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Abstract

We consider an infinite chain of particles linearly coupled to their
nearest neighbors and look for time-periodic, spatially almost localized
solutions which are called generalized discrete breather solutions. As a
starting point, we consider a time-independent breather solution that
induces a transverse homoclinic solution of a two-dimensional recur-
rence relation. By imposing suitable conditions on the leading order
coefficients of the potential, we can then prove the existence of any fi-
nite number of (generalized) breather solutions which bifurcate from the
time-independent breather solution at low frequency.

Since we address the case where the equation is not close to the
uncoupled limit and the obtained generalized breather solutions do not
lie on a center manifold, our results are complementary to the results in
[MA94, Jam03, JSRC07]. However, one of the main motivations of this
article is to provide a set up, where the existence of chaotic behavior
near (generalized) breather solutions becomes accessible to analytical
methods. In fact, regarding a breather solution as a homoclinic solution
of a suitable recurrence relation (which is ill-posed), we typically expect
to encounter chaotic behavior near this solution.

Keywords: lattice differential equation, ill-posed recurrence relation, discrete
breather, center stable manifold, chaotic behavior

1 Introduction

We are interested in the existence of time-periodic and spatially localized so-
lutions of the Klein Gordon equation

ün(t) + W ′(un(t)) = un+1(t) − 2un(t) + un−1(t), u ∈ R (1)

where the on-site potential W satisfies W ′(0) = 0,W ′′(0) =: β2 > 0. The kind
of solutions we are interested in are commonly referred to as discrete breather
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solutions (DB). Discrete breathers and their generalizations such as travelling
discrete breathers, see [MS02], play an important role in physical systems
[Mac00]. Existence proofs go back to Aubry and MacKay who considered
Hamiltonian lattices close to the uncoupled case [MA96, MA94]. In the limit
of uncoupling (which refers to the equation ün(t) +W ′(un(t)) = 0) a breather
solution consists of a single oscillating particle while the others are at rest.
Under a non-degeneracy condition this special solution can then be continued
to the case of small coupling using the implicit function theorem, see also
[SM97].
Recently, James et al used center manifold theory to prove the existence of
DB’s in a broad class of Hamiltonian lattice differential equations including
equation (1), [JSRC07], and the Fermi-Pasta-Ulam lattice [Jam03]. This ap-
proach reduces the problem to studying only a finite dimensional recurrence
relation. On the other hand, all solutions are by nature of small amplitude, i.e.
all such solutions are close to the steady state zero in an appropriate norm.
The method used in [Jam03, JSRC07] relies on spatial dynamics and it is this
approach we want to adapt and generalize in this work. In order to outline
the main idea, let us rewrite equation (1) in the form

un+1 = 2un − un−1 + ∂2
t un + W ′(un). (2)

Restricting our attention to time-periodic solutions un(t) with period 2π
ω

, we
can cast this equation as a first order recurrence relation(

an+1

bn+1

)
=

(
bn

2bn − an + ω2∂2
t bn + W ′(bn)

)
, (3)

where the relation between a solution un = un(t) of (2) and {(an, bn)(t)} of
(3) is given by {(an, bn)(t)} = {(un(t · ω), un+1(t · ω))}. Hence, we arrive at
equation (3) by interchanging the role of time t and ”space” n. A natural
choice of a state space for equation (3) is

X = H2
per((0, 2π)) × L2

per((0, 2π)),

which contains only periodic functions (although we will later restrict our
attention to the subspace Xe of even functions). An important feature of
equation (3) is its reversible structure. Indeed, by defining a map R by
R(x, y) = (y, x) for any (x, y) ∈ X we can easily verify that (F ◦R)2 = id in X,
whenever the value (F ◦ R)2(x, y) is well-defined. This structure stems from
the invariance n �→ −n in the original equation (1) and will play an important
role in this work.
Note that time-periodic and localized solutions un of our original equation
(1) now correspond to globally defined solutions {Un} = {(an, bn)} of (3),
which approach the trivial fixed point zero in forward and backward direc-
tion n → ±∞. In particular, a nontrivial breather solution now induces a
non-trivial homoclinic solution {Hn} of (3). By the correspondence with finite
dimensional recurrence relations, we therefore expect the existence of chaotic
behavior near {Hn} once this solutions approaches a hyperbolic steady state.
More precisely, with ”chaotic behaviour” we mean the existence of a compact
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invariant neighborhood of H0 with respect to X, such that the dynamics of
(3) restricted to this neighborhood is topologically conjugated to the Bernoulli
shift on two symbols, see also [AP90] for a definition in the framework of or-
dinary differential equations. As a consequence, infinitely many homoclinic
solutions of (3) different from {Hn} exist, which again induce breather so-
lutions of the original lattice equation (1). We should point out, that this
(expected) behavior cannot be validated for small breathers using center man-
ifold techniques: The reason is that in any relevant example, the map which is
defined by the recurrence relation (3) is conjugated on a center manifold to the
time-one-map of some flow up to any order, see [Jam03], section 6.2.3. How-
ever, in this article we also incorporate methods other than center manifolds
techniques, which enable us to provide all necessary ingredients in showing
the existence of chaotic behaviour near generalized breather solutions existing
near time-independent breather solutions, see section 7.
We now want to explain our approach and to relate our results to previous work
in more detail. Let us comment on the spatial dynamics approach first. The
idea of this method in the case of lattice differential equations has first been
used by James [Jam01, Jam03, IK00, Ioo00]. Originally, the idea goes back to
Kirchgässner [Kir82, Kir92] and has been generalized by Scheel and Sandstede
in the stability-analysis of modulated travelling waves in the framework of
semilinear parabolic equations [HSS02, SS99]. Let us now explain a few typical
properties of this approach. Linearizing equation (3) at the fixed point zero
induces a densely defined unbounded operator L. Although the spectrum
of L is unbounded, it consists of isolated simple eigenvalues, see section 2.2.
Moreover, L possesses the property of spectral separation, see [Jam03], which
allows us to apply the idea of exponential dichotomies (see section 5.1 for
a definition). As a consequence, the existence of finite dimensional center
manifolds of equation (3) near zero can be proved [Jam03, JSRC07]. With
its help the essential dynamics of the recurrence relation (3) near the trivial
fixed point can be reduced to a finite dimensional recurrence relation, see also
section 4. It is one of the advantages of the spatial dynamics approach that
center manifold reduction can be applied at all. In fact, let us linearize the
lattice differential equation (1) at the fixed point zero, which reads

ÿn + β2yn = yn+1 − 2yn + yn−1. (4)

Restricting to linear solutions yn of the form yn(t) = ei(nη−ωη t) for some η ∈ R

we recover the dispersion relation

ω2
η = β2 + 2(1 − cos(η)), (5)

where the frequencies ωη lie in the bounded interval [β,
√
β2 + 4]. As a conse-

quence, a straightforward application of center manifold theory or a Lyapunov-
Schmidt reduction in the space l∞(Z,R2) fails.
However, there is yet another important feature of the spatial dynamics for-
mulation (3), which has not been exploited in the previous works [Jam03,
JSRC07]: Let us make the easy observation that the subspace V0 ⊂ X of
time-independent functions defines an invariant subspace with respect to the
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dynamic of the recurrence relation (3). In this linear subspace the dynamics
reduces to (

pn+1

qn+1

)
=

(
qn

2qn − pn + W ′(qn)

)
, (6)

where (pn, qn) ∈ R
2. The fixed point zero in this reversible recurrence relation

is a saddle (see section 2), i.e. the linearization of the right hand side of (6)
at zero possesses an eigenvalue of modulus greater and one smaller than 1.
Moreover, the involution R restricted to V0 possesses a one-dimensional fixed
point space. We will then show in section 3 that if the derivative W ′(x) of
the on-site potential is sufficiently negative for some x > 0 (which does not
necessarily imply that W is negative somewhere), the unstable manifold of the
trivial steady state zero of (6) intersects Fix(R) in a point H0. Hence, H0

induces a symmetric homoclinic solution {Hn} = {(hn, hn+1)} of (6), that is
Hn → 0 as n → ±∞ and H0 ∈ Fix(R). Alternatively, we can also view this
homoclinic solution as a localized steady state solution or a time-independent
breather solution of the Klein Gordon equation (1). We now want to investi-
gate the set of solutions of (3) near {Hn} upon varying the value β = W ′′(0)
for fixed frequency ω. More precisely, we are interested in the existence of
bounded solutions {H̃n} of (3) near {Hn} which approach an orbit on the
center manifold asymptotically as n → ±∞ and for which H̃0 depends non
trivially on time t. We have depicted this scenario in figure 1.
Under appropriate assumptions on the on-site potential W and if the frequency
ω is near the lower edge of the phonon band (see also section 4), the behavior
on the center manifold has already been clarified in [JSRC07]: In a sufficiently
small neighborhood of zero the solutions are periodic and the set of all such
solutions is confined by two non trivial fixed points and two branches joining
them. Initial values in either of these branches induce heteroclinic solutions
of (3) connecting the nontrivial fixed points. Such solutions in fact induce
so called dark breathers, since the amplitude at infinity is larger than at the
center. Keeping ω fixed and varying β slightly, we will show that typically non-
trivial generalized breather solutions exist near the time-independent solution
{Hn}. These solutions stay uniformly close to the primary solution {Hn} of
(1) and are spatially almost localized (with respect to n) with constant or os-
cillating amplitude in the asymptotic limits n→ ±∞. We now state our main
result (see also theorem 7 for a more detailed formulation of the assumptions
and additional properties of the solutions).

Theorem 1
Assume that there exists a symmetric homoclinic solution {Hn} of (6), alias a
symmetric time-independent breather solution, and consider the case ω = β0

for some β0 > 2/
√

3. Then if β < β0, and under suitable sign conditions on the
first derivatives of the on-site potential W, the following is generically true.
There exists a one-parameter family of solutions {hsym,β,κ

n } of (1), such that
for each κ ≈ 0 the element hsym,β,κ

n is non trivially time-periodic of period
T = (2π/ω). Moreover, {hsym,β,κ

n } has the following properties.

i) {hsym,β,0
n } is a time-independent breather solution to the steady state

zero, which is contained in V0.
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ii) For each κ ≈ 0, κ 
= 0 the symmetric generalized breather solution
{hsym,β,κ

n } approaches time-periodic solutions {s±,β
n } with exponential

rate asymptotically in spatial direction n → ±∞. These have the prop-
erty that 0 < ‖s±,β

n ‖H2
per

≤ r for all n ∈ Z and some small r > 0 such

that r → 0 as β → β0. More precisely, it is true that hsym,β,κ
n+1 = hsym,β,κ

−n

for all n and
|s+,β

n − hsym,β,κ
n |H2

per
→ 0, n→ ∞. (7)

An analogous statement holds for s−,β
n and n → −∞. Moreover, the

solutions s±,β
n (·) are non trivially periodic in time and

s±n (t · ω) = α±
n cos(t) + φ(α±

n , α
±
n+1, µ)(t)

for some suitable α±
n ∈ R, µ = ω2−β2, and some map φ : (R2 ∩Bε(0))×

Bε(0) → X with φ(0, 0, µ) = 0 and Dφ(0, 0, 0) = 0 (see also theorem 7).

iii) There exists a discrete generalized breather solution {hdb,β
n } of (1) sat-

isfying hdb,β
n+1 = hdb,β

−n for all n ∈ Z. {hdb,β
n } approaches a specific n-

independent, nontrivial time-periodic solution α̃ asymptotically in spa-
tial direction n→ ±∞, that is

|α̃− hdb,β
n |H2

per
→ 0, n→ ±∞ (8)

and the values hdb,β
n are uniformly close to the values hn for all n ∈ Z

with respect to the H2([0, 2π/ω],R)-norm.

Remark
Note that the solutions obtained on i) simply correspond to the persisting ho-
moclinic solution in the invariant, two-dimensional subspace V0; their existence
is therefore trivial and we have stated case i) only for the sake of completeness.

Remark
The theorem covers only one special case of equation (1), where the leading
order terms of the Taylor expansion of W at zero have to satisfy suitable sign
conditions (see the statement of theorem 7) and the frequency is near the lower
edge of the phonon band. However, the case where the frequency ω lies near
the upper edge of the phonon band [β,

√
(4 + β2)] could be treated similarly.

Theorem 1 guarantees the existence of generalized discrete breather solutions
{hdb

n } of (1), where we suppress the β-dependence in the notation for the rest
of the introduction. We call these solutions breather solutions, since they are
time periodic and the amplitude of hdb

n as n → ±∞ is very small compared
to the values hdb

n at the ”center”. Moreover, the solution {hdb
n } is close to the

time-independent breather solution {hn}. In other words, the values of the bi-
furcating breather solutions are comparable in amplitude to the values of the
original solution hn. In this context we can prove the existence of generalized
breather solutions of equation (1) without restricting to equations close to the
uncoupled limit as in [MA96]. Moreover, since |hdb

0 |H2
per

can be very large, the
solution cannot be detected using center manifold theory. As a consequence,
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V0

Fix(R) ∩ V0

W s ∩ V0

H̃n

Hn

Figure 1: A schematic plot of the bifurcation scenario in equation (3). For
ω ≈ β, ω > β, the homoclinic solution {Hn} induces nearby solutions {H̃n}
which do not lie in V0.

the existence of the generalized breather solutions {hdb
n } and {hsym,κ

n } does not
follow from the earlier works [Jam03, JSRC07, MA96, MA94, SM97, MS02].
In order to prove our main result, we first prove the existence of invariant
manifolds of the ill-posed recurrence relation (3) near the homoclinic solution
{Hn}. From this point of view, the symmetric solution {Hn} of (3) is induced
by an intersection point H0 in the intersection of the center stable manifold
W cs of zero and the fixed point space Fix(R). As a consequence, H0 also lies
in the intersection of W cu and W cs, where W cu denotes the center unstable
manifold of (3) of zero, and these manifolds typically intersect transversely
along a two-dimensional surface. Hence, we conclude the existence of a two-
dimensional family of homoclinic solutions to the center manifold, see section 5.
We will argue in section 6 that after slightly varying the parameter β for fixed
frequency ω, we obtain an intersection point of Fix(R) and W cs which induces
a solution {Hdb

n } = {(hdb
n , h

db
n+1)} of (3) homoclinic to a steady state different

from zero. Standard techniques [Pal88b, PSS97, SW89] involving exponential
dichotomies now imply the existence of chaotic behavior in the neighborhood
of {Hdb

n }. That is, there exists a neighborhood of Hdb
0 with respect to X where

the dynamic of (3) is conjugated to the Bernoulli shift on two symbols, see
section 7 for more details. In fact, for the sake of brevity and since our frame-
work does not coincide directly the set up of [Pal88b] or [PSS97, SW89] we
have not proved this fact but have restricted ourselves to collect all necessary
ingredients for the proof (such as the existence of exponential dichotomies of
the variational equation); see for example [Pal88b, PSS97, SW89] for a rigorous
proof in general though slightly different contexts.

The methods to construct invariant manifolds in the framework of equation (3)
rely on (center-) dichotomies for linear, autonomous recurrence relations (see
[Hen81] and section 5.1) and do also apply to more general lattice differential
equations other than (1). However, for the sake of clarity and presentation we
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have restricted our attention to the Klein-Gordon lattice.
We remark that our bifurcation scenario is very reminiscent of the scenario
studied in [SS99, SS01], where the authors study essential instabilities of pulses.
In this respect we also would like to mention another aspect of the spatial
dynamics approach which is important, namely, the aspect of stability (linear
or nonlinear) of discrete breather solutions. In fact, the method introduced
by Scheel and Sandstede [SS99, SS01] in the context of semilinear parabolic
equations may also be useful to contribute to the theory of stability-analysis
of discrete breathers in lattice differential equations.
The work is divided in the following sections. In the next section we intro-
duce the spatial dynamics formulation of (1) and discuss a few properties of
this approach. In section 4 we discuss the local behavior of the spatial dy-
namics equation (3) near the trivial fixed point. The discussion of the global
bifurcation scenario as well as the construction of the center-stable manifold
is addressed in section 5. The main results of this work are stated in section
6, and in section 7 we also address the question of complicated behavior near
the obtained breather solutions. In section 8 we finally deal with the valida-
tion of an important assumption which enters the statement of our main result.

Acknowledgment
I am indebted to Stefan Liebscher and Guillaume James for a lot of stimulating
discussions on this subject. I also would like to thank the referees for their
careful reading and helpful suggestions, which improved the quality of the
article.

2 The spatial dynamics approach

Let us consider the Klein-Gordon equation

ün(t) + W ′(un(t)) = un+1(t) − 2un(t) + un−1(t) (9)

for n ∈ N, u ∈ R and where W : R → R is a C3-function with W ′(0) =
0,W ′′(0) =: β2 > 0. Written as a first order equation, (9) possesses the formal
Hamiltonian H

E({(un, vn)}) =

∞∑
k=−∞

1

2
v2

k + W(uk) + (uk+1 − uk)
2,

where the sequence {(un, vn)} has to decay fast enough as |n| → ∞. Casting
equation (9) in a spatial dynamics formulation we get

un+1(t) = 2un(t) − un−1(t) +
(
∂2

t un(t) + W ′(un(t))
)
. (10)

Let us write this as recurrence relation(
an+1(t)
bn+1(t)

)
=

(
bn(t)

2bn(t) − an(t) + (ω2∂2
t bn(t) + W ′(bn(t)))

)
(11)

= F ((an(t), bn(t)), ω, β)
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in the phase space X = H2
per((0, 2π)) × L2

per((0, 2π)) where the parameter β
takes into account variations in W ′′(0). Note that after setting an(t) = un(t·ω),
where un(t) solves (10), we obtain a solution {(an, bn)} = {(an, an+1)} of (11).

2.1 Symmetries and reversibility

2.1.1 The time translation

Since solutions un(t) of (9) can be shifted in time, the map F commutes with
the linear map

Sc

(
a(t)
b(t)

)
=

(
a(t+ c)
b(t+ c)

)
for any (a, b) ∈ X and c ∈ (0, 2π). To ease the subsequent analysis, we will
restrict our attention from now on to the subspace of even functions

Xe = H2
per,e((0, 2π)) × L2

per,e((0, 2π)),

(which have by definition a Fourier representation that only involves the func-
tions cos(k•)). In this subspace only Sπ is well defined on Xe and satisfies
F ◦ Sπ = Sπ ◦ F .

2.1.2 Reversibility

System (11) is reversible with the reversibility map defined by R(x, y) = (y, x).
In fact, one easily checks that (F ◦ R)2 = id and Fix(R) = {(z, z) : z ∈
H2

per((0, 2π))}. Let us point out some consequence of the reversibility, namely,
that whenever {Un} is a globally defined solution of (11) then also Vn := RU−n

defines a solution of (11). In fact, let us suppress the ω-dependence of F for a
moment. We then compute

Vn+1 = (F ◦R ◦ F ◦R)[RU−(n+1)] = F ◦R ◦ F (U−n−1)

= F (RU−n) = F (Vn),

since by assumption U−n = F (U−n−1).

2.2 The linear equation

The (densely defined) linear part L : D ⊂ Xe → Xe of (11) reads

L

(
x
y

)
=

(
y

2y − x+ (ω2∂2
t y + β2y)

)
,

where D :=
(
H2

per((0, 2π)) ×H2
per((0, 2π))

) ∩ Xe. Note that L admits 2-
dimensional invariant subspaces Vk = {(a · cos(kt), b · cos(kt)) : a, b ∈ R}
for each k ∈ N.
Let us compute the spectrum of L

∣∣
Vk

. More precisely, we get

L
∣∣
Vk

(
x
y

)
=

(
0 1
−1 (2 − ω2k2 + β2)

) (
x
y

)
.

8



Hence, the characteristic equation is

λ2 + λ(−2 + ω2k2 − β2) + 1 = 0. (12)

We denote by λk the solution of this equation with |λk| ≥ 1 and Im(λk) ≤ 0.
If ω is sufficiently large, the spectrum is real negative and lies strictly off the
unit circle. When ω decreases λ1 and 1/λ1 approach the unit circle and collide
at λ = −1, yielding a non-semi-simple eigenvalue. The exact value of ω∗ is

(−β2 + ω2
∗) = 4 ⇐⇒ ω∗ :=

√
4 + β2.

Decreasing ω > ω∗ further now leads to a rotation of λ1, 1/λ1 along the unit
circle; therefore inducing a simple eigenvalue λ1 on the imaginary axis. More
generally, if ω = ωk,∗ :=

√
4 + β2/k two eigenvalues λk, (λk)

−1 collide at λ =
−1 and rotate along the unit circle if ω > ωk,∗ is decreased further. Hence, if
we choose ω with the property

ω2,∗ < ω < ω∗ (13)

then L possesses exactly two simple eigenvalues on the unit circle.

Remark
The eigenvalues λk, λ

−1
k lie on the unit circle if β ≤ kω ≤ √

(4 + β2). The
relation of this observation to the dispersion relation is the following. If we
multiply (12) by λ−1, set λ = eiη and ωη = ωk, we end up with the dispersion
relation ω2

η = β2 +2(1−cos(η)). Hence, if ωk lies in the phonon band for some
k ∈ N then L possesses a pair of eigenvalues e±iη, where η is defined by the
dispersion relation.

Let us now compute the eigenvalues explicitly:

λ±k =
2 − ω2k2 + β2

2
±

√(
2 − ω2k2 + β2

2

)2

− 1 (14)

and for k = 0 we have

λ±0 =
2 + β2

2
±

√(
2 + β2

2

)2

− 1.

Hence, if β2 
= 0 then λ+
0 > 1 and λ−0 < 1, i.e. 0 is a saddle in the invariant

subspace V0.

3 The invariant subspace of time-independent

functions

In the subspace V0 ⊂ Xe of time-independent functions the recurrence relation
reduces to (

pn+1

qn+1

)
=

(
qn

2qn − pn + W ′(qn)

)
(15)

for (pn, qn) ∈ R
2. Note that equation (15) is reversible and 0 is a saddle. We

make the following assumption.
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Hypothesis 1
System (9) possesses a time-independent breather solution xn(t) ≡ hn for some
{hn} ∈ l∞(Z,R), such that hn → 0 as n → ±∞ and (hn, hn+1) ∈ Fix(R) for
some n.

In other words, we want to assume that the recurrence relation (15) possesses
a symmetric homoclinic solution {(hn, hn+1)}.
Let us argue how one can construct a broad class of potentials W satisfying
hypothesis 1. More precisely, we want to show that the class of admissible W,
where W is positive, W(0) = W ′(0) = 0, W ′′(0) = β satisfying hypothesis
1 is dense with respect to the Lebesgue-norm: In fact, let us consider any
potential W0 ∈ C3 such that W0 ≥ 0 and W0(0) = W ′

0(0) = 0, W ′′
0 (0) = β.

First of all, since W0 is defined in a small neighborhood of zero; it is true
that W0(x) ≈ β2x2 for x ≈ 0. It is now a straightforward computation to
determine the unstable eigenvector of the linearization at (p, q) = 0 of (15)
which is (1, λ+

0 ). This eigenvector also coincides (up to linear order) with
the unstable manifold of (15) of zero, see [AP90]. Hence, starting with a
point (p, q) on the unstable manifold, we will approximately leave the steady
state along the unstable eigenvector when iterating F . Let us now denote
(p∗n, q

∗
n) := F n(p∗, q∗) for some n > 0 such that W ′

0 is defined during the
iterations and note that q∗k → 0 as k → −∞. We then have p∗n < q∗n (otherwise
the unstable manifold has already intersected Fix(R) inducing a homoclinic
solution). In this case we can now redefine W ′

0(q) in a small neighborhood of
q∗n without changing W0 on the values q∗k, k < n to achieve that F (p∗n, q

∗
n) lies

in the sector {(p, q) ∈ R
2 : p > q} and therefore the unstable manifold has to

cross Fix(R). In fact, the modified value W ′
0(q

∗
n) has to satisfy

W ′
0(q

∗
n) < p∗n − q∗n < 0. (16)

Let us point out that with this procedure the defined potential satisfies the
hypothesis 1. Moreover, condition (16) does not necessarily enforce W0 to be
negative somewhere; in fact, if necessary we can redefine W0 on intervals which
do not contain the values q∗m, m < n (which does not alter our argumentation).
Finally, the modified potential is close to the original W0 with respect to
L2([−M,M ],R) for some appropriate M > 0 (which is large enough such
that it contains the values where W0 has been modified). This shows that
hypothesis 1 is true for a large set of potentials.
The existence of a symmetric homoclinic solution corresponds to an intersec-
tion of the unstable manifold with the fix point space Fix(R) within the space
V0 and these intersections are typically transverse. We also would like to
point out that we typically expect the existence of infinitely many additional
symmetric homoclinic solutions besides the homoclinic solution {hn} (see also
section 7). The typical scenario is expected to look like in figure 1.

4 Local dynamics

In this section we consider the new parameter µ := (−β2 +ω2). The reasoning
for considering the parameter µ in this section is the fact that the following
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results only depend on the variation of ω2 − β2 and hence both parameters
ω, β have the same effect.
Under the assumption that the frequency ω satisfies inequality (13) we now
conclude the existence of a two-dimensional center manifold near the steady
state by the results of James [Jam03]. More precisely, for µ in a small neigh-
borhood of zero, the solutions of (11), which remain in a neighborhood of
Y = 0 for all n ∈ Z, belong to a two-dimensional, locally invariant manifold
Mµ. This manifold can be represented as a graph over the center eigenspace

Ec := span

〈(
0

cos t

)
,

(
cos t

0

)〉

and is commonly referred to as center manifold. The reduced dynamics on
the center manifold Mµ has been studied in great detail by [Jam03, JSRC07].
Theorem 3 of [JSRC07] now takes the following form:

Theorem 2 (James et al)
Fix ω2 = ω2

c + µ, where ωc = β or wc =
√

4 + β2 (in the former case we

additionally assume that β > 2/
√

3). There exist neighborhoods U ,V of 0
in R

2 and R, respectively, and a Ck-map φ : (R2 ∩ U) × V → H2
per,e with

φ(0, µ) = 0 Dφ(0, 0) = 0 such that the following holds. Let {xn} be a solution
of (10) which satisfies xn ∈ V for all n. Then

xn(t) = αn cos t+ φ(αn−1, αn, µ),

where (αx, αy) denote the coordinates with respect to the vectors (cos(t), 0)
and (0, cos(t)) in the center eigenspace of L.

i) For ωc = β2, αn satisfies the recurrence relation

αn+1 − 2αn + αn−1 = K(αn−1, αn, µ) (17)

where K : U × (R ∩ V) → H2
per,e is a Ck−map. The normal form of the

iteration (17) is given by

αn+1 − 2αn + αn−1 = −µαn +Bα3
n + h.o.t. =: r(αn−1, αn, µ), (18)

where B := β
8
(W(3)(0) − 5

3
(W(2)(0))2).

ii) For ωc =
√

4 + β2, αn satisfies the recurrence relation

αn+1 + 2αn + αn−1 = K(αn−1, αn, µ) (19)

where K : U × (R ∩ V) → H2
per,e is a Ck−map. The normal form of the

iteration (17) is given by

αn+1 − 2αn + αn−1 = −µαn + B̃α3
n + h.o.t. =: r̃(αn−1, αn, µ), (20)

where B̃ := β
8
(W(3)(0) + (W(2)(0)))2 ·

(
β2

16+3β2 − 2
)
.
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iii) The functions φ and K have the following symmetries

φ(−a,−b, µ)(·) = Sφ(a, b, µ)(·), K(−a,−b, µ) = −K(a, b, µ),

where S denotes the time-shift operator (Sη)(t) = η(t+ π).

The proof of this result can be found in [JSRC07]. We now restrict to the case
that the frequency ω is near the lower end of the phonon band, that is ω ≈ β.

Lemma 1
Assume that ω = ωc = β and β > 2/

√
3. For µ ≈ 0 the iteration (18) has the

following properties.

a) For µ < 0 and B < 0 there exist two homoclinic solutions q1
n, q

2
n, such

that limn→±∞ qi
n = 0. These solutions have the symmetries q1

n = q1
−n+1,

q2
n = q2

−n and satisfy 0 < qi
n ≤ C|µ|1/2(1 + O(|µ|1/2))−|n|, where 1 +

O(|µ|1/2) > 1.

b) If µ and B have the same sign, (18) has two symmetric fixed points
±α∗ = O(|µ|1/2).

c) For µ > 0 and B > 0 there exist two heteroclinic solutions q3
n, q

4
n, such

that limn→±∞ qi
n = ±α∗. Moreover, q3

n, q
4
n have the symmetries q3

n =
q3
−n+1, q

4
n = q4

−n. q3
n, q4

n are O(|µ|1/2) as n→ ±∞ and O(µ) for bounded
n.

Notation
The fixed points (αn, αn+1) = ±(α∗, α∗) of the reduced recurrence relation (18)
induce fixed points ±A∗ of the main equation (11), where A∗ := (α∗, α∗) +
(φ((α∗, α∗, µ)), φ(α∗, α∗, µ)).

The claims are proved in Lemma 2 of [JSRC07], but let us comment on the
statements. The solutions {q1

n} and {q2
n} correspond to discrete breather so-

lutions, since these are localized in space n and periodic in time (note that
qi
n ∈ Xe for each n and that the center manifold Mµ is locally a graph over

the center-eigenspace Ec). Hence, qi
n = bin cos(t) + O(|µ|) for i = 1, 2 and

suitable constants bin. The solutions {q3
n} and {q4

n} can be regarded as dark
breather solutions, whose oscillations have an amplitude O(|µ|1/2) as n→ ±∞
(where the heteroclinic solutions {qj

n}, j = 3, 4 approach one of the symmetric
steady states ±α∗ of amplitude O(|µ|1/2); certificate point b) of the lemma)
and a smaller amplitude O(µ) in the ”center”. All these facts have already
been observed in [Jam03, JSRC07]. Our aim in this paper is to obtain large
(with respect to n) generalized breather solutions, which exhibit the same
asymptotic behavior as the breather solutions corresponding to the {qj

n} for
j = 3, 4.

5 The global bifurcation scenario

In the previous section we have clarified the local behavior near the fix point
zero for small µ ≈ 0. In particular, small variations of µ lead to the existence

12



of either small heteroclinic or homoclinic solutions for suitable conditions on
the coefficients of the reduced Taylor expansion of W. Moreover, as we have
already argued, homoclinic solutions of the recurrence relation

Yn+1 = LYn +N(Yn, µ) = F (Yn, µ) (21)

induce discrete breather solutions of the Klein-Gordon equation (9). These
breather solutions are trivial with respect to time t (i.e. time-independent) if
and only if the associated homoclinic solution lies in the invariant subspace
V0. In this section we now want to analyse in which way the occurrence of the
small amplitude solutions on the center manifold Mµ interact with the primary
homoclinic solution {Hn} = {(hn, hn+1)} of (21). In order to this, we need to
construct invariant manifolds of equation (21) which capture bifurcations near
{Hn}. Since we want to conclude the existence of solutions to the center
manifold Mµ, important manifolds are the center-stable and center-unstable
manifold W cs, W cu of zero, respectively. As suggested by dynamical systems
theory, solutions starting in the center-stable manifold W cs approach an orbit
on the center manifold in forward direction n → ∞. Similarly, solutions with
initial values in the center-unstable manifold W cu approach an orbit on the
center manifold in backward direction n → −∞. Once we can prove that
W cs and W cu intersect non trivially for µ 
= 0, we immediately conclude the
existence of globally defined solutions {H̃n} converging to the center manifold
Mµ, see figure 1. In particular, if {H̃n} does not approach the fixed point
zero in both, forward and backward direction, with respect to n, then the
resulting solution {H̃n} of (21) induces a non-trivial time-periodic solution
of the Klein-Gordon equation (9). The rigorous construction of the manifolds
W cs,W cu relies strongly on the existence of (center-) dichotomies for the linear
equation Vn+1 = LnVn, which we will address in the next section.

5.1 Center-dichotomies

Let us linearize equation (11) along the homoclinic solution:(
vn+1

wn+1

)
=

(
wn

2wn − vn + ω̃2∂2
twn + W ′′(hn)wn

)
= Ln

(
vn

wn

)
for some frequency ω̃. We recall the definition of an exponential dichotomy,
see also [Hen81] for the case of bounded operators.

Definition 1
The family {Ln}n∈Z, Ln : D ⊂ Xe → Xe, has a discrete exponential dichotomy
if there exist positive constants M, θ < 1 and a family of projections {Pn}∞n=−∞,
Pn ∈ L(Xe, Xe), such that the following holds:

a) The range of the densely defined operator Ln ◦ Pn : D ⊂ X → X is
contained in Rg(Pn+1) for all n.

b) The densely defined, closed operator Ln

∣∣
Rg(Pn)

is a bijective map from

Rg(Pn) to Rg(Pn+1) and possesses a bounded inverse(
Ln

∣∣
Rg(Pn)

)−1

: Rg(Pn+1) → Rg(Pn),

13



where both spaces are equipped with the Xe-norm.

c) If Ln,m = Ln−1 ◦ . . . ◦ Lm+1 ◦ Lm for n > m, then

‖Ln,m(id− Pm)‖L(Xe,Xe) < Mθn−m, n > m.

In particular, Ln,m(id− Pm) : Xe → Xe is a bounded operator.

d) ‖Ln,mPm‖L(Xe,Xe) < Mθm−n if n < m, where Ln,mPmx = y ∈ Rg(Pn) if
and only if Pmx = Lm,ny, which is well-defined by b).

Let us note that Ln (defined in (22)) can be written in the form

Ln = L̃+ Cn, (22)

where L̃ is defined by the right hand side of (22) if hn is replaced by 0 and
the bounded operators Cn : Xe → Xe are actually compact, since hn → 0
for n → ±∞. On account of at most finitely many eigenvalues of L̃ on the
unit circle we cannot expect that the family {Ln}n induces an exponential
dichotomy. This suggests considering the modified operator

Lη
n = η · Ln

for some η < 1 sufficiently close to 1. Now, if Vn is a solution of the linear
iteration Vn+1 = LnVn then Zn := ηnVn solves the equation

Zn+1 = ηn+1Vn+1 = ηn+1(LnVn) = ηLnZn = Lη
nZn.

We observe that for η close to 1 the linear operator η · L̃ =: Lη,∞ does not
possess any eigenvalues on the unit circle. Indeed, this can easily be seen by
computing the spectrum of Lη,∞ restricted to the invariant subspaces Vk for
each k. Hence, the map Lη,∞ admits an exponential dichotomy in the sense
of the definition above. The projection P ≡ Pn in this context is defined by
the spectral projection onto the eigenspace of Lη,∞ associated to all unstable
eigenvalues, see Kato [Kat95] for a definition. In this case, no eigenvalues of
Lη,∞ lie on the unit circle and all stable eigenvalues have at least some positive
(η-dependent) distance to the unit circle. Note that

Lη,∞
∣∣
Rg(id−P )

: Rg(id− P ) → Xe

is a bounded operator (where Rg(id − P ) is regarded as a subspace of Xe),
since the norms ‖ · ‖D and ‖ · ‖Xe are equivalent on Rg(id − P ). Hence, the
spectral radius of Lη,∞(id− P ) is strictly less than one and we conclude

‖(Lη,∞(id− P ))n‖L(Xe,Xe) < Crn, n > 0

for some 0 < r < 1 and an appropriate C > 0. Similarly, we have

‖(Lη,∞ ◦ P )−n‖L(Xe,Xe) < Crn, n > 0

and hence the operator Lη,∞ induces an exponential dichotomy. By theorem
7.6.9 of [Hen81] the following cases can occur.
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Theorem 3 (Henry)
If the operator Lη,∞ : D ⊂ Xe → Xe admits an exponential dichotomy, then
one of the following conditions is satisfied:

I) Either the family {Lη
n} possesses an exponential dichotomy or

II) there exists a nontrivial bounded solution {Vn} ∈ l∞(Z, D) of the equa-
tion Vn+1 = Lη

nVn.

We make the following generic assumption, which excludes possibility II).

Hypothesis 2
The linear equation Vn+1 = LnVn does not possess a nontrivial bounded solu-
tion {Vn} ∈ l∞(Z, D), which decays exponentially for at least one asymptotic
direction n→ ∞ or n→ −∞.

We will comment on the validation of this hypothesis separately in section
8. If hypothesis 2 is satisfied, however, we have the following corollary which
essentially follows from the results in [Hen81]:

Corollary 1 (Center-stable dichotomy)
Assume that hypothesis 2 is true. Then there exists a number 0 < r < 1, a
family of projections Qcs

n ∈ L(Xe, Xe), Q
u
n := idXe − Qcs

n , such that for any
ε > 1 there is a constant M > 0 and:

a) The range of Ln ◦Qu
n : D ⊂ Xe → Xe is contained in Rg(Qu

n+1) for all n.

b) The densely defined, closed operator Ln

∣∣
Rg(Qu

n)
is bijective as a map from

Rg(Qu
n) to Rg(Qu

n+1) and possesses a bounded inverse.

c) If Ln,m = Ln−1 ◦ . . . ◦ Lm+1 ◦ Lm for n > m, then

‖Ln,m(id−Qu
m)‖L(Xe,Xe) < M(1 + ε)n−m, n > m.

In particular, Ln,m(id−Qu
m) : Xe → Xe is a bounded operator.

d) ‖Ln,mQ
u
m‖L(Xe,Xe) < Mrm−n if n < m, where Ln,mQ

u
mx = y ∈ Rg(Qu

n) if
and only if Qu

mx = Lm,ny, which is well-defined by b).

Proof
Since hypothesis 2 is true, the condition II) of theorem 3 is satisfied for the
family {Lη

n}. Hence, the family {Lη
n}n∈Z possesses an exponential dichotomy

and using the relation Lη
n = η · Ln it is now straightforward to conclude the

claims of corollary 1. �

Analogously, we also obtain a center-unstable dichotomy on Z, i.e. there exist a
family of projections {P cu

n }n∈Z, P s
n := id−P cu

n and constants M > 0, 1 > β > 0
with the following properties: Fix an ε > 0; then

• The densely defined, closed operator Ln

∣∣
Rg(P cu

n )
is bijective as a map

from Rg(P cu
n ) to Rg(P cu

n+1) and possesses a bounded inverse.
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• If Ln,m = Ln−1 ◦ . . . ◦ Lm+1 ◦ Lm for n > m ≥ 0, then

‖Ln,m ◦ P s
m‖L(Xe,Xe) < Mβn−m, n > m ≥ 0.

In particular, Ln,m ◦ P s
m : Xe → Xe is a bounded operator.

• ‖Ln,m(P cu
n )‖L(Xe,Xe) < M(1 + ε)m−n if 0 ≤ n < m, where Ln,mP

cu
m x =

y ∈ Rg(P cu
n ) if and only if P cu

n x = Lm,ny.

5.2 Invariant manifolds near the homoclinic orbit

We now want to prove the existence of a center-stable manifold W cs and a
center-unstable manifold W cu near a point of the homoclinic solution {Hn}.
Contrary to the previous section we will only consider variations of β = W ′′(0)
in this chapter while thinking of the frequency as fixed (the reason for this will
be explained below (24) in the proof of the next theorem). We can now state
the main result:

Theorem 4 (Center-stable manifold)
Assume that hypothesis 2 is satisfied and fix some frequency ω̃ close to some

β0 with β0 > 2/
√

3. Then there exists a neighborhood Ω of the point H0

in Xe, a neighborhood Λ of (0, β0) in Ecs × R, where Ecs := Rg(Qcs
0 ), and

a differentiable map ψ ∈ C3
b (Λ, Eu), where Eu := Rg(Qu

0) with ψ(0, β) = 0,
Dψ(0, β0) = 0. Moreover, for all β ≈ β0 the manifold

W cs
β = {H0 + V + ψ(V, β) : (V, β) ∈ Λ}

has the following properties.

A) W cs
β is locally invariant under F (·, w̃, β), i.e. if V ∈W cs

β and F (V, w̃, β) ∈
Ω (which is well-defined) then F (V, w̃, β) ∈W cs

β .

B) If {Vn} is a solution of (11) such that ‖Vn −Hn‖Xe ≤ ε for all n ≥ 0 and
ε > 0 is small enough, then V0 ∈W cs

β .

C) Let γ, ε̃ > 0 be positive constants and assume that all solutions of (11)
with initial value on the center manifold Mµ, µ = ω2 − β2, within a
suitable small neighborhood remain in this neighborhood of zero for all
n ∈ Z. Then there exists a δ > 0 and 0 < η < 1 such that if Y ∈ W cs

β

with ‖Y − H0‖Xe ≤ δ, then there exists a solution {Yn}, n ≥ 0, of (11)
with Y0 = Y , supn≥0 ‖ηn(Yn − Hn)‖X ≤ γ. Furthermore, there exists a
n∗ ∈ N, a 0 < α < 1 and a unique solution {Sn}, n ≥ 0, on the center
manifold Mµ with Sn ∈ Bε̃(0) for all n ≥ 0, such that

sup
n≥n∗

α−n‖Yn + Sn‖Xe < ε̃.

D) Consider the map lβ : W cs
β → Xe defined by

lβ(Y ) �→ S0,

where the sequence {Sn}, n ≥ 0, has been defined in C). Then lβ is
continuous.
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Remark
a) The value 0 < α < 1 is defined by the spectral gap of the operator L̃. Hence,
α in case C) in the upper theorem cannot be chosen too close to one, since
otherwise the sequence {Sn}, n ≥ 0, with the property as in C) is not uniquely
defined.
b) In fact, the theorem is valid for any ω̃ > 0. In particular, if ω̃ is such that
the center eigenspace is trivial, the manifold W cs coincides with the strong
stable manifold W s and all solutions approach zero in forward time with ex-
ponential rate; hence S±

n = 0

Proof
Let {Yn} = {(un, vn)} be a solution of (11) and let us consider the coordinates
Zn = Yn −Hn. Then, Zn solves the equation

Zn+1 = LnZn + H̃(Zn, n, β), (23)

where H̃(Z, n, β) := F (Z + Hn, w̃, β) − LnZ − F (Hn, w̃, β) and F has been
defined in (11). Let us make the important observation that we can regard
H̃(·, n, β) as a map from Xe to Xe; in particular H̃(Z, n, β) is well defined even
for Z ∈ Xe. In fact H̃ can be written in the form:

H̃(Z, n, β) = −CnZ + G(Z +Hn, β) − G(Hn, β) (24)

for Ln = L̃ + Cn, where L̃ is given in (22), and G(Z, β) := F (Z, w̃, β) − L̃Z
can be regarded as a C3-map from Xe to Xe. Note that here we use the fact
that we only allow for variations in β for fixed w̃!
By corollary 1 the family {Ln} admits a center-stable dichotomy with associ-
ated projections Qcs

n . Let us choose a suitable cut-off function χρ : [−ρ, ρ] →
R+ with compact support in [−ρ, ρ]. We are now looking for fixed points {Zn},
where n ≥ 0, Zn ∈ Xe, of the equation

Zn = Ln,0(id −Qu
0)Z

cs +
n∑

k=0

Ln,k+1(id−Qu
k+1)H̃mod(Zk, k, β) (25)

−
∞∑

k=n+1

Lk+1,nQ
u
k+1H̃mod(Zk, k, β)

for Zcs ∈ Ecs. Note that equation (25) is well-defined if we look for fixed-points
in the space {Vn} ∈ l∞,η(N), where

l∞,η(N) := {{Vn} : n ≥ 0, Vn ∈ Xe, sup
n≥0

‖ηnVn‖X <∞}

(for some suitable 0 < η < 1) and any fixed point induces a solution of (23)
(with H̃ replaced by H̃mod). Moreover,

H̃mod((a, b), k, β) := χρ(‖b‖L2) · H̃((a, b), k, β)

for (a, b) ∈ Xe Choosing ε > 0 small enough and 0 < η < 1
1+ε

we can now
prove the existence of a unique fixed point {Z∗

n} ∈ l∞,η for every V cs ∈ Ecs

and fixed β. Hence, we can define a map ψ : Ecs × R → Eu by

ψ(Zcs, β) := Qu
0 [Z

∗
0 ]
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and set W cs
β := graph(ψ) +H0. By the results of [VI92] the claims A) and B)

of the theorem now follow. Indeed, also the parameter dependence of the map
ψ can be deduced analogously as in [VI92] or as in [Jam03].
Let us now show how one proves claim C). The proof follows along the lines of
[Van89], where the case of ordinary differential equations has been addressed.
Since we want to study the asymptotic behavior of solutions {Yn}, n ≥ 0, with
initial value in W cs, we have to work with a (not yet constructed) local center-
stable manifold Mcs

loc near the fix point 0. Let us therefore consider a solution
{Yn} = {Zn} + {Hn}, where {Zn} solves (25). Then Yn solves for n ≥ 0

Yn+1 = L̃Yn + [CnYn − CnHn

+ G(Hn, β) + H̃mod(Yn −Hn, n, β)] (26)

=: L̃Yn + C(Yn, n, β).

One can now check that C(0, n, β) = 0 and C(·, n, β) : Xe → Xe is well-defined
and has a uniform small Lipschitz constant if n ≥ n∗ and n∗ >> 0 is sufficiently
large. Let us now choose a new cut-off-function χ̃ by

χ̃((a, b), n) :=

{
1 n ≥ n∗,
χρ(‖b‖L2) n < n∗

(27)

for (a, b) ∈ Xe and consider the modified equation

Yn+1 = L∗Yn + χ̃(Yn, n) · C(Yn, n, β) =: L∗Yn + Cmod(Yn, n, β). (28)

Note that for n ≥ n∗ the modified nonlinearity Cmod coincides with the original
one. As above, we can now prove that (28) possesses a local center stable
manifold Mcs

loc near 0. More precisely, Mcs
loc has the property that for every

Y ∈ Mcs
loc there exists a solution {Yn} of (28) for n ≥ n∗ which is bounded

in a space l∞,η
n∗ := {{Yn} : n ≥ n∗, Yn ∈ Xe supn≥n∗ η

n‖Yn‖X < ∞} for some
0 < η < 1. Moreover, Yn can be written in the form Yn = Vn + φ(Vn, β) for
some map φ(·, β) : Rg(πcs) → Rg(id − πcs), Vn ∈ Rg(πcs) and {Vn} solves the
recurrence relation

Vn+1 = L∗πcsVn + πcsCmod(Vn + φ(Vn, β), n, β) =: K(Vn, n, β) (29)

for n ≥ n∗, where πcs : Xe → Xe denotes the spectral projection associated
to the center-stable eigenspace of L̃. Let us denote by W c

loc ⊂ Xe the center
manifold associated to equation (29). In order to prove claim C) it suffices
to show that every solution {Vn} of (29) for n ≥ n∗ approaches a solution
{Sn} on the manifold W c

loc, if V0 is close enough to zero. More precisely, we
show that if Vn∗ is sufficiently close to zero, then there exists a globally small
solution {Sn}n∈Z, Sn ∈ W c

loc for all n, and an exponentially decaying sequence
{Tn}, n ≥ n∗, with a sufficiently large exponential rate, such that

Vn = Sn + Tn, n ≥ n∗.

In order to prove this we need the next lemma, see [Van89], which we refor-
mulate in terms of equation (29).

Lemma
Let Γ : Z × Rg(πcs) → Rg(πcs) be a map with the following properties.
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i) Γ(n, V ) = Vn for all n ≥ n∗, where {Vn} denotes the solution of (29),
Vn∗ = V , with {Vn} ∈ l∞,η

n∗ .

ii) If n < n∗ then Γ(·, V ) ∈ l∞,η
n∗,− := {{Un} : n < n∗, supn<n∗ |η−nUn|X <∞}

for some 0 < η < 1.

Let now V ∈ Rg(πcs). If there exists {Tn}n∈Z with supn∈Z
α−n|Tn|X < ∞ for

some 0 < α < 1 such that Γ(n, V ) + Tn is a solution of (29), then there exists
a unique solution {Sn} of (29) in W c

loc with

sup
n≥n∗

α−n‖Sn − Vn‖Xe <∞.

The proof of the lemma and the existence of a map Γ satisfying the properties
above follow analogously to [Van89]. For example, we can define Γ(V, n) in
backward direction n ≤ n∗ to be the solution of the recurrence relation Un+1 =
πcK(Un, n, β), subject to the initial value Un∗ = V ; that is Γ(V, n∗) = Un∗ = V .
We now have to construct a sequence {Tn}n∈Z with supn∈Z

α−n|Tn|Xe <∞ for
some suitable 0 < α < 1, such that {Γ(n, V ) + Tn} is a solution of (29). For
given V ∈ Rg(πcs) we consider the fixed point formulation

Tn = −πsΓ(n, V ) +

n∑
k=−∞

Ln−k
∗ πs[Cmod(k − 1,Γ(k − 1, V ) + Tk−1)]

−
∞∑

k=n+1

Ln−k
∗ πc[Cmod(k − 1,Γ(k − 1, V ) + Tk−1)] (30)

+
∞∑

k=n+1

Ln−k
∗ πc[Cmod(k − 1,Γ(k − 1, V ))].

Here, πs, πc denote the projections onto the stable and center eigenspace of L̃,
respectively, and we look for a fixed point of (30) in the space of all {Tn}n∈Z

satisfying supn∈Z
α−n‖Tn‖X < ∞ for some suitable 0 < α < 1. Moreover, if

{Tn} is a solution of (30) it can be easily verified that {Γ(n, V ) + Tn} is a
solution of (29). One can now check that the right hand side of (30) defines
a contraction in the space of all {Tn} satisfying supn α

−n|Tn|X < ∞ for some
suitable 0 < α < 1; for details we refer to [VI92]. This completes our proof of
case C) and case D) can also be deduced from the above integral representation,
see again [VI92].
For the sake of clarity, let us finally put things together: Given a point Y0 in
the center-stable manifold W cs

β sufficiently close to H0 the associated solution
{Yn} has the property that Yn∗ lies in a small neighborhood of zero if n∗ > 0 is
large enough, and {Yn}, n ≥ n∗, satisfies the recurrence relation (28). Hence,
Yn is contained in the local center-stable manifold Mcs

loc for all n ≥ n∗ and
therefore Yn = Vn + φ(Vn, β), where Vn solves (29) and Vn∗ is close to zero.
We have now proved that {Vn}, n ≥ n∗, approaches a solution on the center
manifold W c

loc in the sense of the lemma above. Note that all globally small
solutions of the original center manifold Mµ also induce globally small solu-
tions in the manifold W c

loc associated to (29). This shows that Yn is uniformly
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small for all n ≥ n∗ and therefore {Yn}, n ≥ 0, solves the equation (28) with
cut-off function identical to one. Hence, every point in W cs induces a solution
{Yn}, n ≥ 0, of (11) which stays near the solution {Hn} for all n ≥ 0 and which
approaches a globally small solution on the center manifold Mµ, µ = ω̃2 − β2.
Note that we assumed initially that all solutions within Mµ starting in a suf-
ficiently small neighborhood of zero remain close to zero for all n ≥ 0. This
proves the theorem. �

Similarly, we can prove the existence of an unstable manifold W u near H0.

Theorem 5 (Unstable manifold)
Let ω̃, β0 be like in the statement of theorem 4. There exists a neighborhood
Ω of 0 in Xe and a neighborhood Λ of (H0, β0) in Eu × R and a differentiable
map ψ ∈ C3

b (Λ,Rg(Qcs
0 )) with ψ(0, β) = 0, Dψ(0, β0) = 0. Moreover, for all

β ≈ β0 the manifold

W u
β = {H0 + V + ψ(V, β) : (V, β) ∈ Λ}

has the following properties.

A) There exists an 0 < α < 1 such that if {Yn} is a solution of (11) for
n ≤ 0 and supn≤0 α

n‖Yn − Hn‖Xe < ε for all n ≤ 0 and ε > 0 is small
enough, then Y0 ∈W u

β .

B) On the other hand, if Ỹ0 ∈ W u
β then there exists a solution {Yn}, n ≤ 0,

with Y0 = Ỹ0 which converges to zero with exponential rate almost α
as n → −∞. Hence (α + ε)nYn → 0 for any ε > 0 small enough and
n→ −∞.

C) W u
β is invariant, i.e. if Ỹ0 ∈W u

β and {Yn}, n ≤ 0, denotes the correspond-
ing solution then F (Yn, w̃, β) ∈W u

β for all n ≤ −1.

Finally, let us denote by W cu
β and W s

β the center-unstable and stable manifold
of zero, respectively. Their existence can be proved analogously to the exis-
tence of W cs

β and W u
β , respectively, by using the center-unstable dichotomy

with projections {P cu
n }∞n=−∞, see the end of the last section.

Remark
Let us note that under the upper assumptions the manifolds satisfy the relation
R[W cs

β ] ⊂ W cu
β . Indeed, fixing a point Y ∈ W cs there exists a global solution

{Yn}, n ≥ 0, of (11) near {Hn}, such that the difference Hn−Yn stays uniformly
small for n ≥ 0. Hence, if we define Ỹn := RY−n for n ≤ 0 then {Ỹn} solves
(11) for n ≤ 0, stays uniformly close to Hn = RH−n for n ≤ 0 and therefore
Ỹ0 = RY0 ∈ W cu

β . Indeed, any solution in W cs whose initial value is close
enough to H0 already solves the original equation (11) for n ≥ 0 exactly (i.e.
without cut-off function).
However, in the case µ = 0, that is β = ω̃, we have not clarified the situation
on the center manifold. In particular, we have not shown that solutions with
initial value in a sufficiently small neighborhood of zero actually stay within
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this neighborhood for all n (which is true for small µ > 0 by lemma 1, since
solutions of sufficiently small initial data are confined by the stable manifold
of the two nontrivial, symmetric steady states). But let us observe that due to
our special choice of cut-off-function, see (27), the modified recurrence relation
still respects the reversibility (see [Jam03] for more details). Hence, we still
have the property that R[W cs

β ] ⊂ W cu
β even for β and ω̃ chosen such that µ = 0.

5.3 Relative positions of the invariant manifolds with

respect to Fix(R)

Let us now choose some β0 > 2/
√

3 and set ω̃ := β0. We now want to clarify

the relative positions of the manifolds W
cu/cs
β , W

s/u
β and Fix(R) for the specific

choice β = β0 and hence µ = 0. Our hypothesis 2 states that the tangent spaces
TH0W

cs and TH0W
u have trivial intersection; i.e.

TH0W
cs ∩ TH0W

u = {0}. (31)

Indeed, any nontrivial element in the intersection induces a nontrivial solution
{Vn} of Vn+1 = LnVn with {η−nVn} ∈ l∞(Z, D) for some η > 1 close to one,
which contradicts hypothesis 2. Counting dimensions, we conclude that

a) TH0W
cs + TH0W

u = Xe and

b) TH0W
cs + TH0W

cu = Xe, dim(TH0W
cs ∩ TH0W

cu) = 2.

In fact, let us observe first TH0W
cs ∩ TH0W

cu coincides with the space V1;
in particular dim(TH0W

cs ∩ TH0W
cu) = 2. We also would like to stress that

the existence of a first integral in general imposes further restrictions on the
relative positions of W cs and W cu for µ = 0. Next, let us clarify the relative
position between Fix(R) and W cs for β = ω̃:

Lemma 2
If hypothesis 2 is satisfied then

i) Fix(R) + TH0W
cs = Xe and

ii) dim(Fix(R) ∩ TH0W
cs) = 1.

Note that if the first condition i), i.e. Fix(R) + TH0W
cs = Xe, is satisfied

then also the second condition ii) is true: The one-dimensional intersection
of Fix(R) and TH0W

cs lies in the space V1 and coincides with the linear span
of 〈(cos(·), cos(·))〉. In all other subspaces Vk, k 
= 1, the spaces Fix(R) and
TH0W

cs then have trivial intersection; otherwise, the first condition in lemma
2 would be violated. Similarly one can show that i) can be deduced from ii).

Proof of the lemma
Let us assume that hypothesis 2 is true. Then, in the invariant subspace
V1 we have dim(Fix(R) ∩ TH0W

cs) = 1. In any other Vk, k 
= 1, it is true
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that Vk ∩ TH0W
cs = Vk ∩ TH0W

s. Hence, any nontrivial intersection point in
Vk ∩ TH0W

cs leads to a nontrivial intersection point in

TH0W
s ∩ TH0W

u

on account of R[TH0W
s] ⊂ TH0W

u. This clearly would contradict the hypoth-
esis 2. �

5.4 The bifurcation map

Let us now study solutions which are induced by intersection points of W cs and
W cu. We already know that H0 ∈W cs∩W u for β = β0 = ω̃ and we are looking
for intersections W cs

β ∩W cu
β and W cs

β ∩Fix(R) near H0 for β 
= ω̃. In particular,
intersection points in W cs∩Fix(R) give rise to symmetric homoclinic solutions
to the center manifold. In order to obtain these solutions, let us consider the
map

Γ(V s, Zu, V c, Zc, β) = (V s + V c) − (Zu + Zc)

+ ψcs(V s, V c, β) − ψcu(Zu, Zc, β),

where V s ∈ Es, Zu ∈ Eu and ψcs(V s, V c, β) ∈ Rg(Qu
0). Moreover, we let

V c = (V c
+, V

c
−), where V c

+ ∈ Fix(R)∩V1 and V c
− ∈ Fix(−R)∩V1. Similarly, we

write Zc in the form Zc = (Zc
+, Z

c
−). The set

{H0 + V c + V s + ψcs(V s, V c, β) : V c ∈ V1, V
s ∈ Es}

denotes the center-stable manifold W cs and {H0 + Zc + Zu + ψcs(Zu, Zc, β)}
denotes the center-unstable manifold W cu. Let us consider Γ as a map, with

Γ : Es × Eu × V1 × V1 × (R ∩ Bε(β0)) −→ Eu ⊕ Es ⊕ V1

for some ε > 0 small enough such that ψcs, ψcu are well-defined. Note that V1 is
a two-dimensional complement of the codimension-2-space Eu ⊕Es = ⊕k �=1Vk

and any zero of Γ induces an intersection point of W cs
β and W cu

β . In fact,
under the hypotheses 1, 2 of the previous sections we immediately conclude the
existence of nontrivial zeros of Γ and furthermore obtain precise informations
concerning the asymptotic behavior of the induced solutions. We start with
the following lemma.

Lemma 3
Let hypothesis 1 and 2 be satisfied. Then there exists an γ > 0 such that the
following properties hold:

a) For each β0 >
2√
3
, 0 < β0 − β < γ, and frequency ω̃ = β0 there ex-

ists a one-parameter family (Hsym,β,κ
n )n, κ ∈ Bγ(0) ⊂ R, of symmetric

homoclinic solutions to the center manifold. More precisely,

Hsym,β,κ
0 ∈ Fix(R) ∩W cs

β

for all |κ| small.
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b) Moreover, for β0, β, ω̃ as above and ε > 0 small enough there exists a
two-parameter family (H̃β,λ

n )n, λ ∈ (R2 ∩Bε(0)), of homoclinic solutions
to the center manifold, i.e.

H̃β,λ
0 ∈ W cs

β ∩W cu
β .

These solutions satisfy H̃β,λ
0 ∈ Fix(R) if and only if H̃β,λ

0 = Hsym,β,κ
0 for

some κ and λ. Finally, for each 0 < η < 1 the map

ι : Bγ(0) ×Bε(β0) −→ {{Xn}n∈Z : Xn ∈ X, sup
n
η|n|‖Xn‖X <∞}

ι : (λ, β) �−→ {H̃β,λ
n }

is well-defined and continuously differentiable.

Proof
Let us study the zero-set of Γ near H0. We want to point out the following
symmetry, namely

Γ(RZu, RV s, R(V c
+, V

c
−), R(Zc

+, Z
c
−), β) = −RΓ(V s, Zu, (V c

+,−V c
−), (Zc

+,−Zc
−), β)
(32)

which follows directly from the definition of the map Γ and the remark after
theorem 5. In particular, (32) is true even in the special case β = β0 = ω̃.
Moreover, we have

Γ(0, 0, 0, 0, β0) = 0.

We now apply the implicit function theorem by observing that

Rg(D1,2Γ(0, 0, 0, 0, 0)) = Eu ⊕ Es,

ker(D1,2Γ(0, 0, 0, 0, 0)) = {0},

where Dj, j = 1, 2, 3, 4, 5, denotes the derivative with respect to the j-th
component of Γ. Hence, there exist C2-maps Ṽ s, Z̃u, such that zeros of Γ near
(0, 0, 0, 0, β0) are equivalent to zeros of Γ̃, where

Γ̃ : V1 × V1 × R −→ V1,

Γ̃(V c, Zc, β) = πV1Γ(Ṽ s(V c, Zc, β), Z̃u(V c, Zc, β), V c, Zc, β)

= (V c
+ − Zc

+) + (V c
− − Zc

−).

Here, πV1 : Xe → Xe denotes the projection with range V1 and kernel ⊕j �=1Vj .
On account of (32) the functions Ṽ s/u satisfy the relations RṼ s(V c, Zc) =
Ṽ u(RV c, RZc) and RṼ u(V c, Zc) = Ṽ s(RV c, RZc) which can be concluded by
the fact that the solutions Ṽ s, Z̃u obtained by the implicit function theorem
are unique. Moreover, Γ̃ = 0 can be solved if V c

+ = Zc
+ and V c

− = Zc
−, which

induces a two-parameter family of intersection points HV c
+,V c

− in W cs
β ∩ W cu

β

given by

HV c
+,V c− = V c

+ − V c
− + Ṽ s(V c

+, V
c
−, β) + ψcs(Ṽ s(V c

+, V
c
−), V c

+, V
c
−, β)

= V c
+ − V c

− + Ṽ u(V c
+, V

c
−, β) + ψcu(Ṽ u(V c

+, V
c
−), V c

+, V
c
−, β).
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Now fix some β ≈ β0. Then exactly the points HV c
+,0 with V c

− = 0 induce
symmetric solutions to the center-manifold, i.e. correspond to intersections of
W cs

β and Fix(R) near H0. In order to prove this claim, we have to show that

HV c
+,0 = V c

+ + Ṽ s(V c
+, 0, β) + ψcs(Ṽ s(V c

+, 0), V c
+, 0, β) ∈ Fix(R).

Indeed, we calculate

RHV c
+,0 = R

(
V c

+ + Ṽ s(V c
+, 0, β) + ψcs(Ṽ s(V c

+, 0), V c
+, 0, β)

)
= RV c

+ + Ṽ u(RV c
+, 0, β) + ψcu(RṼ s(V c

+, 0, β), RV c
+, 0, β)

= RV c
+ + Ṽ u(RV c

+, 0, β) + ψcu(Ṽ u(RV c
+, 0, β), RV c

+, 0, β)

= V c
+ + Ṽ u(V c

+, 0, β) + ψcu(Ṽ u(V c
+, 0, β), V c

+, 0, β) = HV c
+,0.

Similarly, we observe that HV c
+,V c

− does not lie in Fix(R), if V c
− 
= 0. Now

writing λ = (λ1, λ2) instead of (V c
+, V

c
−) the claims of the lemma follow except

the claim concerning the smoothness of ι. To see the latter, note the functions
HV c

+,V c
− depend C1 on V c

+, V
c
−, β on account of the implicit function theorem.

Moreover, also the map

(V c
+, V

c
−, β) �→ HV c

+,V c
− �→

{
H

V c
+,V c−

n

}
, (33)

is C1, where here the last term, regarded as an element in {{Xn}n∈Z : Xn ∈
X, supn η

|n|‖Xn‖X < ∞} for any fixed 0 < η < 1, denotes the associated
global solution to the initial value HV c

+,V c
−. In fact, the claim concerning C1-

smoothness of the map in (33) is true on account of the results in Vander-
bauwhede [VI92]. �

6 The main result

We can now state the main results of this work. Let us recall that we call a
solution {Yn} of (11) symmetric if Yn ∈ Fix(R) for some n.

Theorem 6
Assume that hypothesis 1 and 2 are satisfied. Choose some β0 > 2/

√
3 and

make the choice ω̃ = β0. Then for each β < β0, β ≈ β0, there exists a
two-parameter family

{Hβ,λ
n } = {(hβ,λ

n , hβ,λ
n+1)}, n ∈ Z

of globally defined solutions of equation (11) for λ ∈ (R2 ∩ Bε(0)) (for some
sufficiently small ε > 0 with ε↘ 0 as β ↗ β0). The solutions satisfy

‖(Hβ,λ
n )n − (Hn)n‖l∞loc(Z,Xe) → 0, as (λ, β) → (0, β0).

For each λ ≈ 0 and β < β0 (and hence ω̃ > β), the solution {Hβ,λ
n } approaches

a solution on the center manifold in forward and backward direction n→ ±∞.
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More precisely, there exist globally small solutions {S±,β
n }n∈Z, ‖S±,β

n ‖X > 0 for
all n, which are contained in Mµ ∩ Bδ(0) for all n ∈ Z, µ = ω̃2 − β2 and an
appropriate δ = δ(µ). Moreover,

αn‖Hβ,λ
n − S+,β

n ‖Xe → 0, as n→ ∞,

α−n‖Hβ,λ
n − S−,β

n ‖Xe → 0, as n→ −∞
for some suitable α > 1 if λ = λ(δ) is close enough to zero. Moreover, Hβ,λ

0 ∈
Fix(R) if and only if λ = (κ, 0), where κ ∈ R is sufficiently close to zero. In
particular, there exists exactly a one-parameter family of symmetric homoclinic
solutions to the center manifold in the family {Hβ,λ

n }.
Proof
Let us point out that when β < ω̃ and hence µ > 0 is close enough to zero, then
the dynamics on the center manifold Mµ is clarified by lemma 1. In particular
there exist two symmetric fixed points ±A∗ ∈ Fix(R) which are of the order
O(|µ|1/2) and two heteroclinic orbits joining them. Hence, any solution on the
center manifold with sufficiently small initial value is globally contained in a
small neighborhood of zero for all n. In particular, the assumptions in case
C) of theorem 4 are satisfied. The claims of the upper theorem now follow by
lemma 3, theorem 4 and the analogous results for the center unstable manifold.

Let us point out that we comment on the validation of hypothesis 2 sepa-
rately in the last section. We now have the following result, which implies
the existence of (possibly large amplitude) breather solutions of the Klein-
Gordon lattice for frequencies ω near the lower edge β0 of the phonon band
[β0,

√
(4 + β2

0)].

Theorem 7
Assume that all the assumptions of the previous theorem are satisfied. Choose

some β0 > 2/
√

3 and consider the case B > 0, β < β0 and ω := β0, where we
recall that

B :=
β0

8
(W(3)(0) − 5

3
(W(2)(0))2).

Then there exists a γ = γ(β) > 0, γ → 0 as β ↗ β0, and a one-parameter
family of solutions {hsym,β,κ

n } of (1), |κ| < γ, such that each {hsym,β,κ
n } is non

trivially time-periodic with period 2π/ω and has the following properties:

i) {hsym,β,0
n } is a time-independent breather solution to the steady state

zero.

ii) The solutions {hsym,β,κ
n } asymptotically approach non trivially time-periodic

solutions {s±,β
n } with exponential rate in spatial direction n → ±∞.

Moreover, s±,β
n ∈ H2

loc(R) has period 2π/ω satisfying 0 < |s±,β
n | < r for

all n ∈ Z and some sufficiently small r > 0. Finally,

s±,β
n (t · ω) = α±

n cos(t) + φ(α±
n , α

±
n+1, µ)(t)

for some suitable α±
n ∈ R, where the map φ has been defined in theorem

2 and µ = ω2 − β2. If we choose a κ = κ(β) for each β < β0 such that

25



κ → 0 as β ↗ β0, then {hsym,β,κ
n } converges to {hn} with respect to the

locally uniform convergence: That is, given n∗ ∈ N arbitrarily, then

sup
|k|≤n∗

|hsym,β,κ
k − hk|H2

per
→ 0

as β ↗ β0. Finally, hsym,β,κ
n+1 = hsym,β,κ

−n for all n ∈ Z and all κ ≈ 0.

iii) For every β < β0, |β−β0| small enough, there exists a κ+ ≈ 0, such that

h
sym,β,κ+

n+1 = h
sym,β,κ+
−n for all n ∈ Z and

|q̃1
n − hsym,β,κ+

n |H2
per

→ 0, n→ ∞, (34)

where {(q̃1
n, q̃

1
n+1)} denotes a solution of the recurrence relation on the

center manifold approaching A∗ as n → ∞ (see lemma 1 and the para-
graph ”Notation” afterward for the definition of A∗). In particular, A∗

is non trivially time-periodic with period 2π/ω and {hsym,β,κ+
n } itself ap-

proaches the fix point α∗ + φ(α∗, α∗, µ) (i.e. the first component of A∗)
as n→ ±∞, where µ = ω2 − β2. Similarly,

|(α∗ + φ(α∗, α∗, µ) − hsym,β,κ+
n |H2

per
→ 0, n→ −∞. (35)

Finally, there exists a solution {hsym,β,κ−
n } with similar properties, such

that hsym,β,κ−
n approaches the steady state −A∗ as n → ±∞. The solu-

tions {hsym,β,κ+
n }, {hsym,β,κ−

n } satisfy

{hsym,β,κ+
n } → {hn}, {hsym,β,κ−

n } → {hn}
with respect to the locally uniform convergence as β ↗ β0.

Let us note that the time-independent breather solutions {hsym,β,0
n } are in-

duced by the transversal intersection of Fix(R) ∩ V0 and W s ∩ V0 within the
two-dimensional subspace V0. Their existence is therefore trivial.

Proof of the theorem
Recall that β0 > β means µ = ω2 − β2 = β2

0 − β2 > 0. On account of theorem
6, there exists a one-parameter family

{Hsym,β,κ
n } = {(h̃sym,β,κ

n , h̃sym,β,κ
n+1 )}

of symmetric solutions of (11) (for the choice λ = (κ, 0) in theorem 6). If we
denote by lβ : κ �→ Hsym,β,κ

0 �→ S+,β,κ
0 the well-defined map, which associates

to each value κ ≈ 0 the unique point S+,β,κ
0 ∈ Mµ, such that ‖Hsym,β,κ

n −
S+,β,κ

n ‖Xe → 0 with exponential rate α as n → ∞, then lβ is continuous, see
theorem 4. Hence, Rg(lβ) defines a continuous curve on the center manifold,
such that 0 ∈ Rg(l0). In fact, {Hn} persists as a symmetric homoclinic solution
in the subspace V0 after varying the parameter β slightly. In particular, this
solution is contained in the intersection of W s

β and W u
β and is therefore an

element of the family {Hsym,β,κ
n } for some κ ≈ 0. Hence, 0 ∈ Rg(lβ) for all

β ≈ β0, β < β0. Moreover, for |µ| small enough, the union of the stable and
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unstable manifold of ±A∗ within the two-dimensional center manifold Mµ

provides a closed curve of amplitude O(|µ|1/2) encircling the fix point zero (see
case c) of lemma 1). Let us denote this circle by N β. Hence,

Rg(lβ) ∩N β 
= {}

for β < β0 and therefore the curve Rg(lβ) will also intersect the stable manifold
of A∗ of the recurrence relation (11) restricted to the center manifold. This
proves part iii) of the corollary. The other cases are consequences of theorem
6. �

7 Discussion: Chaotic behavior

The solutions

{Hsym,β,κ+
n } = {(hsym,β,κ+

n , h
sym,β,κ+

n+1 )}
in case iii) correspond to generalized breather solutions of the original lattice
differential equation (9). Let us recall that the primary homoclinic solution
{Hn} for β = β0 = ω induces a whole family of (symmetric) homoclinic so-
lutions {Q̃n}, Q̃n ∈ V0, making several loops before converging to zero as
n → ±∞. If the assumptions in theorem 6 and 7 hold for {Hn} replaced by
{Q̃n} (which is generically satisfied) then we conclude the existence of a whole
family of generalized breather solutions satisfying iii) in the upper theorem.
More precisely, given any given number n∗ ∈ N there exists a γ small enough,
such that for all β < β0, |β − β0| < γ there exist at least n∗ distinct general-
ized breather solutions of (9), which correspond to homoclinic solutions to the
steady state A∗ of (11). These solutions reflect the chaotic behavior near the
primary homoclinic solution {Hn} (in the subspace of time-independent func-
tions V0), but now within the set of non trivial generalized breather solutions.

However, we can also proceed differently by observing that {Hsym,β,κ+
n } is a

homoclinic solution of the abstract equation (11), which possesses a transverse
intersection of stable and unstable manifold. Indeed, note that the asymptotic
symmetric steady state A∗, which is approached by the homoclinic solution,
is actually hyperbolic on the center manifold (certificate James [Jam03]). We
observe that for each n the value Hsym,β,κ+

n ∈ Xe is a nontrivial time-periodic
solution and therefore n �→ ∂tH

sym,β,κ+
n solves the variational equation with

respect to the linearization along {Hsym,β,κ+
n }, which seems to prevent the ex-

istence of exponential dichotomies. However, since we restricted our analysis
to the phase space Xe of even functions, the function ∂tH

sym,κ+
n is an odd

function for each n and therefore not contained in Xe. Hence, arguments as in
the work of Palmer [Pal88b, PSS97] or [SW89] become applicable and should

actually prove the existence of a compact subset of Xe near H
sym,β,κ+

0 , where
the dynamics of (11) is conjugated to the Bernoulli shift on two symbols. The
rigorous validation of this fact will appear elsewhere.
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8 Genericity of hypothesis 2

Finally, let us comment on the validation of hypothesis 2 in this section. First
of all we note that this assumption is equivalent to the assumption that

Vm+1 = LmVm (36)

does not possess a solution {Vn} such that

sup
n∈Z

ηn|Vn|Xe <∞ (37)

if η 
= 1 is sufficiently close to one. Indeed, let us consider η > 1 for the sake of
clarity. Note that every Vk is an invariant subspace with respect to the linear
recurrence relation Vn+1 = LnVn and in fact the restriction of this recurrence
relation to the subspace Vk, k 
= 1, possesses an exponential dichotomy with
associated stable and unstable subspace Es

+,k, E
u
−,k, respectively, see [Pal88b,

Pal88a, Cop65]. More precisely, the spaces Es
+,k and Eu

−,k are characterized by
the fact that for every point in Es

+,k there exists a solution {Vn}, n ≥ 0 of the
linear recurrence relation (36) restricted to Vk, which decays exponentially for
n → ∞. Similarly, for every point in Eu

−,k there exists a solution {Vn}, n ≤ 0,
which decays exponentially for n → −∞. These spaces exist, since the fixed
point zero is hyperbolic in the space Vk for k 
= 1, see [Cop65].
In the space V1 the linearization at zero possesses exactly two simple criti-
cal eigenvalues on the unit circle which implies that every solution {Vn}n∈Z

of Vn+1 = LnVn restricted to V1 is actually bounded. Hence, if a globally
defined solution {Vn} satisfies (37) for some η > 1, then Vn approaches zero
exponentially for n→ +∞ and necessarily Vn ∈ ⊕k∈IVk for every n and some
index set I ⊂ Z, which does not contain the value k = 1. As a consequence,
such a sequence {Vn} also approaches zero exponentially in backward direction
n→ −∞.
The question whether or not there exists a nontrivial bounded solution {Vn}
of the recurrence relation (36) which decays exponentially as n → ±∞, is
equivalent to the question whether the one-dimensional spaces Es

+,k and Eu
−,k

coincide for some k ∈ Z or not. We certainly know that Es
+,k and Eu

−,k have
trivial intersection if

|k| > k0 (38)

and k0 is large enough: In this case the recurrence relation

Vn+1 = Ln

∣∣
Vk
Vn (39)

can be viewed as a small bounded perturbation of the autonomous recurrence
relation Vn+1 = L̃

∣∣
Vk
Vn, which possesses an exponential dichotomy that persists

for (39) if |k| is large, see [Cop65, Pal88b, Pal88a] (in fact, this can be seen
from the explicit representation of the eigenvalues λk

± in (14)). Hence Es
+,k and

Eu
−,k have transverse intersection in Vk if |k| > k0 and k0 >> 0 is large enough.

If in one Vk̃, |k̃| ≤ k0 and k̃ 
= 1, this assumption is not satisfied, we will now
show that we can perturb the nonlinearity W ′′ slightly in order to obtain a
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transverse intersection of Es
+,k̃

and Eu
−,k̃

in Vk̃. Note that small perturbations

of the potential W ′′ do not destroy the existence of a homoclinic solution {Hn}
in V0, since in the reversible recurrence relation (15) small perturbations lead
again to the existence of homoclinic solutions.
We now want to be more explicit and assume that the nonlinearity W ∈
BC3(R) depends smoothly on a parameter ε ≈ 0; hence W(·) = W(·, ε). Upon
varying ε the recurrence relation (15) then possesses a homoclinic solution
{hn} = {hε

n} due to the transverse intersection of stable and unstable manifold
within V0. It is now our goal to provide an explicit condition which assures
that hypothesis 2 is satisfied with respect to the perturbed linear equation
(40) below. So let us assume that hypothesis 2 is violated for the potential
W(·) = W(·, 0) for ε = 0 and there exists a exponentially decaying solution
{U∗

n} ⊂ Vk̃ of
Un+1 = Lη

nUn,

where Lη
n := ηLn for some |k̃| < k0, k̃ 
= 1 and η > 1 close enough to 1. We

now want to show that under a suitable condition on the family of potentials
W(·, ε) the perturbed linear equation(

vn+1

wn+1

)
= Lη,ε

n

(
vn

wn

)
−

(
0

ε · η · W̃ ′′(hε
n, ε)wn

)

=: Lη,ε
n

(
vn

wn

)
− εAε

n

(
vn

wn

)
(40)

does not possess a bounded solution. Here, we have defined W̃ ′′(x, ε) via
ε ·W̃ ′′(x, ε) := −W ′′(x, ε)+W ′′(x, 0) (note that −W ′′(x, ε)+W ′′(x, 0) ∈ O(ε))
and

Lη,ε
n

(
vn

wn

)
:= η ·

(
wn

2wn − vn + ω2
c∂

2
twn + W ′′(hε

n, 0)wn

)
for {(vn, wn)} ∈ l2

k̃
:= l2(Z,Vk̃). Note, that Lη,ε

n is indeed a bounded operator

from l2
k̃

to itself. Let us begin by assuming that there actually exists a bounded
solution

Uε
n = U∗

n + Ũn, (41)

Ũn = O(ε), of (40) for ε ≈ 0. Then there exits a bounded sequences {Ψε
n} ∈

l∞(Z,Vk̃) such that

{Z̃n} ∈ Rg (Yn �→ Yn+1 − Lη,ε
n Yn)

if and only if
{Z̃n} ⊥ {Ψε

n}
with respect to the l2

k̃
scalar product, where the map Yn �→ Yn+1 − Lη,ε

n Yn is

considered as a map from l2
k̃

into l2
k̃
. Indeed, this is a consequence of the fact

that Yn �→ Yn+1 − Lη,ε
n Yn is a Fredholm operator of index zero for |ε| small

enough. Let us now write Ψε
n in the form Ψε

n = Ψ0
n + Γn, where {Γn} = O(ε)

with respect to l2
k̃
. Considering the ansatz (41), we see that Uε

n satisfies the
recurrence relation

Uε
n+1 = Lη,ε

n Uε
n − εAε

n(U∗
n + Ũn).
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As a consequence, we see that

0 =
〈
εAε

n(U∗
n + Ũn),Ψε

n

〉
=

〈
εAε

nU
∗
n,Ψ

0
n

〉
+

〈
εAε

nŨn,Ψ
0
n

〉
+

〈
εAε

n(U∗
n + Ũn),Γε

n

〉
(42)

= ε 〈−Aε
nU

∗
n,Ψn〉 + o(ε),

where the term o(ε) satisfies limε→0
o(ε)
ε

= 0 and originates from the fact that

Ũn ∈ O(ε) and Γn ∈ O(ε). Hence, if we postulate that〈
A0

nU
∗
n,Ψn

〉 
= 0 (43)

we see that (42) cannot be satisfied for |ε| ≈ 0 small enough. Note that it
cannot happen that the second component of ψn = (ψ1

n, ψ
2
n) vanishes for all

n (which would imply that (43) could never be true), since if ψ1
n∗ 
= 0 and

ψ2
n∗ = 0 for some n∗ then a straightforward calculation of the adjoint operator

of (un, vn) �→ (un+1, vn+1) − Ln(un, vn) with respect to l2
k̃

shows that then

ψ2
n∗+1 
= 0.

We want to point out that (43) is a condition on the family W(·, ε) only (i.e.
does not involve variations of hε

n with respect to ε etc.) and shows, that we can
always guarantee that hypothesis 2 holds upon slightly varying the potential
W with respect to the BC3-norm, if necessary. Note, that once hypothesis 2
is true, it remains true even if we allow W to change slightly with respect to
the BC3-norm. As a consequence, hypothesis 2 is in fact generically satisfied
with respect to W ∈ BC3, which was claimed in theorem 1. Let us formulate
the main results of this section in the next lemma.

Lemma 4
Assume that hypothesis 2 is violated in any subspace Vk̃ for some |k̃| < k0, k̃ 
=
1 (see (38) for the definition of k0). Let us then consider a family of potentials
W(·, ε) ∈ BC3(J,R) such that ε �→ W(x, ε) is C1 for every x ∈ J , where
J ⊂ R denotes an open interval which contains all values of the homoclinic
solution hn ∈ R. If then〈(

0
∂εW ′′(hn, ε)

∣∣
ε=0

w∗
n

)
, ψn

〉

= 0

with respect to the l2(Z,Vk̃) scalar product, where U∗
n = (v∗n, w

∗
n) denotes the

bounded solution of the recurrence relation Un+1 = Lη
nUn, then hypothesis 2

is satisfied for ε 
= 0 small enough with respect to the perturbed linear equa-
tion (i.e. the linear equation (40)). In particular, hypothesis 2 is generically
satisfied with respect to W ∈ BC3(J,R).
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