L+ and limt→−∞ L(t) = L− exist. As in the
nonlinear case we can relate equation (8) to the abstract equation

∂tV (t) = A(t)V (t), (10)

where the linear operator A(t) : X ⊂ Y → Y is defined by

A(t)

(
ξ
ϕ

)
=

(
L(t)ϕ
∂θϕ

)

for (ξ, ϕ) ∈ X. Let us set A+ := limt→∞ A(t) (i.e. where L(t) in the definition
of A(t) is replaced by L+ := limt→∞ L(t)). Then it is known that the spectrum
of the densely defined operator A+ : X ⊂ Y → Y only consists of eigenvalues
of finite multiplicity. Moreover, an element λ∗ ∈ C is in spec(A+), if the
characteristic function vanishes at λ∗, that is, if

det(
(λ)) := det

[
λ · id−

M∑
j=−M

L+
j (e+jλ · id)

]
= 0 (11)

for λ = λ∗, where L+
j := limt→∞ Lj(t). Furthermore, the algebraic multiplic-

ity of λ∗ as an eigenvalue of A+ (which is the dimension of its generalized
eigenspace) coincides with the order of λ∗ as a zero of det
(·); we refer to
[13, 18] for proofs of these statements.
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Definition 3
We call a linear equation ẋ(t) = Lxt ( respectively V̇ = AV ) hyperbolic for
some L ∈ L(C0,CN) (respectively A = (L, ∂θ) ∈ L(X, Y )), if the characteristic
equation

det 
 (λ) := det

(
λ · id−

(
m∑

k=1

Lke
λk

))
= 0 (12)

does not possess purely imaginary zeros λ = is with s ∈ R.

3.2.1 Center dichotomies

In our situation we will encounter the case that the variational equation

ẏ(t) = L(t)yt

is asymptotically constant but not asymptotically hyperbolic with L+ = L−
such that the generalized center eigenspace of A+ is m-dimensional. Indeed,
later on we will consider the specific case

L(t) :=
1

c∗
D1F (h(t−M), . . . , h(t), . . . , h(t+M)).

However, we still can prove the existence of solution operators for the asso-
ciated abstract equation related to an exponentially decreasing and growing
part, respectively. This is the content of the next theorem and we refer to
[13, 18] for a proof.

Theorem 2 (Center stable dichotomies on R+)
Assume that

det(L+
−M(·)) and det(L+

M(·)) (13)

do not vanish identically on any nontrivial interval of R. Moreover, suppose
that the equation V̇ (t) = A+(t)V (t) is nonhyperbolic. Then (10) possesses a
center stable dichotomy on R+. That is, there exist constants K,α > 0 and
a family of strongly continuous projections P cs(t) : Y → Y , t � 0, with the
following properties. For any δ > 0 it is true that for U ∈ Y and t0 � 0

i) there exists a continuous function Φcs
+ (·, ·)U : {(t, t0) : t � t0; t, t0 � 0} →

Y , such that Φcs
+ (t0, t0)U = P cs(t0)U . Moreover, Φcs(t, t0)U ∈ Rg(P cs(t))

and |Φcs
+ (t, t0)U |Y � Keδ|t−t0 ||U |Y for all t � t0 � 0.

ii) There exists a continuous function Φu
+(·, ·)U : {(t, t0) : t � t0; t, t0 �

0} → Y , such that Φu
+(t0, t0)U = (id− P cs(t0))U . Moreover, Φu

+(t, t0) ∈
Rg(id− P cs(t)) and |Φu

+(t, t0)U |Y � Ke−α|t−t0||U |Y for all t0 � t � 0.

In the special case U ∈ X the functions t �→ Φcs
+ (t, t0)U and t �→ Φu

+(t, t0)U
define classical solutions of (10) on their domain of definition. Moreover, if
U ∈ Rg(P cs(t0)) with U = (ζ, φ(·)) the map Φcs

+ (t, t0)U is of the form (x(t), xt)
for t > t0, Φcs

+ (t0, t0)U = U and x(·) defines a solution of (8) with x0 = φ. An
analogous statement holds for Φu

+(t, t0)U .

However, even more is true (see also lemma 5 in [16]):

10



Lemma 2
Assume that the asymptotic characteristic equation

det(
(λ)) := det

[
λ · id−

M∑
j=−M

L+
j (e+jλ · id)

]

of (8) possesses exactly m purely imaginary zeros λ counting multiplicities.
Then there exists an m-dimensional subspace Ec

+(0) ⊂ Ecs
+ (0) and a closed

complement Es
+(0) ⊂ Ecs

+ (0), such that for any U ∈ Ecs
+ (0)

Φcs
+ (t, 0)

∣∣
Es

+(0)
U

decays exponentially as t→ ∞ if and only if U ∈ Es
+(0).

Hence, it is possible to ”factor out” the m-dimensional center part of the center
stable solution operator.
Analogously we can prove the existence of center-unstable dichotomies on R+

as well as the existence of center stable- and center unstable dichotomies on
R−.

3.3 Reversible equations

We call the abstract equation (7) reversible if

RF(U) = −F(RU) (14)

for any U = (ξ, φ) ∈ X, where the linear map R : Y → Y is defined by

R(ξ, φ(θ)) := (Rξ,R[Sφ(·)]) = (Rξ,Rφ(−θ))
and (Sφ)(θ) := φ(−θ) for any φ ∈ C0([−M,M ],RN ), we call the abstract
equation (7) reversible. Here, we assume that R ∈ L(RN) can be represented
in the form

R = Pi1 ◦ Pi2 ◦ . . . ◦ Pin , (15)

where the reflection Pi, 1 � i � N , is defined by

Pi(x
1, . . . , xN ) �→ (x1, . . . , xi−1,−xi, xi+1, . . . , xN).

An important space is the fixpoint space Fix(R), where

Fix(R) := {U ∈ Y : RU = U}.

3.4 Poincaré sections

Finally, we will state a result which allows us to construct suitable R-invariant
Poincaré-sections near H(τ), if H denotes a symmetric homoclinic solution.
Here, symmetric means thatH(τ∗) ∈ Fix(R) for some τ∗ ∈ R. In order to state
the next result, let us consider the linearization (10) along a homoclinic solu-
tion. If the asymptotic steady state is non-hyperbolic there exist dichotomies
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with solution operators Φcs
+ (t, s), t ≥ s ≥ 0 and Φu

−(t, s), t ≤ s ≤ 0. We have
shown in [15] that in this case

Rg(Φcs
+ (0, 0)) + Rg(Φu

−(0, 0))

is closed and possesses a finite-dimensional complement in Y , which typically
has dimension one. More precisely, the codimension of this space coincides with
the number of (up to scalar multiples) globally defined solutions of (8), which
decay exponentially as t→ −∞ and grow at most with small exponential rate
as t → ∞ (i.e. the grow rate is less than eδ|t| as t → ∞ for any fixed δ > 0).
Similarly, also Rg(Φcs

+ (0, 0)
∣∣
X̃

)+Rg(Φu
−(0, 0)

∣∣
X̃

) is closed and then possesses a

complement in X̃ with the same dimension, see [14]. Let us assume now there
exists an m-dimensional complement of Es

+(0) = Rg(Φs
+(0, 0)) in the space

Ecs
+ (0) ⊂ Y . We can then state the next result whose proof can be found in

[15].

Lemma 3 (Poincaré sections)
There exist subspaces Ẽs

+(0) ⊂ Rg(Φs
+(0, 0)) and Ẽu

−(0) ⊂ Rg(Φu
−(0, 0)) which

are complementary to span〈F(H(0))〉 and that are closed with respect to
the X̃-norm. Moreover, for any complement K̃ of the sum Ẽs

+(0) + Ẽu
−(0) +

span 〈F(H(0))〉 (in particular, K̃ is finite dimensional), the space

Γ̃ := K̃ ⊕ Ẽs
+(0) ⊕ Ẽu

−(0)

is closed with respect to the X̃-norm and defines a Poincaré-section at H(τ)
via Σ̃ := H(τ) + Γ̃. If K̃ is chosen to be R-invariant, then also the space Γ̃ is
R-invariant.

4 Set up

Instead of working with the original travelling wave equation

cu′(t) = F (u(t−M), . . . , u(t), . . . , u(t+M)) (16)

which we will also write in the form cu′(t) = F (ut), we will from now on
consider the abstract equation

U̇(t) = F((y(t), φ(t, ·)), c)
=

(
1
c
F (φ(t,−M), . . . , φ(t, 0), . . . , φ(t,M)))

∂θφ(t, θ)

)
,

(17)

in the space Y , where (y(t), φ(t, ·)) ∈ X for each t. Concerning solutions of
(17), let us emphasize that in particular weak solutions U(t) = (y(t), yt) of (17)
(as defined in section 3.1) play an important role, since they arise naturally as
a consequence of our functional analytic set up; especially when working with
integral equations like variants of the variation-of-constants formula [17]. As
defined in section 3.1, weak solutions are functions for which y : (−M,∞) →
RN is continuous and solves the original travelling wave equation (16) on (0,∞)

12



(we may in fact also consider intervals different from (−M,∞)). Hence, already
weak solutions U(t) on (0,∞) of the abstract equation then induce by definition
classical solutions ξ of the travelling wave equation (16) on (0,∞). These,
however, do not immediately translate back to travelling wave solutions ui(t)
of the lattice equation. In fact, we need a globally defined solution y of (16),
which then defines a solution ui of (1) via

ui(t) = y(i− ct).

As a starting point we now make the next assumption, which guarantees the
existence of a solitary wave solution of the original travelling wave equation
(1).

Hypothesis 1
Equation (17) possesses a homoclinic solution H(t) = (ψ(t), ψt) to the non-
hyperbolic steady state zero for c = c∗ and decays exponentially, i.e.

|ψ(t)| < Ce−2α∗|t|

for |t| large enough and some α∗ > 0. Moreover, the characteristic equation
with respect to c∗v′(t) = DF (0)vt possesses exactly m purely imaginary zeros
counting multiplicity.

Let us stress the fact that the exponential decay-condition is not automatically
satisfied, since the homoclinic solution may approach the steady state asymp-
totically along a center direction for one direction t → ±∞ and hence with
algebraic rate. However, in the Fermi-Pasta-Ulam lattice, where we always
encounter a line of equilibria, hypothesis 1 is satisfied for supersonic solitary
waves where m = 2 (see section 6 for details). A similar scenario arises, if the
linearization at the steady state possesses exactly two simple purely imagi-
nary eigenvalues ±iω, which typically lead to the existence of a one-parameter
family of small periodic solutions in reversible equations (16) (we refer to [16]
for such a result). Hence, any homoclinic solution to this steady state neces-
sarily lies in the strong stable and strong unstable manifold, respectively, and
hypothesis 1 is satisfied.
Since we now want to study solutions near the homoclinic solution H , it is
natural to linearize along the homoclinic solutions H . This leads to the equa-
tion

∂tV (t) = A(t)V (t) :=

(
1
c∗D1F (ψt)φ(t, ·)

∂θφ(t, θ)

)
, (18)

where V (t) = (η(t), φ(t, ·)). Let us assume that the assumption (13) is satis-
fied. Hence, on account of theorem 2 of section 3.2, the equation (18) admits
center stable and center unstable dichotomies with associated solution opera-
tors Φcs

+ ,Φ
u
+ ∈ L(Y, Y ) and Φcu

+ ,Φ
s
+ ∈ L(Y, Y ) on R+ and Φcs

− ,Φ
u
− ∈ L(Y, Y )

and Φcu
− ,Φ

s
− ∈ L(Y, Y ) on R−.

Notation
From now on we will often denote by P cs

+ (t) = Φcs
+ (t, t), t ≥ 0, and P s

+(t) =
Φs

+(t, t), t ≥ 0, the projections onto the center stable and strong stable space
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associated to a center stable and center unstable dichotomy on R+, respec-
tively. Similarly, the projections P u

−(t), t ≤ 0, P cu
− (t), t ≤ 0, are defined.

We also denote by Ecs
+ (t) := RgP cs

+ (t), t ≥ 0 the associated range of the center
stable projection, which is by definition a closed subspace of Y . Analogously,
the spaces Es

+(t), Ecu
+ (t), Eu

+(t), t ≥ 0, and Eu
−(t), Ecu

− (t), Eu
−(t), Ecs

− (t), t ≤ 0
are defined. Note that these subspaces are closed subspaces of Y whereas
an additional ˜ refers to the spaces as subspaces of X̃ (i.e. for example
Ẽcs

+ (0) = Rg(P cs
+ (0)

∣∣
X̃

) etc.). That these spaces are actually closed in X̃ is
proved in [14].

By the results of [13] we also have that the solution operators satisfy

Φcs
+ (t, s)

∣∣
X̃
,Φu

+(s, t)
∣∣
X̃
∈ L(X̃, X̃), t ≥ s ≥ 0,

and the norms can be bounded as in i), ii) of theorem 2 with respect to the
X̃-norm. Let us make the following generic assumption.

Hypothesis 2
H is non degenerate, i.e. Ecs

+ (0) ∩Eu
−(0) = span 〈F(H(0), c∗)〉.

As a consequence of hypothesis 2, center stable and unstable manifold of zero
intersect only along H and the space Ẽcs

+ (0) + Ẽu
−(0) has codimension one in

X̃, see lemma 6.1 and remark 6.1 in [16]. Moreover, on account of lemma 2
the space Es

+(0) possesses codimension m-dimensional in the space Ecs
+ (0) and

the same is true with respect to the spaces Ẽs
+(0) and Ẽcs

+ (0).

5 Lin’s method in the case of non-hyperbolic

steady states

In this section we want to prove our main result. For the statement of the
theorem we recall that Ẽs

+(0) ⊂ Ẽs
+(0) and Ẽu

−(0) ⊂ Ẽu
−(0) denote closed

complements of span〈F(H(0), c∗)〉 with respect to X̃ and have been defined in
lemma 3. On account of hypothesis 1 the generalized center eigenspace with
respect to the linearization of (17) at 0 is m-dimensional. Taking into account
hypothesis 2 we can therefore find an (1 +m)-dimensional complement K̃ of
the closed space Es

+(0) + Eu
−(0) in Y , such that

Es
+(0) + Eu

−(0) + K̃ = Y,

see lemma 5 in [16]. By the same result we are also allowed to choose K̃ to lie
in X̃ which implies that Ẽs

+(0) + Ẽu
−(0) + K̃ = X̃. We can now formulate our

main result.

Theorem 3
Assume that (13), which assures the existence of center dichotomies for the
linearized equation along the homoclinic solution, and the hypotheses 1 and

14



2 are satisfied. Fix a one-dimensional complement Z̃ ⊂ X̃ of Rg(P cs
+ (0)

∣∣
X̃

) +

Rg(P u
−(0)

∣∣
X̃

). Moreover, choose a complement K̃c ⊂ X̃ of

Rg(P s
+(0)

∣∣
X̃

) + Rg(P u
−(0)

∣∣
X̃

) + Z̃

and set K̃ = Z̃ + K̃c.
Select a constant M∗ > 0 and integers mj

−, m
j
+ ≥ 0 with the property mj

+ +
mj

− = m for all j ∈ Z, where m = dim(K̃c). Then there exist positive
constants ω∗, δ∗, γ∗ such that the following holds. For all c ∈ Bδ∗(c∗) and all
{ωi}i∈Z, with ωj ∈ (ω∗,∞) ∪ {∞} for all j ∈ Z, and every j ∈ Z there are m
variables ηj

1, . . . , η
j
m with

|ηj
k| ≤ M∗e−γωj , k = 1, . . . , m+

|ηj
k| ≤ M∗e−γωj−1 , k = m+ + 1, . . . , m

ηj
k = 0, if ωj = ∞ and k = 1, . . . , m+

ηj
k = 0, if ωj−1 = ∞ and k = m+ + 1, . . . , m

and continuous functions

U+
j = U+

j,(ηj
1,...,ηj

m+
)

: [0, ωj] → X̃

U−
j = U−

j,(ηj
m++1,...,ηj

m)
: [−ωj−1, 0] → X̃.

Moreover, if the variables ηj
1, . . . , η

j
m are fixed, the functions U±

j satisfy the
following conditions a), b), c), d) and are uniquely determined by these:

a) U+
j and U−

j are classical solutions of (6) on (0, ωi) and (−ωi−1, 0), respec-
tively.

b) U+
j (0), U−

j (0) ∈ Bδ∗(H(0)) with respect to the X̃-topology. Moreover,

U+
j (0) ∈ Σ̃ := H(0) + Ẽs

+(0) + Ẽu
−(0) + K̃ and U−

j (0) ∈ Σ̃ and U+
j (ωj) =

U−
j+1(−ωj).

c) U+
j (0) − U−

j (0) =: ξj({ωl}l∈Z, c, η
j
1, . . . , η

j
m) ∈ K̃.

d) sup[0,ωi]
‖U+

j (s) −H(s)‖X̃ ≤ δ∗, sup[−ωi−1,0] ‖U−
j (s) −H(s)‖X̃ ≤ δ∗.

We also have the property that

sup
[0,ωj ]

‖H(t) − U+
j (t)‖X̃ + sup

[−ωj−1,0]

‖H(t) − U−
j (t)‖X̃ → 0

as ωj, ωj−1 → ∞. For fixed ηj
1, . . . , η

j
m and any C̃ > ω∗, the mapping

ξj(·, c, ηj
1, . . . , η

j
m) : l∞(Z, (ω∗, C̃)) → X̃,

is C0 with respect to {ωk}k∈Z if c ∈ Bδ∗(c∗) is fixed. Moreover, the function

ξj({ωk}k∈Z, ·, ηj
1, . . . , η

j
m) : Bδ∗(c∗) → X̃,
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is C2 for every fixed {ωk}k∈Z, ωk ∈ (ω∗,∞) ∪ {∞} and associated ηj
1, . . . , η

j
m.

Finally, for every j ∈ Z and C∗ > ω∗ the mapping

(η1, . . . , ηm) �→ ξj({ωk}k∈Z, c, (η1, . . . , ηm))

is C2 with respect to (η1, . . . , ηm) ∈ Rm for any fixed c with |c− c∗| < δ∗ and
{ωk}k∈Z, if ωk < C∗ for all k.

The theorem states that upon choosing sufficiently large flight times ωj for
each j ∈ Z, there exist solution segments Ui on [−ωi, ωi], composed by U+

j and

U−
j+1, which may have jumps along an (m + 1)-dimensional vector space K̃.

The values U+
j (0), U−

j (0) itself lie in Σ̃, which is nothing else but a Poincaré
section (see also lemma 3). If all the jumps vanish (i.e. ξj = 0 for all j), then
a concatenation of the segments Uj provides a globally defined solution of the
equation (7) and in particular can be reinterpreted as a travelling wave solution
of (1). In this respect we can regard the jump-functions ξj as bifurcation
equations, where the flight times {ωk}k∈Z, the ”center” variables ηj

1, . . . , η
j
m

and the travelling wave speed c serve as parameters. The variables ηj
1, . . . , η

j
m

originate from the fact that the steady state possesses an m-dimensional center
eigenspace, and we will show where these parameters enter the analysis in
lemma 5 and lemma 7. Since also the dimension of the space K̃ incorporates
the dimension m of the center eigenspace, we can regard these center variables
as ”directions” for which we could not solve the bifurcation functions a priori
by using the implicit function theorem. As a technical point, it then would be
very desirable to have more than continuous dependence on the flight times
{ωk}k∈Z which in the case of hyperbolic steady states (i.e. m = 0) has recently
been proved in [19].
We should point out that using theorem 3 we are also able to detect globally
defined solutions U , whose profile can be far away from the original profile of
H pointwisely. But every solution U which can be constructed via theorem 3 is
close to the homoclinic solution in the sense that its orbit has to be sufficiently
close to the orbit of the primary homoclinic solution H ; i.e. every point U(ξ) is
close to some point H(ξ̃) for some ξ̃ ∈ R. As an application, one can apply this
reduction method to investigate the existence of multipulse solutions of (1) near
the solitary wave. These are solutions whose profile resembles a concatenation
of finitely many copies of the solitary wave profile and therefore its orbits with
respect to the abstract setting of the travelling wave equation is close to the
orbit of H . Let us also mention that hypothesis 2 is not necessary for theorem
3 to be true. In fact, if the intersection of Ecs

+ (0) ∩Eu
−(0) is k-dimensional for

some k ≥ 2 then theorem 3 holds verbally, where Z̃ now is k-dimensional.
There is an important feature that one can make use of when analysing the
existence of periodic solutions near a homoclinic solution H . As one can easily
show, these solutions are in one-to-one correspondence to the zero set of the
bifurcation function ξ1(ω, ω, c) = 0 for some ω > 0 large enough and some
travelling wave speed c near the speed c∗ of the original solitary wave (where
we have suppressed the parameter dependence on η1

1, . . . , η
1
m for the moment).

In fact, any zero of ξ1(ω, ω, c) = 0 induces a 2ω-periodic solution of (16). The
important aspect arises when the abstract equation (17) is reversible, which
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arises if the original lattice equation is time-reversible (typical examples are
the Klein-Gordon, the Toda and Fermi-Pasta Ulam lattice, see [16, 17]). This
is the case which will be treated in section 6. In this case we will show in
lemma 12 that ξ takes only values in Fix(−R) ∩ K̃, provided we have chosen
K̃ to be R-invariant, which we can do on account of the results in section 3.4.
As a consequence, we do not really have to solve m + 1 but typically only m

2

equations if m is even. For example, if the homoclinic solution approaches a
hyperbolic equilibrium (i.e. m = 0) and is symmetric (i.e. intersects Fix(R))
then we can actually choose a one-dimensional complement K̃ = Z̃ ⊂ Fix(R)
and therefore ξ1(ω, ω, c∗) = 0 is automatically satisfied. This observation has
been used in [17] to prove the existence of a one-parameter family of periodic
solutions near the homoclinic solution in a reversible setting; a phenomenon
which is typically referred to as the blue sky catastrophe.
But we can also make use of the reversibility in the framework of more com-
plicated scenarios (as in the case of the Fermi-Pasta Ulam lattice in section
6), where m = 2 and the reversibility allows us to reduce the number of bifur-
cation equations to just a single one (and hence from 3 = m+ 1 to 1). These
observations show that one can make use of underlying structures, which often
helps to reduce the number of bifurcation equations.

5.1 The proof of the main result

In this chapter we will prove our main result, theorem 3. We begin by giving
an outline in the next section. There, we also will see where the parameters
η1, . . . , ηm enter.

5.1.1 An outline of the proof

In order to prove theorem 3, we will write a solution U of (17) in the form
U(t) = H(t) + V (t). Then V solves the equation

V̇ = A(t)V (t) + G(V (t), t, c), (19)

where we have set G(t, V, c) := F(H(t)+V, c)−F(H(t), c)−A(t)V for V ∈ X̃.
Hence, instead of proving theorem 3 we can alternatively show the next lemma:

Lemma 4
Fix constants M∗, γ > 0 and a complement K̃ and for each j ∈ Z choose some

positive integers mj
+, m

j
− with the property mj

+ +mj
− = m. Then there exists

constants ω∗ > 0 and δ > 0 such that the following is true. Let {ωj}j∈Z be
sequence of flight times, ωj ∈ (ω∗,∞)∪{∞}. Then for every j ∈ Z there exist
m parameters ηj

1, . . . , η
j
m as in the statement of theorem 3 and additionally

there exist classical solutions

V̄ +
j = V̄ +

j,ηj
1,...,ηj

m−
: [0, ωj] → X̃

V̄ −
j = V̄ −

j,ηj
1,...,ηj

m+

: [−ωj−1, 0] → X̃
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of V ′(t) = A(t)V (t)+G(t, V (t)). Once the parameters ηj
1, . . . , η

j
m are fixed, the

solutions V̄ −
j , V̄

+
j are uniquely determined by satisfying the following properties

I), II), III):

I) V̄ +
j (ωj) − V̄ −

j+1(−ωj) = H(−ωj) −H(ωj).

II) V̄ ±
j (0) ∈ {Ẽs

+(0) + Ẽu
−(0) + K̃} ∩Bδ(0) and V̄ +

j (0) − V̄ −
j (0) ∈ K̃.

III) sup[0,ωj ]
‖V +

j (s)‖X̃ < δ∗, sup[−ωj−1,0] ‖V −
j (s)‖X̃ < δ∗.

It is also true that

sup
[0,ωj ]

‖V j
+(t)‖X̃ + sup

[−ωj−1,0]

‖V j
−(t)‖X̃ → 0 (20)

as ωj , ωj−1 → ∞. Moreover, define ξj({ωk}k∈Z, c, (η
j
1, . . . , η

j
m)) := V̄ +

j (0) −
V̄ −

j (0). Then, ξj satisfies all the properties which are listed at the end of
theorem 3.

Let us now give an outline of how we intend to prove this lemma. We will
construct V +

i as a fixed point of the integral equation

V +
i (t) = Φs

+(t, 0)V s,+ +

∫ t

0

Φs
+(t, s)G(V +

i (s), s)ds (21)

+ Φcu
+ (t, ωi)V

cu,+ +

∫ t

ωi

Φcu
+ (t, s)G(V +

i (s), s)ds

for suitable V s,+ ∈ Ẽs
+(0) and V cu,+ ∈ Ẽcu

+ (ωi), where we look for fixed points
in the set V +

i ∈ BCκ,+,i := BCκ([0, ωi],R
N × C0([−M,M ],RN )) and some

κ > 0 small enough. Here, BCκ,+,i is equipped with the norm | · |κ, where for
any V ∈ BCκ,+,i we have

|V |κ := sup
[0,ωi]

e|κ||t||V (t)|RN×C0([−M,M ],RN) <∞.

We will show in the next sections that the right hand side of (21) in fact induces
a contraction in BCκ,+,i which is uniform in ωi > 0. Moreover, it has been
shown in the proof of theorem 6 in [15] that any fixed point of (21) defines a
weak solution of the equation (19). This weak solution is actually a classical
solution for our special choice of V s,+.
Similarly, we will construct V −

i as fixed point of the equation

V −
i (t) = Φu

−(t, 0)V u,− +

∫ t

0

Φu
−(t, s)G(V −

i (s), s)ds (22)

+ Φcs
− (t,−ωi−1)V

cs,− +

∫ t

−ωi−1

Φcs
− (t, s)G(V −

i (s), s)ds

for suitable V u,− ∈ Ẽu
−(0) and V cs,− ∈ Ẽcs

− (−ωi−1), where we look for fixed
points V −

i ∈ BCκ,−,i := BCκ([−ωi−1, 0],RN × C0([−M,M ],RN )). Moreover,
for given V cu,+, V cs,− we will have to choose V s,+, V u,− in order to ensure that

U+
i (0) − U−

i (0) = V +
i (0) − V −

i (0) ∈ K̃. (23)

18



This will leave us finally to construct V cs,−, V cu,+ in order to guarantee

U+
i (ωi) = U−

i+1(−ωi) (24)

which can translates into V +
i (ωi) − V −

i+1(−ωi) = H(−ωi) +H(ωi). In this last
step we will in fact show that (24) can be achieved for a m-parameter family
of values V cs,−, V cu,+. Hence, it is here where the parameters ηi

1, . . . , η
i
m enter.

Technically, this stems from the m-dimensional intersection of

Ẽcs
− (−ωi) ∩ Ẽcu

+ (ωi) (25)

for every i ∈ Z if ωi > ω∗ and ω∗ is large enough, which is proved in lemma
5. Let us note that in the case of a hyperbolic steady state (m = 0) the
intersection (25) reduces to

Ẽs
−(−ωi) ∩ Ẽu

+(ωi) = {0}
as has been shown in [17]. This shows that the m additional parameters are a
consequence from the absence of hyperbolicity at the asymptotic steady state;
at least, if we work with the integral equation (21),(22). But only in this setting
we are able to guarantee that the constructed fixed points V ±

i are solutions
of (19) and not just a modified equation, where the nonlinearity G is replaced
by a modified nonlinearity Gmod, which possesses a globally sufficient small
Lipschitz-constant. This shows that we can think of the parameters ηi

1, . . . , η
i
m

as parameters on the center eigenspace with respect to the linearization at the
steady state for each i ∈ Z.

5.1.2 Proof of main result

In order to construct solutions of (19) rigorously, we will carry out the program
outlined in the previous section and therefore follow along the lines of the proof
in the hyperbolic case m = 0, see [17]. Let us first study the inhomogeneous
linear equation

V̇ ±
i = A(t)V ±

i (t) + h±i (t), (26)

hi = (h+
i , h

−
i ) ∈ Xκ

i−1,i where

Xκ
i−1,i := {(h−, h+) ∈ BCκ,i,− ×BCκ,i,+}.

Preliminary results for identifying the center parameters

In order to identify the parameters ηi
1, . . . , η

i
m we first need the following

lemma:

Lemma 5
Choose integers mi

+, m
i
− > 0 such that mi

+ + mi
− = m for all i and write

Ẽc(ωi) := Ẽcs
− (−ωi) ∩ Ẽcu

+ (ωi). Then there exist and ω∗ > 0 and subspaces

• Ēcu
+ (ωi) ⊂ Ẽcu

+ (ωi),

• Ēcs
− (−ωi) ⊂ Ẽcs

− (−ωi)

19



which are closed in X̃ such that Ēcu
+ (ωi) ⊕ Ēcs

− (−ωi) = X̃ if ωi > ω∗ and

• dim(Ēcu
+ (ωi) ∩ Ẽc(ωi)) = m− and

• dim(Ēcs
− (−ωi) ∩ Ẽc(ωi)) = m+,

where the space Ẽc(ωi) is m-dimensional.

Proof
We construct only the space Ēcu

+ (ωi), closed in X̃. In order to do that, let us
denote by

Ẽuu
+ (ωi) := Rg(Φuu

+ (ωi, ωi)
∣∣
X̃

)

the strong unstable space with respect to a center stable dichotomy of the
linear equation V̇ (t) = A(t)V (t) on R+. Then by the results in [16] it follows
that Ẽuu

+ (ωi) ⊂ Ẽcu
+ (ωi) has codimension m in Ẽcu

+ (ωi), see also lemma 2. Now

choose m linear independent vectors b1, . . . , bm− , bm−+1, . . . , bm ∈ X̃ in Ẽc(ωi)
(which we assume to be m-dimensional for the moment) and define

Ēcu
+ (ωi) := Ẽuu

+ (ωi) + span
〈
b1, . . . , bm−

〉
.

The fact that Ēcu
+ (ωi) is closed now follows as in the proof of lemma 6.2 in

[14]. Ēcs
− (−ωi) can be constructed analogously. Finally, let us address the fact

that Ẽc(ωi) is m-dimensional. First note that

Ẽcs
− (−ωi) ⊕ Ẽuu

+ (ωi) = X̃

as follows by lemma 4 in [17]. Now we observe that the codimension of Ẽuu
+ (ωi)

in Ẽcu
+ (ωi) is m which shows all claims of the lemma. �

Definition 4
The last lemma and its proof allow us to define the bounded projection P̄m+(ωj) :

X̃ → X̃ with m+-dimensional Rg(P̄m+(ωj)) = span
〈
bm−+1, . . . , bm

〉
according

to the decomposition of X̃ via

span
〈
b1, . . . , bm−

〉⊕ span
〈
bm−+1, . . . , bm

〉⊕ Ẽuu
+ (ωj) ⊕ Ẽs

+(ωj).

Similarly, we define the bounded projection P̄m−(−ωj) : X̃ → X̃ with m−-

dimensional Rg(P̄m−(−ωj)) = span
〈
b̃m++1, . . . , b̃m

〉
with respect to the de-

composition

span
〈
b̃m++1, . . . , b̃m

〉
⊕ Ẽss

− (−ωj) ⊕ Ẽu
−(−ωj) ⊕ span

〈
b̃1, . . . , b̃m+

〉
.

An important case arises, if the original equation is reversible with respect to
some reverser R, see section 3.3 for a definition of reversibility and the class
of admissible reversers. Then, we have the following result.

Lemma 6
Assume that the original equation is R-invariant in the sense of (14). Then, for

any ω > 0, the space Ẽc(ωi) := Ẽcs
− (−ωi)∩ Ẽcu

+ (ωi) can be chosen R-invariant.
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Proof
First of all note that for any closed space E ⊂ Y with E ⊕ Es

+(0) = Y there
exists a center unstable dichotomy on R+ with associated operators Φcu

+ ,Φ
s
+

such that Rg(Φcu
+ (0, 0)) = E, see for example [28]. We now make the particular

choice

E := Eu
−(0) + Z̃ + K̃c ⊂ Y, (27)

where K̃c is m-dimensional and defined in the statement of theorem 3 and
Eu
−(0) ⊂ Eu

−(0) denotes a complement of F(H(0), c∗) ∈ Eu
−(0). We note that

Eu
−(0)⊕Es

+(0) has codimension m+ 1 in Y , see lemma 5 in [16] (which shows

that K̃c is indeed m-dimensional). For a rigorous proof that the right hand
side of (27) now defines a closed space in Y we refer to lemma 6.2 and remark
6.1 in [14]. Taking into account the results in [16] and in particular the ideas
in the proof of lemma 7 there, we then also have the identity

Rg(Φcu
+ (0, 0)

∣∣
X̃

) = E ∩ X̃ = Ẽu
−(0) + Z̃ + K̃c

and E ∩ X̃ is closed with respect to the X̃-norm. With the help of the so
defined operators Φcu

+ ,Φ
s
+, we can define a center stable dichotomy on R− with

associated solution operators Φu
−(t, s), t ≤ s ≤ 0 and Φcs

− (t, s), s ≤ t ≤ 0 via

Φcs
− (t, s) := RΦcu

+ (−t,−s)R (28)

Φu
−(t, s) := RΦs

+(−t,−s)R.

Then we have Rg(Φcs
− (0, 0))

∣∣
X̃

) = Ẽs
+(0) + K̃ provided the space K̃ is R-

invariant. It is then true that

R[Ẽcu
+ (ω)] = Ẽcs

− (−ω)

for any ω ≥ 0. In order to see that (28) defines a center stable dichotomy on
R− we refer to [16].
Finally, let us show that Ẽc(ωi) is R-invariant. Let us therefore choose any
V ∈ Ẽc. Then V ∈ Ẽcs

− (−ωi) which means that RV ∈ Ẽcu
+ (ωi). Similarly,

V ∈ Ẽcu
+ (ωi) implies that RV ∈ Ẽcs

− (−ωi) which shows the claim. �

Constructions of solutions for the linear inhomogeneous equation

For the rest of the section we now choose some positive integers m−, m+

with associated subspaces Ēcu
+ (ωi), Ē

cs
− (ωi) satisfying the properties of the

last lemma. Hence, we can write any a+ ∈ Ẽcu
+ (ωj) and a− ∈ Ẽcs

− (−ωj) for
any ωj > 0 large enough in the form a± = (ã±, η±), where ã+ ∈ Ēcu

+ (ωj),
ã− ∈ Ēcs

− (−ωj) and

η+ ∈ Rg(P̄m+(ωj)), η− ∈ Rg(P̄m−(−ωj)),

where the projections have been defined in definition 4. We now choose a
(1 +m)-dimensional space K̃ as in the statement of theorem 3. Then we have
the following lemma:
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Lemma 7
Let ωi > 0, hi ∈ Xκ

i−1,i for all i and choose

ai = (a+
i , a

−
i ) = ((ã+

i , η
+
i ), (ã−i , η

−
i )) ∈ Ẽcu

+ (ωi) × Ẽcs
− (−ωi−1).

Then if ωi > ω∗ for all i and ω∗ > 0 is large enough, there exist unique classical
solutions of V̇ ±

i = AV ±
i + h±i such that Vi ∈ Xκ

i−1,i satisfies

• P cu,+(ωi)V
+
i (ωi) = a+

i , P cs,−(−ωi−1)V
−
i (−ωi−1) = a−i and

• P̄m+(ωi)V
+
i (ωi) = η+

i , P̄m−(ωi−1)V
−
i (−ωi−1) = η−i .

Finally, it is true that V ±
i (0) ∈ {Ẽs

+(0) + Ẽu
−(0) + K̃} and V +

i (0)− V −
i (0) ∈ K̃

for all i ∈ Z, where K̃ has been defined in theorem 3.

The proof of this lemma completely parallels the proof in [17] for the case
m = 0 and we therefore omit it. From now on we want to denote the solutions
obtained in the last lemma by

V̄ +
i = V̄ +

i (a+
i , h

+
i , ωj), V̄ −

i = V̄ −
i (a−i , h

−
i , ωj−1).

Lemma 8
The function V̄j(t) = V̄ +

j (t) for t ≥ 0 and V̄j(t) := V̄ −
j (t) for t < 0 has the

following properties.

a) Let t ∈ [−ωj−1, ωj]. Then there are κ, δ, α > 0 with 0 < δ < κ < α and
there exists a j-independent constant C such that

|V̄j(t)|X̃ ≤ C
(
e−κ|t|‖hj‖κ + eδ|ωj−t|‖a+

j ‖X̃ + e−α|t|‖a−j ‖X̃

)
, t ≥ 0

|V̄j(t)|X̃ ≤ C
(
e−κ|t|‖hj‖κ + eδ|ωj−1−t|‖a−j ‖X̃ + e−α|t|‖a+

j ‖X̃

)
, t < 0

b) If ωj > ω∗ for all j and ω∗ is large enough, then

|P u
−(−ωj)V̄

−
j+1(−ωj)|X̃ + |P s

+(ωj)V̄
+
j (ωj)|X̃ ≤

Ce−κ|ωj | (‖hj‖κ + max{‖a+
j ‖X̃ , ‖a−j ‖X̃}‖

)
.

Proof
Let us first prove the claim a) where we only consider the case t ∈ [0, ωj].
Choose some δ, κ with 0 < δ < κ < α, where α > 0 denotes the exponential-
decay rate of the solution operator Φs

+ and Φu
−, i.e.

‖Φs
+(t, s)‖L(X̃,X̃) ≤ Ce−α|t−s|, 0 ≤ s ≤ t,

‖Φu
−(t, s)‖L(X̃,X̃) ≤ Ce−α|t−s|, t ≤ s ≤ 0

for some C > 0. Note that α < α∗, where α∗ denotes the decay rate of H , see
hypothesis 1. Then

V +
j (t) = Φs

+(t, 0)V s,+ +

∫ t

0

Φs
+(t, s)h+

j (s)ds (29)

+ Φcu
+ (t, ωj)a

+
j +

∫ t

ωj

Φcu
+ (t, s)hj

+(s)ds
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for some specific value V s,+ = V s,+(hj, a
−
j ) such that

‖V s,+‖X̃ ≤ M · e−αωj−1‖a−j ‖X̃ +M‖hj‖κ. (30)

In fact, this follows for the explicit choice of V s,+ which immediately leads to
(30), see the proof of lemma 8 in [17] or [22]. We can therefore compute

‖V +
j (t)‖X̃ ≤ Me−α|t|‖V s,+‖X̃ +

∫ t

0

Me−α(t−s) · e−κs‖hj‖κds

+ Meδ(ωj−t)‖a+
j ‖X̃ +

∫ t

ωj

Meδ(t−s)e−κs‖hj‖κds

≤ Me−α|t|‖V s,+‖X̃ + M̃e−κt‖hj‖κ +Meδ(ωj−t)‖a+
j ‖X̃

from which a) follows together with (30).
Let us now explain why the property b) is true and let us again consider only
V̄ +

j . Since the values after applying the linear map Φcu
+ (ωj, ωj) lie in the kernel

of P s
+(ωj), we see from (29) that after applying P s

+(ωj) to the right hand side of
(29) there only remain terms which decay exponentially as ω∗ → ∞ and hence
ωj → ∞. Note that also in front of the term V s

+ we have the exponentially
decaying term Φs

+(ωj , 0) and therefore b) in the upper lemma is proves since
one can estimate the term P u

−(−ωj)V̄
−
j (−ωj) completely analogously. �

Lemma 9
There exists an ω∗ > 0 and a κ > 0 such that for all ωj > ω∗ and all hj ∈ Xκ

j,j−1

the equation V̇ ±
j = AV ±

j + h±j possesses a solution Vj = Vj(hj , aj) ∈ Xκ
j−1,j

satisfying the following property: Write a±j = (ã±j , η
±
j ), then

ã+
j − ã−j+1 = [H(−ωj) −H(ωj)] (31)

+ P u
−(−ωj)V

−
j+1(−ωj) − P s

+(ωj)V
+
j (ωj) − η+

j + η−j+1.

Moreover, if there are elements b±i = (b̃±i , η
±
i ) satisfying (31) such that Vi =

Vi(hi, bi) ∈ Xκ
i−1,i, then b̃+i = ã+

i and b̃−i = ã−i . Hence, ã±j only depends on
hj , hj+1 and we have the estimate

‖ã+
j ‖X̃ + ‖ã−j+1‖X̃ ≤ Ce−κωj max{‖hj‖κ, ‖hj+1‖κ}

+ C
(|η+

j | + |η−j+1|
)

+ C[|H(ωj) −H(ωj)|] (32)

for some j-independent constant C.

Proof
Only for this proof we need to define another projection which we denote by
P̄j : X̃ → X̃ the bounded projection with range Ēcs

− (−ωj) and kernel Ēcu
+ (ωj)

for ωj−1, ωj > ω∗ and ω∗ large enough. Then U+
j (ωj) = U−

j+1(−ωj) is equivalent
to [

P s
+(ωj) + P cu

+ (ωj)
]
V +

j (ωj) − [
P u
−(−ωj) + P cs

− (−ωj)
]
V −

j+1(−ωj)

= H(−ωj) −H(ωj)
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which can be written in the form (31). Since ã−j+1 ∈ Ēcs
− (−ωj) = Rg(P̄j) and

ã+
j ∈ Ēcu

+ (ωj) = Rg(id− P̄j), the identity (31) is equivalent to

ã−j+1 = P̄j

{
H(−ωj) −H(ωj) + P u

−(−ωj)V
−
j+1(−ωj)

}
+ P̄j

{−P s
+(ωj)V

+
j (ωj) − η+

j + η−j+1

}
(33)

ã+
j = (id− P̄j)

{
H(−ωj) −H(ωj) + P u

−(−ωj)V
−
j+1(−ωj)

}
+ (id− P̄j)

{−P s
+(ωj)V

+
j (ωj) − η+

j + η−j+1

}
.

In a more compact notation, (33) takes the form(
ã−j+1

ã+
j

)
= L1

(
ã−j+1

ã+
j

)
+ L2[H(−ωj) −H(ωj)] + L3

(
hj+1

hj

)
, (34)

where all the operators Li, i = 1, 2, 3, are linear, and the bounded map L1 :
L(Ēcs

− (−ωj) × Ēcu
+ (ωj)) has the property that

‖L1‖L(Ēcs
− (−ωj)×Ēcu

+ (ωj)) → 0

on account of property b) of lemma 8. This shows that the operator (id−L1) ∈
L(Ēcs

− (−ωj) × Ēcu
+ (ωj)) is boundedly invertible and we can solve (34) for

(ã−j+1, ã
+
j ) in terms of η±j , η

±
j+1 and h+

j , h
−
j+1. Finally, the estimate (32) fol-

lows once more from property b) of lemma 8. �

Note that this lemma allows us also to include the case of flight times {ωl}l∈Z

where ωk = ∞ for k ∈ I and some arbitrary subset I ⊂ Z. In fact, for these
values of k we choose ã+

k = ã−k+1 = η+
k = η−k+1 = 0 and we can define the

functions V +
j via (29) and V −

j accordingly.

5.2 The nonlinear equation

We are now ready to deal with the nonlinear equation

V̇ ±
j (t) = A(t)V ±

j (t) + G(V ±
j (t), t, c). (35)

First we can choose a cut-off function χρ : (−ρ, ρ) → R for every ρ > 0, which
has compact support in (−ρ, ρ) and χ

∣∣
[−ρ/2,ρ/2]

≡ 1. Let us now consider the

modified nonlinearity

Gmod(V, t, c) := χρ(‖V ‖X̃) · G(V, t, c)

for any V ∈ X̃ and ρ > 0. Then Gmod(·, t, c) : X̃ → X̃ is Lipschitz-continuous
and the Lipschitz-constant can be chosen to approach 0 as ρ ↘ 0. For given
c ≈ c∗, admissible flight times {ωk}k∈Z, ωk ∈ (ω∗,∞) ∪ {∞} for all k, and
{η±l }l∈Z we now want to construct a unique fixed point of the map

l : ⊕j∈ZX
κ
j,j−1 → ⊕j∈ZX

κ
j,j−1 (36)

l : {(V +
j , V

−
j )}j∈Z �→ {(V̄ +

j , V̄
−
j )}j∈Z.
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Here,

V̄ +
j = V̄ +

j (ã+
j ,Gmod(V

+
j , ·, c), η+

j ) ∈ BCκ([0, ωj], X̃)

and ã+
j is uniquely determined by G(V +

j (·), ·, c), G(V −
j+1(·), ·, c) and η+

j , η
−
j+1 on

account of lemma 9. Moreover,

V̄ −
j = V̄ −

j (ã−j ,Gmod(V
−
j , ·, c), η−j ) ∈ BCκ([−ωj−1, 0], X̃)

and ã−j is uniquely determined by G(V +
j−1(·), ·, c), G(V −

j (·), ·, c) and η+
j−1, η

−
j .

We can now prove the following lemma, which proves lemma 4. For the state-
ment of the lemma, we remind the reader that the projections P̄m−(−ωj), P̄

m+(ωj)
have been defined in definition 4.

Lemma 10
There exists an ω∗ > 0 and a κ > 0 such that the following holds. For any given
sequence of flight times {ωl}l∈Z such that ωj ∈ (ω∗,∞) ∪ {∞} for all j, and
for every sequence {η±j } with η+

j ∈ Rg(P̄m+(ωj)) and η−j+1 ∈ Rg(P̄m−(−ωj))
there is a unique fixed point

{(V +
j , V

−
j )} ∈ Xκ

j,j−1

of the map l defined in (36) for some ρ > 0 small enough. This fixed point
satisfies

P̄m+(ωj)V
+
j (ωj) = η+

j , P̄m−(−ωj)V
−
j+1(−ωj) = η−j

for all j ∈ Z and additionally we have the following properties:

A) For every {ωj}j∈Z, every γ > 0 and every M∗ > 0 choose a sequence
{η±j } such that η+

j = η+
j (ωj) and η−j = η−j (ωj−1) have the property that

|η+
j | ≤M∗e−γωj , |η−j | ≤ M∗e−γωj−1

where we have set η+
j = 0 if ωj = ∞ and where we have set η−j = 0 if

ωj−1 = ∞. Then l is a uniform contraction with respect to {ωj}j∈Z and
{η±j }, if κ is chosen even smaller if necessary to assure that 2κ < γ.

B) The fixed point {(V −
j , V

+
j )}j∈Z satisfies the properties I), II), III) and

(20) of lemma 4.

C) Choose some C > ω∗. Then, if {η±j }j∈Z and c are fixed, the contraction l
(and therefore the fixed point {(V −

j , V
+
j )}j∈Z) depends continuously on

{ωk}k∈Z ∈ l∞(Z, (ω∗, C)).

D) If {ωk}k∈Z ∈ l∞(Z, (ω∗,∞)) and c are fixed, then l depends C2 on
{(η+

j , η
−
j )}j∈Z ∈ l∞(Z,Rg(P̄m+(ωj)) × Rg(P̄m−(ωj−1))).

E) If {ωk}k∈Z, ωk ∈ (ω∗,∞) ∪ {∞} and the associated {η±j } are fixed, then
l depends C2 on c ∈ Bδ∗(c∗) for some sufficiently small δ∗ > 0.
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Proof
Let us first show that l is well-defined regarded as a map which takes values in
⊕j∈ZX

κ
j,j−1 and uniformly bounded with respect to {ωk}k∈Z. Let us only treat

the case t ∈ [0, ωj]. Then using condition a) of lemma 8 we have the estimate

eκ|t||V̄j(t)|X̃ ≤ C
(‖G(V ±

j (·), ·)j‖κ + eδ|ωj−t|+κ|t|‖a+
j ‖X̃ + e−αt+κt‖a−j ‖X̃}

)
.

Taking into account the estimate (32) of lemma 9, we see that a+
j can be

estimated in terms of

‖a+
j ‖X̃ ≤ e−κ|ωj| (‖(G(V +

j (·), ·, c)‖κ + ‖G(V −
j+1(·), ·, c)‖κ

)
+ C

(|η+
j | + |η−j+1|

)
+ C[|H(ωj) −H(−ωj)|],

where we recall that 0 < δ < κ < α. A similar estimate holds for the term a−j .
Therefore,

eκ|t||V̄j(t)|X̃ ≤ C
[
1 + eδ|ωj−t|+κ|t|−κωj

] (‖(G(V +
j (·), ·, c)‖κ + ‖G(V −

j+1(·), ·, c)‖κ

)
+ Ceκωj+κ|t| (|η+

j | + |η−j+1|
)

+ Ceκωj+κ|t|[|H(ωj) −H(−ωj)|]
+ C

[
e−αt+κ|t|] (‖(G(V −

j (·), ·, c)‖κ + ‖G(V +
j−1(·), ·, c)‖κ

)
+ Ce−αt+κωj−1+κ|t| (|η+

j−1| + |η−j |
)
.

Hence, eκ|t||V̄j(t)|X̃ can be bounded uniformly with respect to t ∈ [0, ωj] and
the choice of {ωj}j∈Z, if 2κ < γ. The case 0 ∈ [−ωj−1, 0] can be treated
completely analogously.
With similar arguments one can now show that l defines a contraction if ρ > 0
(which appears in the definition of the cut-off function) is chosen small enough;
again, this can be done uniformly with respect to the flight times. Claim B) is
now true by the definition and construction of the functions V +

j , V
−
j . Moreover,

for fixed
{ωj}j∈Z ∈ l∞(Z, (ω∗,∞)),

the C2-dependence on the values η±j ∈ X̃ follows since l depends bounded
linearly on these values and hence its fixed points depend C2 on {η±j }j∈Z. This
shows D). Finally, let us show C). First of all note that if {η±j }j∈Z is fixed, then
l is a uniform contraction with respect to {ωk}k∈Z in a small neighborhood of
any prescribed {ω∗

k}k∈Z ∈ l∞(Z, (ω∗,∞)) if for all k we have |ω∗
k| < C for some

C > 0. Then the claim C) follows if we can show that l depends continuously
on the flight times; but this has been shown in [17]. Finally condition E) is
also a consequence of the fact that l depends C2 on c; the property (20) of
lemma 4 follows analogously to the hyperbolic case m = 0, see for example
lemma 11 in [5]. �

6 Periodic travelling waves accompanying soli-

tary waves in the FPU lattice

In this section we want to use our results to discuss the existence of oscillatory
solutions in the Fermi Pasta Ulam lattice

ün = V ′(un+1 − un) − V ′(un − un−1), n ∈ Z (37)
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for some potential V with V(0) = V ′(0) = 0 and V ′′(0) =: β > 0. More
precisely, setting rn = un+1 − un we consider the equation

r̈n = V ′(rn+1) − 2V ′(rn) + V ′(rn−1), n ∈ Z (38)

and investigate the existence of periodic travelling waves near solitary wave
solutions in this equation. Since our approach does in principal not rely on the
fact that the solitary wave profile is small (i.e. close to the steady state 0 in
some sense), we will set up the reduction method in the next section without
assuming smallness of the initial solitary wave solution. Our main results
of this section are summarized in theorem 4, which assures the existence of
periodic travelling waves under suitable generic assumptions on the original
solitary wave. We will afterward validate all hypotheses in section 6.2 for a
specific case by making use of a result of Pego and Friesecke [8], who proved the
existence of solitary waves and obtained very detailed informations concerning
these solutions (see also theorem 5). As a main result, we show that each such
wave is accompanied by a family of symmetric periodic travelling waves of
(38) with arbitrary large period. Moreover, we show that these periodic waves
persist under small reversible perturbations of the FPU-lattice and induce
symmetric solitary waves for the perturbed equation, see section 6.3.
In the course of proving theorem 4, we will apply the reduction method intro-
duced earlier in this article and thereby derive a lot of important properties
concerning the jump function ξj in the context of general Hamiltonian or time-
reversible LDEs. For example, if one studies the existence of periodic travelling
then lemma 11 in connection with lemma 12 allows one to count and reduce
all fixpoint-components of the underlying reversibility from the bifurcation
equations, which helps to reduce the number of bifurcation equations.

6.1 The reduction process

In this section we obtain a general result concerning the existence of periodic
travelling waves near solitary waves in time-reversible lattice differential equa-
tions, which possess conserved quantities. For the sake of illustration we will
focus on the Fermi-Pasta-Ulam lattice differential equation though the reduc-
tion procedure holds true in more general equations. The main result is stated
in section 6.1.5. It states that under generic conditions every supersonic soli-
tary wave (i.e. whose wave speed c∗ satisfies V ′′(0) = β < c2∗) of the FPU
lattice is accompanied by periodic travelling waves. Moreover, these periodic
waves have the same wave speed as the solitary wave and their period can
become arbitrary large.
Only when it comes to the validation of the required assumptions of our main
result, we will make strongly use of results obtained by Pego and Friesecke [13]
in the framework of the Fermi-Pasta-Ulam lattice. We start by making the
next assumption.

Hypothesis 3
The equation (38) possesses a solitary wave rn(t) = ψ(n− c∗t) for some trav-
elling wave speed c2∗ > β (in particular the wave is supersonic). The function
ψ(τ) decays exponentially to zero as τ → ±∞ and ψ is an even function.
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Let us remark that any homoclinic solution in the case c2∗ > β has to decay with
exponential rate asymptotically. In fact, this is consequence of the dynamic
on a center manifold which shows that any steady state on the center manifold
can not be approached by a different solution on the center manifold in forward
time. Hence, any homoclinic solution has to approach a steady state on the
center manifold in forward time along a strong stable direction and hence with
exponential rate (see also the proof of theorem 6 where these arguments have
been stated more explicitly).
The existence of such solitary wave solutions as in 3 has been proved in [7] and
[8] by using variational methods and renormalization techniques, respectively
(for more details, see the next section). The assumptions concerning the even-
ness actually implies that the orbit of the solution is invariant with respect
the transformation ψ(τ) �→ ψ(−τ) and therefore can be expressed in terms of
the reversibility of (37), see also below. The solution rn(t) = ψ(n − c∗t) now
defines a solution ψ(τ) of the travelling wave equation

c2∗x
′′(τ) = V ′(x(τ + 1)) − 2V ′(x(τ)) + V ′(x(τ − 1)), (39)

for τ = n − c∗t. In fact, ψ defines a homoclinic solution of (39) to the steady
state zero. An important observation is that any solution x(τ) of the travelling
wave equation induces again a solution x(−τ). Posing (39) in abstract form
leads to a reversible equation

U̇(t) = F(U(t), c∗). (40)

More explicitly, this equation reads
 ∂tx(t)

∂ty(t)
∂tφ(t, ·)


 =


 y(t)

1/c2∗ [V ′(φ1(t, 1)) − 2V ′(φ1(t, 0)) + V ′(φ1(t,−1))]
∂θφ(t, ·)


 ,

where φ1 denotes the first component of φ = (φ1, φ2) : [−1, 1] → R2 and
(x, y, φ) ∈ X = {(x, y, (φ1, φ2)) ∈ R2 ×H1([−1, 1],R2) : φ(0) = (x, y)}. More-
over, the reversibility is given by

R(x, y, φ1(θ), φ2(θ)) �→ (x,−y, φ1(−θ),−φ2(−θ)) (41)

for any (x, ξ, φ1(θ), φ2(θ)) ∈ Y := R2 × L2([−1, 1],R2). For completeness we
also specify the space X̃ in this particular case, which is

X̃ = {(x, y, φ1, φ2) ∈ R
2 × C0([−1, 1],R2) : (x, y) = (φ1(0), φ2(0))}.

A special solution of (40) is given by the homoclinic solution

H(t) := (ψ(t), ψ′(t), ψt(·), ψ′
t(·))

and we observe that (ψ(0), ψ′(0), ψ(·), ψ′(·)) ∈ Fix(R) on account of the even-
ness of ψ (as before, the index ”t” in ψt is not a derivative!). Hence, H is a
symmetric homoclinic solution to the steady state zero.
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6.1.1 The spectrum of the linearization at the steady state

Since we want to apply our reduction procedure to the abstract equation (40),
we first have to analyse the critical eigenvalues of the linearization of DF(0),
regarded as a densely defined map from Y to Y with domain X. Due to
the invariance x �→ x + η of (39) for any η ∈ R we always will encounter
critical spectrum. More precisely, an element λ = iω in the critical spectrum
is characterized by the fact that it provides a zero of the characteristic equation

c2∗λ
2 = β(eλ − 2 + e−λ). (42)

We obtain this equation by directly computing the resolvent of (40) linearized
at zero. Alternatively, we can linearize (39) at x = 0 and make the ansatz eλt

for the linearized equation, see [14] and also section 3.2. We point out that
(42) is not satisfied for λ = iω, ω �= 0, in the case under investigation c2∗ > β,
see lemma 1 in [21]. Moreover, the eigenvalue λ = 0 has algebraic multiplicity
2, since differentiating the characteristic equation with respect to λ gives

2c2∗λ = β(eλ − e−λ)

which is always true for λ = 0 (verify again section 3.2 for technical back-
ground in this respect). Here, we have used that the order of λ = 0 as a zero
of (42) coincides with its algebraic multiplicity as an eigenvalue. As a result,
λ = 0 induces a two-dimensional center eigenspace of DF(0, c∗) which is the
span of the vectors e1 = (1, 0, 1, 0) and e2 = (0, 1, θ, 1) ∈ X̃.

Notation
For later reference we will denote by Es, Eu the stable and unstable eigenspace
with respect to the linear map DF(0, c∗) : X ⊂ Y → Y . Moreover, we denote
by Ecs, Ecu the center stable and center unstable eigenspace, respectively. The
projection associated to the decomposition Es + Ecu = Y with range Es we
denote by πs and similarly πu is defined.

6.1.2 Geometric relations

In this section we collect some informations concerning how center stable and
center unstable eigenspace Ecs

+ (0), Ecu
− (0), respectively, intersect. Let us first

observe that the linearization of (38) along H(t), namely the equation

Ż(t) = DF(H(t), c∗)Z(t),

possesses solution operators on R+ (once condition (13) is satisfied, which we
will assume from now on) with solution operators Φcs

+ (t, s), Φs
+(t, s) t ≥ s ≥ 0

and Φcu
+ (t, s), Φu

+(t, s) s ≥ t ≥ 0. Similarly, there exist solution operators
on R− which we denote by Φcs

− (t, s), Φs
−(t, s) s ≤ t ≤ 0 and Φcu

− (t, s), Φu
−(t, s)

t ≤ s ≤ 0. Moreover, we can choose these solution operators in such a way that
they satisfy (28) and in particular Ẽc(ω) (defined in lemma 6) is R-invariant
if ω > 0 is large enough. As usual, the index ”u” refers to the strong unstable
part (hence, these solution operators decay exponentially in the distance |t−s|
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on their domain of definition) and the solution operators with the index ”cu”
refers to the center-unstable part. An analogous convention holds for the
indices ”s” and ”cs”.

Let us also point out that in our particular case the space Es
+(t) := Rg(Φs

+(t, t))
possesses a two-dimensional complement Ec

+(t) in Ecs
+ (t) := Rg(Φcs

+ (t, t)) for
any t ≥ 0. This is true because the center eigenspace of DF(0, c∗) is two-
dimensional (note also lemma 2). Moreover, the space Eu

−(t) := Rg(Φu
−(t, t))

possesses a two-dimensional complement Ec
−(t) in Ecu

− (t), which is defined by
Ecu

− (t) := Rg(Φcu
− (t, t)) for any t ≤ 0 (and a ˜ on these spaces will again refer

to these space as subspaces of X̃).

Hypothesis 4
It is true that

Es
+(0) ∩Eu

−(0) = span 〈∂tH(0)〉 . (43)

As a consequence we can prove the next lemma, which plays one of the key
roles in our proof since it helps us to count the parts of Fix(R) and Fix(−R)
which are complementary to Ẽs

+(0) + Ẽu
−(0).

Lemma 11
There exists two vectors U+, V+ ∈ Fix(R) and a vector U− ∈ Fix(−R) such
that

Ẽs
+(0) + Ẽu

−(0) + span 〈U+, V+, U−〉 = X̃.

Proof
First note that ∂tH(0) ∈ Fix(−R) on account of the definition of R and
the fact that H is an even function. Let us now observe that Ẽc

±(0) is two-
dimensional for both choices ”+” and ”−”. Hence, both spaces have to in-
tersect at least in a one-dimensional space span〈V∗〉 since the codimension of
Ẽs

+(0) + Ẽu
−(0) is three in X̃ (we refer to [15] in order to see how to rigorously

count codimensions). Since the space span〈V∗〉 ⊂ Ẽc
+(0)∩Ẽc

−(0) is R-invariant,
one of the following cases occurs. Either

i) span〈V∗〉 ⊂ Fix(R) or

ii) span〈V∗〉 ⊂ Fix(−R).

Let us only consider case i), since one can argue in case ii) analogously. Note
that in case i) V∗ now plays the role of V+ in the statement of the lemma. In
order to prove the existence of U+, we need to define the spaces Ẽcs,+

+ (0) :=
Ẽs

+(0) + 〈V∗〉 and Ẽcu
− (0) := Ẽu

−(0) + 〈V∗〉. Similarly, we define the spaces

Ẽcs,+ := Ẽs +span 〈(1, 0, 1, 0)〉 and Ẽcu
+ := Ẽu +span 〈(1, 0, 1, 0)〉, respectively,

where (1, 0, 1, 0) is the vector of the center eigenspace which lies in Fix(R) (note
that also (0, 1, θ, 1) ∈ Fix(−R) lies in the center eigenspace). By assumption,
we therefore conclude that

Ẽcu
− (0) + Ẽcs

+ (0) (44)
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has codimension two in X̃. We now consider the map

κ+
0 : Ẽcs,+

+ (0) → Fix(R) ∩ X̃
κ+

0 : U �→ 1

2
(U + RU).

Let us now argue that κ+
0 is a Fredholm operator and compute its index.

In fact, we have that ker(κ+
0 ) = span 〈∂tH(0)〉 (note that this kernel would

be two-dimensional in case ii) here), the range is closed and any element in
ker((κ+

0 )∗) is characterized by the fact that it lies in a suitable complement of
(44); for a proof that ker((κ+

0 )∗) is in fact finite-dimensional and hence Rg(κ+
0 )

has finite codimension see [17]. Hence, κ+
0 is in fact a Fredholm operator and

we want to show that its index is zero (this would then provide the existence
of the element U+ in the statement of the lemma.) The results in [17] now also
imply that i(κ+

0 ) = i(κ+
∞), where

κ+
∞ : Ẽcs,+ → Fix(R) ∩ X̃ (45)

κ+
∞ : U �→ 1

2
(U + RU).

On account of the definition of Ẽcs,+ and the fact that Ẽs ∩ Ẽu = {0} at the
steady state, we readily see that ker(κ+

∞) = {0}. To compute ker((κ+
∞)∗) is a

little trickier; in order to do that let us consider the map κ+
∞ first as a map

from the space Ecs,+ to Fix(R) (and hence with respect to the Y -norm). Then
an elementary computation shows that if U∗ ∈ ker((κ+

∞)∗) ⊂ Fix(R) then

U∗ ⊥ (Ecu,+ + Ecs,+). (46)

But there already exists a nontrivial element in Fix(−R) satisfying the condi-
tion (46), namely (0, 1, θ, 1), and since Ecu,+ + Ecs,+ has codimension one in
Y , the condition (46) cannot be satisfied for a nontrivial element U∗ ∈ Fix(R).
Hence, ker((κ+

∞)∗) = {0} and now one can show easily that the same holds for
the original map κ+

∞ in (45). Therefore i(κ+
0 ) = i(κ+

∞) = 0. This finally shows
the existence of the element U+ in the upper lemma.
In order to prove the existence of the element U− ∈ Fix(−R) in the statement
of the lemma, let us consider the function

κ−0 : Ẽcs,+
+ (0) → Fix(−R) ∩ X̃
κ−0 : U �→ 1

2
(U −RU)

where now ker(κ−0 ) = span 〈V+〉 by assumption i). In order to show that the
Fredholm index of this map is zero, let us again restrict to the steady state
and consider the operator

κ−∞ : Ẽcs,+ → Fix(−R) ∩ X̃
κ−∞ : U �→ 1

2
(U −RU).

We readily verify that then ker(κ−∞) = 〈(1, 0, 1, 0)〉 and ker((κ−∞)∗) = 〈(0, 1, θ, 1)〉
(by arguing again in the space Y first). Hence, i(κ−0 ) = 0 and the existence of
an element U− as in the statement of the lemma follows in case i). However,
we can argue analogously in case ii) and the lemma is proved. �
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6.1.3 Analysis of the zero-set of the jump functions

Under the upper assumptions we can now set up our reduction process. More
precisely we can choose a three-dimensional, R-invariant complement K̃ to
Ẽs

+(0) + Ẽu
−(0) in the form

K̃ = span 〈U+, V+, U−〉 ,
where these vectors are specified in the upper lemma.

Remark
The following observation will be important for section 6.2. If H is sufficiently
small we know that Φcs

+ (0, 0), Φs
+(0, 0) are close to the linear operators πcs and

πs, respectively, with respect to the L(X̃, X̃) or L(Y, Y )-norm (see [16]). Here,
πcs, πs denote the spectral projections of DF(0, c∗) with respect to the center
stable and stable eigenspace, respectively. Hence, U− accounts for the Fix(−R)
component of the center-part of Ẽc

+(0) and therefore is close to (0, 1, θ, 1) if H
is small enough. Indeed, note that (0, 1, θ, 1) induces the Fix(−R) component
of the center-part of span 〈(1, 0, 1, 0), (0, 1, θ, 1)〉 at the steady state. If H is
sufficiently small, we are therefore free to choose U− := (0, 1, θ, 1) or some
vector U− close to this vector with respect to the X̃-norm within the space
Fix(−R) and the resulting space K̃ still provides an R-invariant complement.

Let us now use theorem 3 and consider the jump function

ξ : (ω∗,∞) × Bδ(0) → K̃,

with ξ(ω, η) := ξ1(ω, ω, c∗, η) where η = (η1, η2) ∈ R2 denotes the parameter
with respect to the center choice V+, U− and Bδ(0) denotes a ball centered at
zero. If we can now prove the existence of a zero (ω, η) of ξ, then we obtain the
existence of a periodic solution of the equation (38) of period 2ω (all U+

i , U
−
i

are identical to U+
1 , U

−
1 , respectively). The next observation is important in

this respect.

Lemma 12
Choose m+ = m− = 1 (where these numbers appear in the construction of the
jump functions and the statement of theorem 3) and fix some M, γ > 0. Then
we can choose the parameters η1, η2 ∈ R as in theorem 3, with |η1| + |η2| <
Me−γω, such that the jump functions satisfy ξ(ω, η) ∈ Fix(−R) for any (ω, η)
with η = (η1, 0).

Proof
Before we begin with the proof, let us recall that the spaces RgP̄m+(ω) and
RgP̄m−(−ω) are defined in definition 4. By definition ξ(ω, η) = V̄ +(0)−V̄ −(0)
for some suitable solutions V̄ +(·), V̄ −(·) of

∂tV (t) = DF(H(t), c)V (t) + G(t, V (t)) (47)

on [0, ω) and (−ω, 0], respectively. We recall that H(0) ∈ Fix(R) and therefore
RH(t) = H(−t). A short calculation now shows that Z−(t) := RV̄ +(−t)
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solves the equation (47) on 0 ≥ t ≥ −ω and Z−(0) = RV̄ +(0). Moreover, by
construction V̄ +(t) satisfies the equation

V̄ +(0) = V̄ s,0 + Φcu
+ (0, ω)η̄+ +

∫ 0

ω

Φcu
+ (0, s)G(s, V̄ +(s))ds (48)

for some η̄+ = (η̄++ + η̄c+, η̄p+) ∈ Ēcu
+ (ω) × RgP̄m+(ω), where η̄++ ∈ Ẽuu

+ (ω),

η̄c+ ∈ Ẽc(ω) ∩ Ēcu
+ (ω) and η̄p+ accounts for the one-dimensional parameter

direction. Moreover, our construction in proof of lemma 6 we can choose the
vector η̄c+ in such a way that η̄c− := Rη̄c+ satisfies

span
〈
η̄c−, η̄c+

〉
= Ẽc(ω). (49)

In fact, this is possible since the R-invariant space Ẽc approaches the cen-
ter eigenspace span〈(1, 0, 1, 0), (0, 1, θ, 1)〉 of the steady state as ω → ∞ and
span〈(1, 0, 1, 0), (0, 1, θ, 1)〉 ∩ Fix(R) as well as span〈(1, 0, 1, 0), (0, 1, θ, 1)〉 ∩
Fix(−R) are both one-dimensional (note also the remark preceding this lemma).
Hence, we can choose η̄c+ /∈ Fix(R) and η̄c+ /∈ Fix(−R) satisfying (49). Sim-
ilarly, taking into account that RgP̄m+(ω) = 〈η̄p+〉 we can redefine η̄p+ if
necessary and construct P̄m−(−ω) satisfying the properties in the definition 4
in such way that

Rg(P̄m−(−ω)) =
〈Rη̄p+

〉
;
〈Rη̄p+

〉
+
〈
η̄p+
〉

= Ẽc(ω).

Finally we can choose η̄− ∈ Ēcs
− (−ω) (which appears in the integral equation

(48) of V̄ −(·)) in the form η̄− = (η̄−− + η̄c−, η̄p−), where here

η̄−− ∈ Rg(Φs
−(−ω,−ω)

∣∣
X̃

) = R
[
Ẽu

+(ω)
]
,

η̄c− ∈ Ẽc(ω) ∩ Ẽcs
− (−ω) is defined in (49) and η̄p− accounts for the one-

dimensional parameter space RgP̄m−(−ω). We now apply R to equation (48).
Taking into account our special choice of dichotomies (see again lemma 6 and
its proof) and choosing any η̄p+ we have

RΦcu
+ (0, ω)

[
η̄++ + η̄c+ + η̄p+

]
= Φcs

− (0,−ω)R [η̄++ + η̄c+ + η̄p+
]

= Φcs
− (0,−ω)

[
η̂−− + η̂c− + η̄p−]

with η̄p− := Rη̄p+ and where η̂−− + η̂c− ∈ Ẽcs
− (−ω). Since RG(s, V̄ +(s)) =

−G(−s,RV̄ +(s)) we conclude that

RV̄ +(0) = RV̄ s,0 + RΦcu
+ (0, ω)η̄+ +

∫ 0

ω

RΦcu
+ (0, s)G(s, V̄ +(s))ds (50)

= RV̄ s,0 + Φcs
+ (0,−ω)

(
η̄−− + η̄c−)− ∫ 0

ω

Φcs
+ (0,−s)G(−s,RV̄ +(s))ds

= RV̄ s,0 + Φcs
+ (0,−ω)

(
η̄−− + η̄c−)+

∫ 0

−ω

Φcs
+ (0, s)G(s,RV̄ +(−s))ds.

We therefore see that U+(t) := V̄ +(t)+H(t) and Ũ−(t) := H(t)+RV̄ +(−t) =
H(t) + Z−(t) satisfy all the assumptions of theorem 3 for the one-parameter
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family (ηp+, ηp−) = (ηp+,Rηp+). Therefore, Ũ−(t) coincides with H(t)+ V̄ u(t)
by uniqueness (note that the parameter part vanishes and this is the only
spot where non uniqueness could enter the integral equation). In particular
RV̄ +(−t) = V̄ −(t). Finally, this shows that

Rξ(ω, η) = RV̄ +(0) −RV̄ −(0) = V̄ −(0) − V̄ +(0) = −ξ(ω, η).

�
The lemma tells us that ξ(ω, η) actually only takes values in the one-dimensional
space span〈U−〉 ⊂ Fix(−R). Hence, we remain with just one single scalar bi-
furcation equation which is the main consequence of the last result. We will
now show that ξ = 0 for any ω > ω∗ large enough. In order to do that, let us
note that there exists a conserved quantity, i.e. a first integral J of (40). In
fact, for any U = (x, y, φ(·), ψ(·)) ∈ X̃ we can define the function

J(U) = ψ(0) − 1

c2∗

(∫ 1

0

V ′(φ(θ)) − V ′(φ(θ − 1))dθ

)
. (51)

This quantity of course also defines a first integral of the original equation
and we can show easily that J(x(t+ ·), ẋ(t+ ·)) is constant along any solution
of (39). We now want to assume that H(0) is a regular point for J . More
precisely, we make the following assumption.

Hypothesis 5
The derivative of J in direction U− is non-zero, i.e. DJ(H(0))[U−] �= 0.

By continuity, we also find the existence of a neighborhood U of H(0) with
respect to X̃ such that

DJ(Z)[U−] �= 0

for all Z ∈ U . Finally, let us consider the value J(V̄ + +H(0))−J(V̄ −+H(0)).
This quantity is certainly zero, since the solutions associated to V̄ ++H(0) and
V̄ − +H(0) lie in the same level set of J . We also have that V̄ + − V̄ − = λU−
for some λ ∈ R, since ξ(ω, η) = V̄ + − V̄ − takes values in span 〈U−〉. Moreover,
if ω >> 0 is large enough we have

0 = J(V̄ + +H(0)) − J(V̄ − +H(0))

= λ ·
∫ 1

0

DJ(θV̄ + +H(0) + (1 − θ)V̄ −)[U−]dθ

which can only be true if λ = 0 because

∫ 1

0

DJ(θV̄ + +H(0) + (1 − θ)V̄ −)[U−]dθ �= 0.

Hence, λ = 0 and therefore ξ(ω, η) = 0 for all ω > 0 large enough and we
conclude the existence of periodic solutions of (38). �
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6.1.4 Dependence on the travelling wave speed

Let us note that all arguments of the previous sections addressed the existence
of periodic travelling waves with a fixed wave speed c∗, which is the speed
of the original solitary wave. We now want to analyze the properties of the
constructed family of periodic travelling waves with respect to the wave speed.
Note that these waves are induced by the initial values H(0) + V̄ +(0), where
V̄ +(0) = V̄ +

c (0) actually depends C2 on c ≈ c∗ by construction of the jump
functions.
Fixing some ω > ω∗ large enough and some η ≈ 0, we can now also deduce that
ξ(ω, η, c) = 0 even after slight variation of the wave speed c near the original
speed c∗. In fact, our last arguments, which showed that all three components
of ξ(ω, η, c∗) ∈ K̃ vanish, hold true also for c ≈ c∗. Hence, since V̄ +

c (0) and
therefore also the induced periodic solution on [−ω, ω] depends C1 on c, we
actually have proved that the family of periodic travelling waves

U(t) = H(t) +

{
V̄ +

c (t) ω ≥ t ≥ 0
V̄ −

c (t) − ω ≤ t ≤ 0

depends C1 on c ≈ c∗ (regarded as elements in C0([−ω, ω], X̃)).

6.1.5 The main result

Summarizing, we can now state the main result of this section.

Theorem 4 (Periodic travelling waves)
Fix some γ,M∗ > 0 and assume that the assumption concerning the existence
of a solitary wave with wave speed c, see hypothesis 3, and the hypotheses 4, 5
are satisfied. Then there exists a ω∗ > 0 and a ω-dependent parameter η1 ∈ R

with |η1| ≤M∗e−γω such that

A) for all ω > ω∗ and all c with |c − c∗| small enough, there exists a 2ω-
periodic, symmetric solution p = pω,c,η1 of

c2x′′(τ) = V ′(x(τ + 1)) − 2V ′(x(τ)) + V ′(x(τ − 1))

which induces a periodic travelling wave solution

rn(t) = pω,c,η1(n− ct)

of (38). In particular, pω,c,η1(τ) = pω,c,η1(−τ) for all τ > 0. The waves
pω,c(·) ∈ C0([−ω, ω],R) depend C1 on c ≈ c∗. Moreover, it is true that

sup
[−ω,ω]

|pω,c,η1(τ) − ψ(τ)| → 0 (52)

as ω → ∞.

B) All reversible, small finite range perturbations of the Fermi-Pasta-Ulam
lattice equation, that additionally admit a first integral, also possess a
family of symmetric periodic travelling waves: Consider the equation

r̈n = V ′(rn+1) − 2V ′(rn) + V ′(rn−1) + δG(rn−M , . . . , rn, . . . , rn+M), (53)
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where for M ∈ N the function G : R
2M+1 → R is C2 with G(0) = 0.

Suppose that rn(t) is a solution of (53) exactly if rn(−t) is a solution.
Moreover, assume that the first integral J defined in (51) admits a C1-
extension to a first integral Jδ of the associated travelling wave equation
of (53) such that DJδ(U)[U−] exists and depends continuously on U ∈ X̃
and δ ≈ 0 (where U− has been defined in lemma 11). Then for δ ≈ 0
small enough and ω > 0 large enough, equation (53) possesses a 2ω-
periodic travelling waves rδ

n(t) = pω,c,η1,δ(n− ct) which is symmetric and
differentiable with respect to c.

Remark
For example, a perturbation G for which all assumptions listed in B) are sat-
isfied is G(rn−2, rn, rn+2) := G̃(rn−2)− 2G̃(rn) + G̃(rn+2) for some C2-function
G̃. In this case we can add the term

1/c2∗ · δ ·
(∫ 2

0

W ′(r(θ)) −W ′(r(θ − 2))dθ

)

to J(U) in order to obtain a first integral Jδ(U) for the perturbed travelling
wave equation (here for the special case c = c∗).

Proof of the theorem
The proof of part A) follows from the results of the previous section. Let
us only note that the symmetry property pω,c(τ) = pω,c(−τ) of the periodic
travelling waves follows by uniqueness of the solutions with respect to the
Lyapunov-Schmidt reduction. In fact, if the orbit of p would not be invariant
under R, we would get another solution of ξ(ω, c, η1) = 0, see also the proof
of lemma 12.
The proof of case B) also follows from the results obtained before: Let us ob-
serve that for |δ| small enough, the term δG just amounts to a small bounded,
reversible perturbation term in the integrand (50). Hence, going through the
proof of lemma 12 the arguments do not change and therefore the bifurca-
tion function ξ = ξ(ω, c, η1, δ) only takes values in the one-dimensional space
Fix(−R) ∩ K̃. Now using the first integral Jδ shows that in fact ξ = 0 which
ends the proof. �

Let us also stress that we have so far not really used the fact that the two-
dimensional center eigenspace of DF(0, c) stems from an eigenvalue zero of
algebraic multiplicity two. In different reversible lattice differential equations
(where the existence of a zero eigenvalue is not a priori forced as in the FPU
lattice) we can therefore prove theorem 4 completely analogous. For example,
a typical alternative would be the existence of two simple purely imaginary
eigenvalues ±iω, which are present in the Klein Gordon lattice for an open set
of parameters, for example. The occurrence of such eigenvalues now generically
forces the existence of a family of small periodic solutions near the steady state
by the Lyapunov Center theorem [16], which lie on and actually define the
center manifold (note that center manifolds in this context have been proved
rigorously, see [20, 21, 14]). As a consequence, any homoclinic solution has
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to approach the steady state along a strong direction as t → ±∞; hence
with exponential rate. This shows that the condition on exponential decay
of the homoclinic solution, which was used in our approach, is often satisfied
automatically in some cases.

6.2 An explicit example: Periodic solutions near small

solitary waves

In this section we want to consider an explicit scenario, where all the hypothe-
ses of theorem 3 section can be validated. As a starting point, we state a result
obtained by Pego and Friesecke (stated for our purposes).

Theorem 5 (Existence of solitary waves)
Assume that V ∈ C4 with V(0) = V ′(0) = 0 and V ′′(0) =: β > 0 and V ′′′(0) =:
γ �= 0. Then if c2 is sufficiently close to c2∗ = β the following is true:

a) Equation (39) admits an up-to-translation unique single-pulse solution
with wave speed c and with values in an arbitrary interval, containing
zero, on which V ′(r) > r. More precisely, the solution is unique in
H1(R,R) with the property that its derivative vanishes only at one point.

b) Denote by ψ = ψc the profile with critical point at x = 0 and define a
parameter ε via c/c∗ = 1 + ε2/24. Then ψc is even and positive in the
case that V ′′′(0) > 0, has a characteristic width of order 1

ε
and height of

order ε2. Moreover, ∥∥∥∥ 1

ε2
ψc
( ·
ε

)
− φ1

∥∥∥∥
H1

≤ Cε2,

where C > 0 does not depend on ε and φ1 is non-zero and solves the
KdV travelling wave equation −φ + φxx + 12(γ/β)φ2/2 = 0, i.e.

φ1(x) =
β

γ
(1/2 · sech(1/2x))2.

Let us now set H(t) = Hε(t) = (ψc(t), ψc
t ) where c = c(ε). We can now

validate the hypotheses necessary for theorem 4.

Lemma 13
Hypothesis 4 is satisfied if ε > 0 (and therefore also ‖ψc(·)‖∞) is small enough.

Proof
Note first of all that the hypothesis (13) is satisfied if ε > 0 is small enough,
since the variational equation along ψc reads

c2 · ÿ(t) = V ′′(ψc(t+ 1))y(t+ 1) − 2V ′′(ψc(t))y(t) + V ′′(ψc(t− 1))y(t− 1)

and V ′′(ψc(t)) ≈ β �= 0 for any point t ∈ R, so that hypothesis (13) is true
(and in particular the existence of trichotomies for the abstract variational
equation is granted). The proof that Es

+(0) ∩ Eu
−(0) is only one-dimensional
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follows from [9] (see the paragraph before theorem 1.2 there) and we omit it. �

We will now show that all assumptions of theorem 4 are satisfied. In particular,
we prove the existence of a family of periodic travelling waves p = pω of
arbitrary large period near the solitary wave.

Lemma 14
Hypothesis 5 is satisfied if ε > 0 is small enough.

Proof
For ε small enough (and therefore H small) we have that c2 ≈ V ′′(0) but
c2 > V ′′(0). Let us now consider

U δ
− := (0, 1, θ + δθ3, 1 + δ3θ3)

for some δ > 0 small. Let us in particular choose δ small enough such that
U δ
− still induces a complement (see also the remark of the previous section).

This certainly works since U δ
− ≈ (0, 1, θ, 1), which spans Ẽc ∩ Fix(−R), where

Ẽc ⊂ X̃ denotes the generalized center eigenspace of DF(0, c). Let us now
note that for any vector V = (τ, η, φ(·), ψ(·)) we have

DJ(H(0))[V ] = ψ(0) − 1

c2

(∫ 1

0

V ′(0)φ(θ) − V ′′(0)ψ(θ − 1)dθ

)
.

In particular for V = U δ
− we obtain

DJ(0)[U δ
−] = 1 − 1

c2

(∫ 1

0

V ′′(0)[θ + δθ3] − V ′′(0)[(θ − 1) + δ(θ − 1)3]dθ

)

= 1 − 1

c2
V ′′(0)

(∫ 1

0

1 + 3θ2δ + δ − 3θδdθ

)

= 1 − 1

c2
V ′′(0) − V ′′(0)

1

c2

([
θ3δ
]1
0
+ δ −

[
3

2
θ2δ

]1

0

)

=

(
1 − 1

c2
V ′′(0)

)
−
(

1

c2
β
δ

2

)
.

If now δ is chosen small and afterward ε = ε(δ) is chosen sufficiently small, then
DJ(Hε)[U δ

−] ≈ DJ(0)[U δ
−]. Moreover, the first bracket in the last equation of

DJ(0)[U δ
−] approaches zero and the second bracket approaches the value δ/2

since β/c2 ≈ 1. This finally shows that

DJ(Hε(0))[U δ
−] �= 0,

if δ is chosen small and afterward ε = ε(δ) is chosen sufficiently small which
proves the lemma. �.

6.3 Solitary waves in reversible lattices close to the FPU
lattice

The theorem 4 implies that the family of periodic travelling waves in part A)
persists after small reversible perturbations of the FPU-lattice and induces a
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family rδ
n(t) = pω,c,η1,δ(n− ct) for δ ≈ 0. Moreover, for fixed c ≈ c∗ and ω → 0

the period of the spatial profile pω,c,η1,δ(·) tends to infinity. It is therefore
natural to ask, whether there exists a solitary r̃n(t) = ψ̃(n− ct) wave which is
induced by these waves in the sense of (52). That this is indeed the case is the
content of the next theorem.

Theorem 6
Assume that the assumptions of theorem 4 are satisfied and consider a pertur-
bation of the FPU-lattice in the sense of case B) in theorem 4, such that the
characteristic equation at zero with respect to the travelling wave equation of
(53) either possesses λ = 0 as a solution or the zeros which are closest to 0 are
real with nontrivial real part. Then for every c sufficiently close to c∗ and any
δ > 0 sufficiently small, there exists a solitary wave solution r̃n(t) = ψ̃(n− ct)
of (53), such that for any [−C,C], C > 0, we have

sup
[−C,C]

|pω,c,η1,δ(τ) − ψ̃(τ)| → 0 (54)

as ω → ∞.

Proof
For the sake of brevity let us only give a sketch of the proof. Let us set η1 = 0
for simplicity. Then we have that for any ε∗ > 0 small enough and c ≈ c∗ there
are ω∗ > 0, δ > 0 small such that

|pω,c,0,δ(τ) − ψ(τ)| < ε∗ (55)

for ω > ω∗ (where ψ denotes the solitary wave profile for the case δ = 0).
Moreover, as ω → ∞ we can choose a subsequence of the periodic waves
pω,c,0,δ on any compact interval [−C,C], C > 0, which converges uniformly
to some bounded even function ψ̃ : R → R which again solves the travelling
wave equation associated to (53). Using (55) we can see that ψ̃ and therefore
also H̃(t) := (ψ̃(t), ψ̃t), which solves the abstract equation U̇ = F(U, c, δ)
associated to the travelling wave equation of (53), stays in a γ-neighborhood
of zero for all t > 0 large enough, where γ → 0 as ε∗ → 0. Hence, H̃(t)
lies in the local center stable manifold W cs(0) of zero for t > 0 large enough.
We recall that the existence of W cs(0) ⊂ X̃ has been proved in [16]. This
manifold has the property that it contains every initial value in X̃ sufficiently
close to zero, which induces a solution U(t) that exists for all forward times
t > 0 and stays within a small neighborhood of zero for all t > 0. Moreover,
any such solution approaches an orbit on the center manifold asymptotically
in forward time t → ∞, see [16]. From this it already follows that H̃ has to
approach a symmetric steady state in forward time, since any other solution
on the center manifold leaves a γ-neighborhood of zero in finite time if γ > 0 is
chosen small enough. Let us show this last claim in a little more detail, where
properties of center manifolds with respect to the equation U̇ = F(U, c, δ), are
collected in [16]. In fact, without even computing the Taylor expansion of the
reduced equation on the center manifold, we a priori know several facts: The
reduced equation on the center manifold is two dimensional with zero being an
equilibrium which can be seen immediately by taking into account the special
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form of the perturbation in (53). Moreover, the reduced equation on the center
manifold is reversible with respect to the reverser R (see (41)), which follows
from the explicit choice of our perturbation in (53) together with the properties
of any appropriate center manifold which respects the reversibility, see [16]. If,
we consider the eigenvalues of the linearization at zero, two different scenarios
can occur by assumption: a) the eigenvalues are real and non-zero; b) zero
is a double eigenvalue which is geometrically simple. We only consider b),
since case a) is easy to handle: In fact, in case the steady state zero with
respect to the equation U̇ = F(U, c, δ) possesses a strong stable and strong
unstable manifold (in particular with trivial center direction) and therefore
the solution H̃ has to approach the steady state 0 as t → ∞ is therefore a
symmetric homoclinic solution. Let us therefore assume that case b) is true;
then the linearization at zero possesses an R-invariant, two-dimensional center
eigenspace which is the span of a component in Fix(R) and one component in
Fix(−R). We can therefore write down the Taylor expansion of the reduced
vector field on the center manifold, which reads

(
ẋ
ẏ

)
=

(
y + bxy + h.o.t.
hy2 + gx2 + h.o.t.

)
(56)

for some b, g, h ∈ R, where g = 0 for δ = 0 and h.o.t. denote higher order
terms which are at least cubic in x, y. Moreover, the variable x denotes the
Fix(R)-component and y the Fix(−R)-component of the reduced vector field.
Note that (56) holds also true in the case of our original FPU lattice, i.e. in
the case δ = 0 (where g = 0 on account of the line of symmetric steady states).
One can now easily check that every solution of (56) which is not a steady state
leaves any sufficiently small neighborhood of zero in forward time. However,
since H̃(t) stays in sufficiently small neighborhood of zero for all t > 0 large
enough we conclude that H̃(t) approaches a symmetric steady state, possibly
different from zero, as t→ ∞. Hence, since H̃ is an even function we conclude
that H̃ is a symmetric homoclinic solution and therefore defines a solitary
wave solution of (53) which by construction is approached by the profiles of
the periodic waves. �

The construction of these solitary wave solutions for the case δ ≈ 0 actually
shows that the associated profile ψ̃ must be close to the solitary wave profile
ψ for the case δ = 0 with respect to the supremum norm. Moreover, if the
solitary wave with respect to ψ is actually linearly stable (see [8, 9, 10, 11]
for a definition of stability in this context) we therefore expect the perturbed
solitary waves to be linearly stable as well, where methods based on the results
of [12] and [34, 35] should be applicable. In the previous section we have
shown that all assumptions of theorem 4 can be verified for a special family
of solitary waves constructed by Pego and Friesecke [8, 9, 10, 11], where the
authors have actually proved that the solitary waves are in fact non-linearly
stable with respect to the dynamics of the FPU-lattice. In particular, the
waves are linearly stable and we therefore expect the solitary waves for the
slightly perturbed FPU-lattice to be linearly stable as well.
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