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1 Introduction

The influence of source terms on the structure of solutions to hyperbolic conservation

laws recently has attracted much attention. While the only travelling-wave solutions of

hyperbolic conservation laws are single shock waves, systems of balance laws may possess

a variety of different continuous and discontinuous travelling waves. In this paper we

concentrate on continuous travelling waves and study two different types of interplay

between the flux of the conservation law and the dynamics due to the source term.

In both situations we encounter the presence of manifolds consisting of equilibria.

Although this looks rather special and non-generic, it will turn out that manifolds of

equilibria occur naturally in the travelling-wave problem of conservation laws with source

terms. In section 2, we focus on a combination of conservation laws and balance laws

which gives rise to subspaces of equilibria. Here the existence of a large number of small

heteroclinic waves can be proved. Section 3 deals with the bifurcation of large heteroclinic

waves. Here the manifold of equilibria is obtained from a rescaling of the travelling-wave

system.

Our viewpoint is from dynamical systems and bifurcation theory. Local normal

forms at singularities are used and the dynamics is described with the help of blow-up

transformations and invariant manifolds.

2 Oscillatory profiles of stiff balance laws

This section is devoted to a phenomenon in hyperbolic balance laws, first described by

Fiedler and Liebscher [FL00], which is similar in spirit to the Turing instability. The com-

bination of two individually stabilising effects can lead to quite rich dynamical behaviour,

like instabilities, oscillations, or pattern formation.

Our problem is composed of two ingredients. First, we have a strictly hyperbolic

conservation law. The second part is a source term which, alone, would describe a simple,

stable kinetic behaviour: all trajectories eventually converge monotonically to some equi-

librium. The balance law, constructed of these two parts, however, can support profiles

with oscillatory tails. They emerge from singularities in the associated travelling-wave

system.
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2.1 Travelling waves

We are interested in profiles of balance laws of the form

ut + f(u)x =
1

ε
g(u), (2.1)

with x ∈ IR and u ∈ IRN . Travelling-wave solutions

u(t, x) = u
(

x− st

ε

)
, lim

ξ→±∞
u(ξ) = u± ∈ IRN (2.2)

are heteroclinic orbits of the dynamical system

(Df(u)− s · id) u′ = g(u). (2.3)

In particular, the asymptotic states have to be zeros of the source term:

g(u±) = 0. (2.4)

Choose a fixed wave speed s. As long as the speed of the wave does not coincide with one

of the characteristic speeds, i.e. s 6∈ spec Df(u), the travelling-wave equation (2.3) yield

a system of ordinary differential equations:

u′ = (Df(u)− s · id)−1 g(u). (2.5)

2.2 Manifold of equilibria

Usually one expects the zeros of a generic function g to form a set of isolated points.

However, typical systems of balance laws are combinations of pure conservation laws and

balance laws. For example, conservation of mass and momentum are often assumed to

hold strictly. Let us consider a system of K pure conservation laws with N −K balance

laws. Then, generic source terms g give rise to K-dimensional zero-sets.

Near points of maximal rank of Dg, the zeros of g and the equilibria of (2.3) form

a K-dimensional manifold. In the following sections, we shall investigate the dynamics

near such a manifold of equilibria and describe the resulting structure of travelling waves

of the system of balance laws (2.1).

The asymptotic behaviour of profiles u(ξ) of (2.3) for ξ → ±∞ depends on the

linearisation

L = (Df(u)− s · id)−1 Dg(u). (2.6)

of the vectorfield (2.5). Of particular interest are fixed points where the stability of L

changes. At these points the linearisation L has non-maximal rank less than N −K and
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Figure 2.1: Dynamics near a Hopf point along a line of equilibria: a) hyperbolic, η = +1,

b) elliptic, η = −1.

normal hyperbolicity of the equilibrium manifold breaks down. Depending on the type of

the singularity, a very rich set of local heteroclinic connections can emerge and leads to

small-amplitude travelling waves of (2.1). We call this phenomenon “bifurcation without

parameters”, because is does not depend on the variation of some additional parameter.

2.3 Hopf point

Let us start with the case K = 1 of a one-dimensional curve of equilibria. Bifurcations

without parameters along lines of equilibria have been studied in [FLA00, FL00, Lie00].

Typical singularities are of codimension one. They are characterised by a simple eigenvalue

of (2.6) crossing zero (simple-zero point) or by a pair of conjugate complex eigenvalues

crossing the imaginary axis (Hopf point). The more interesting Hopf point is described

as follows.

Theorem 2.1 [FLA00] Let F : IRN → IRN be a C5-vectorfield with a line of fixed

points along the u1-axis, F (u1, 0, . . . , 0) ≡ 0. At u1 = 0, we assume the Jacobi matrix

DF (u1, 0, . . . , 0) to be hyperbolic, except for a trivial kernel vector along the u1-axis and

a complex conjugate pair of simple, purely imaginary, nonzero eigenvalues µ(u1), µ(u1)

crossing the imaginary axis transversely as u1 increases through u1 = 0:

µ(0) = iω(0), ω(0) > 0,

Re µ′(0) 6= 0.
(2.7)
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Let Z be the two-dimensional real eigenspace of F ′(0) associated to ±iω(0). By ∆Z we

denote the Laplacian with respect to variations of u in the eigenspace Z. Coordinates in

Z are chosen as coefficients of the real and imaginary parts of the complex eigenvector

associated to iω(0). Note that the linearisation acts as a rotation with respect to these not

necessarily orthogonal coordinates. Let P0 be the one-dimensional eigenprojection onto

the trivial kernel along the u1-axis. Our final nondegeneracy assumption then reads

∆ZP0F (0) 6= 0. (2.8)

Fixing orientation along the positive u0-axis, we can consider ∆ZP0F (0) as a real

number. Depending on the sign

η := sign (Re µ′(0)) · sign (∆ZP0F (0)), (2.9)

we call the Hopf point u = 0 elliptic if η = −1 and hyperbolic for η = +1.

Then the following holds true in a neighbourhood U of u = 0 within a three-

dimensional centre manifold to u = 0.

In the hyperbolic case, η = +1, all non-equilibrium trajectories leave the neighbour-

hood U in positive or negative time direction (possibly both). The stable and unstable sets

of u = 0, respectively, form cones around the positive/negative u1-axis, with asymptot-

ically elliptic cross section near their tips at u = 0. These cones separate regions with

different convergence behaviour. See Fig. 2.1(a).

In the elliptic case all non-equilibrium trajectories starting in U are heteroclinic be-

tween equilibria u± = (u±1 , 0, . . . , 0) on opposite sides of the Hopf point u = 0. If F (u)

is real analytic near u = 0, then the two-dimensional strong stable and strong unsta-

ble manifolds of u± within the centre manifold intersect at an angle which possesses an

exponentially small upper bound in terms of |u±|. See Fig. 2.1(b).

Note that the heteroclinic connections which fill an entire neighbourhood in the

centre manifold of an elliptic Hopf point then lead to travelling waves of the balance law

(2.1). In Fig. 2.2, such a wave is shown, and a generic projection of the n-dimensional

space of u-values onto the real line was used. For stiff source terms, ε ↘ 0, the oscillations

imposed by the purely imaginary eigenvalues now look like a Gibbs phenomenon. But

here, they are an intrinsic property of the analytically derived solution.

In [FL00, Lie00] simple examples of Hopf points in systems of viscous balance laws

have been provided. The following result goes beyond these examples and emphasises the

possibility of Hopf points in systems with arbitrary flux functions when combined with a

stabilising source term.
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Figure 2.2: Oscillatory travelling wave emerging from an elliptic Hopf point.

Theorem 2.2 Let f : IR3 → IR3 be a generic C6-vectorfield such that Df(u) has only

real distinct eigenvalues λ1(u) < λ2(u) < λ3(u) for all u in a neighbourhood of the origin

u = 0.

Then, for every value s 6∈ {λ1(0), λ2(0), λ3(0)} there exists a C5-vectorfield

g : IR3 → IR2 × {0} (2.10)

such that

1. the kinetic part g stabilises the line of equilibria near the origin, i.e. the linearisation

Dg(0) has one (trivial) zero eigenvalue and two negative real eigenvalues,

2. the travelling-wave equation (2.5) admits a Hopf point in the sense of Theorem 2.1.

Proof. Without loss of generality, we choose s = 0 and require the eigenvalues of Df(0)

to be nonzero. We shall provide a particular source g with a straight line of equilibria.

First, we construct a suitable linearisation Dg(0) that creates the purely imaginary

eigenvalues of Df(0)−1Dg(0). Secondly, we continue this linearisation along the line of

equilibria such that the transversality (2.7) holds. Finally, we use genericity to satisfy the

nondegeneracy condition (2.8). The main problem of the construction is the constraint

(2.10) imposed by the structure of one conservation law and two balance laws.
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Let S be the transformation of Df(0) into diagonal form:

Df(0) = S Λ S−1, Λ = diag(λ1, λ2, λ3). (2.11)

A Hopf point of system (2.5) at the origin requires the existence of a transformation

T ∈ GL(3), such that

Dg(0) = S Λ S−1 T−1


0 0 0

0 0 1

0 −1 0

 T. (2.12)

Here we have normalised the imaginary part of the Hopf eigenvalue to one. On this linear

level, the constraint (2.10) yields 0 = eT
3 Dg(0) which is equivalent to

Λ ST e3 ⊥ S−1 T−1
(
{0} × IR2

)
, (2.13)

where e3 = (0, 0, 1)T denotes the third standard unit vector.

Aside from (2.13) we can define T arbitrarily in order to construct the two negative

eigenvalues of Dg(0) defined by (2.12). This is done as follows. We start with two

arbitrary, linearly independent vectors (a1, a3), (a2, a4) ∈ IR2. (The actual choice will be

made later on.) As a first genericity condition of f we require

eT
3 Sek 6= 0, k = 1, 2, 3. (2.14)

Then we can obtain a basis of IR3 by:

v1 =


1

0

0

 , v2 =


∗
a1

a3

 , v3 =


∗
a2

a4

 , v2, v3 ∈ (ΛSTe3)
⊥. (2.15)

We define T by the equation

(T S)−1 =
(
v1 v2 v3

)
=


1 ∗ ∗
0 a1 a2

0 a3 a4

 . (2.16)
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and insert it into (2.12) to obtain

T Dg(0) T−1

= T S Λ S−1 T−1


0 0 0

0 0 1

0 −1 0



=
1

a1a4 − a2a3


1 ∗ ∗
0 a4 −a2

0 −a3 a1




λ1

λ2

λ3




0 0 0

0 −a2 a1

0 −a4 a3



=
1

a1a4 − a2a3


0 ∗ ∗
0 (λ3 − λ2)a2a4 λ2a1a4 − λ3a2a3

0 λ2a2a3 − λ3a1a4 (λ3 − λ2)a1a3



(2.17)

The lower right (2×2)-block has trace (λ3−λ2)(a1a3+a2a4)/(a1a4−a2a3) and determinant

λ2λ3. The trace can be made negative of arbitrary size regardless of λ2, λ3 by choice of

a1, ..., a4. We conclude: if λ2λ3 > 0 then we can find parameters a1, ..., a4 in (2.15) such

that the resulting matrix Dg(0) has two negative real eigenvalues. In fact, there is an

open region of admissible parameters. The requirement λ2λ3 > 0 can be fulfilled without

loss of generality by a permutation of λ1, λ2, λ3, since at least two of them must have the

same sign.

From now on, let v1, v2, v3, T be fixed according to the above considerations. Then

we continue

ker Dg(0) = span

S


1

0

0


 = span

T−1


1

0

0


 (2.18)

to a straight line of equilibria by the definition

(
g ◦ T−1

)
w1

w2

w3

 = S Λ S−1 T−1


0 0 0

0 cw1 1

0 −1 cw1




w1

w2

w3

 (2.19)

The transversality of the Hopf eigenvalue (2.7) can be achieved by an appropriate choice

of the parameter c dependent on the higher order terms of f . Again, there is in fact an

open region of admissible parameter values.

The required nondegeneracy of the Hopf point (2.8) is the second nondegeneracy

condition needed for f . That finishes the proof.

Note that (2.10) yields

Df(0)−1∆Zg(u)
∣∣∣
u=0

∈ Z = span {Sv2, Sv3} (2.20)
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and does not contribute to (2.8). Therefore, the inclusion of higher order terms in (2.19)

would not enter the nondegeneracy condition. The value of P0∆ZDf(0)−1g(0) is specified

by first-order terms of g (that have been defined only using Df(0)) and second-order

terms of f . Indeed, (2.8) is a genericity condition on f . ./

Remark 2.3 The nondegeneracy condition (2.8) is equivalent to the requirement, that

every flow-invariant foliation transverse to the line of equilibria breaks down at the Hopf

point already to second order. In terms of our system of conservation laws and balance

laws, it requires in particular that the flux couples the component with source terms back

to the pure conservation law. Without such a coupling, the conservation law gives rise to a

foliation, such that in each fibre only finitely many of the equilibria remain. That happens

for instance in the systems of extended thermodynamics that are one of the motivating

examples of the second part of this article, see section 3.5.

2.4 Takens-Bogdanov points

Along two-dimensional surfaces of equilibria, we expect singularities of codimension two to

occur. The possible cases are characterised by the critical eigenvalues of the linearisation in

directions transverse to the surface of equilibria: a geometrically simple and algebraically

double eigenvalue zero (Takens-Bogdanov point), a pair of purely imaginary eigenvalues

accompanied by a simple eigenvalue zero (Hopf-zero point), or two non-resonant pairs of

purely imaginary eigenvalues (double Hopf point). Additionally, simple-zero points and

Hopf points with a degeneracy in the higher order terms are possible.

Takens-Bogdanov points have been studied in [FL01].

Theorem 2.4 [FL01] Let F : IR4 → IR4 be a vectorfield with a plane of fixed points,

F (0, 0, u3, u4) ≡ 0. At u = 0, we assume the Jacobi matrix to be nilpotent.

Then, for generic F , the vectorfield can be transformed to the normal form

u̇1 = au1(−u3 + u4)− u2u3 + abu2
2,

u̇2 = u1,

u̇3 = u2 + u1(c1u3 + c2u4),

u̇4 = c3u1(c1u3 + c2u4),

(2.21)

written up to second order terms.

Depending on the value of b three qualitatively different cases occur. The structure of

the set of heteroclinic connections between different equilibria near the Takens-Bogdanov

point is depicted in Fig. 2.3. In each case, the Takens-Bogdanov point is the intersection
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Figure 2.3: Three cases of Takens-Bogdanov bifurcations without parameters, see (2.21).

(A) b < −17/12; (B) −17/12 < b < −1; (C) −1 < b. Unstable dimensions i of trivial

equilibria (0,y) are denoted by (i). Arrows indicate heteroclinic connections between

different regions of the manifold of equilibria.



12 Jörg Härterich, Stefan Liebscher

of the line {u3 = 0} of simple-zero points and the line {u3 = u4 > 0} of Hopf points of

either hyperbolic or elliptic type.

Similar to Theorem 2.2, Takens-Bogdanov points can occur in systems with at least

two conservation laws and two balance laws. Note that travelling waves corresponding to

heteroclinic orbits starting or ending near the Hopf line have oscillatory tails.

2.5 Discussion

In summary, Hopf point as well as Takens-Bogdanov points are possible in systems of

stiff hyperbolic balance laws. For all generic strictly hyperbolic flux functions and a

suitable number of pure conservation laws and balance laws there exist appropriate source

terms such that these bifurcations occur in a structurally stable fashion. The bifurcations

are generated by the interaction of flux and source. In particular, Hopf points can be

constructed for generic fluxes and stabilising sources. For Takens-Bogdanov points at

least one example is given in [FL01].

This holds true under small perturbations of the system, for instance in numerical

calculations. In particular, an additional viscous regularisation

ut + f(u)x = g(u) + δuxx (2.22)

still yields the bifurcation scenario for small positive δ. In [FL00, Lie00, FL01] viscous

oscillatory profiles are constructed for specific examples of f, g. The treatment of the

viscous terms is still applicable in the general case presented here.

In particular, the proof of convective stability of the oscillatory profiles near an

elliptic Hopf point in [Lie00] is applicable for systems given by Theorem 2.2 with additional

viscosity. For numerical calculations on bounded intervals in co-moving coordinates this

implies nonlinear stability of the corresponding oscillatory travelling waves.

For hyperbolic conservation laws one usually expects viscous shock profiles to be

monotone. In particular, in numerical simulations small oscillations near the shock layer

are regarded as numerical artefacts due to grid phenomena or unstable numerical schemes.

In many schemes “artificial viscosity” is used to automatically suppress such oscillations

as “spurious”. Near elliptic Hopf as well as near the elliptic Hopf line of Takens-Bogdanov

points, in contrast, all heteroclinic orbits correspond to travelling waves with necessarily

oscillatory tails. Numerical schemes should therefore resolve this “overshoot” rather than

suppress it.
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3 Bifurcation of heteroclinic waves

In this section, we study heteroclinic travelling waves of (2.1) with ε = 1, i.e.

ut + f(u)x = g(u), x ∈ IR, u ∈ IRN . (3.1)

Travelling-wave solutions

u(t, x) = u (x− st) , lim
ξ→±∞

u(ξ) = u± ∈ IRN , (3.2)

are again orbits of the dynamical system

A(u, s)u′ := (Df(u)− s · id) u′ = g(u). (3.3)

As before we concentrate on heteroclinic waves connecting two equilibria of the reaction

dynamics.

In contrast to section 2 we will now consider the wave speed s as a bifurcation

parameter and study the bifurcation of heteroclinic waves.

As long as s does not coincide with one of the characteristic speeds for all u on the

heteroclinic orbit, (3.3) is equivalent to the explicit ordinary differential equation (2.5).

However, in general there are also orbits containing points where s coincides with

one of the characteristic speeds such that det(Df(u) − s · id) vanishes at some point on

the heteroclinic profile.

3.1 Quasilinear implicit DAEs

In general, the travelling-wave equation (3.3) is a differential-algebraic equation. In con-

trast to the common setting in differential-algebraic equations the rank of the matrix

Df(u)− s · id is non-maximal only on a codimension-one surface

Σs := {u ∈ IRN ; det A(u, s) = 0} (3.4)

of the phase space. One might suspect that solutions can never cross this surface. Rabier

and Rheinboldt [RR94] have studied solutions in a neighbourhood of Σs and shown that

they typically reach Σs in finite (forward or backward) time and cannot be continued. For

this reason Σs is often referred to as the impasse surface. However, there may exist parts

of Σs where it is possible to cross from one side to the other. Heteroclinic solutions passing

through Σs have been found in applications [MNP00, Wei95] and, as will be shown below,

their behaviour differs from that of heteroclinic orbits in ordinary differential equations.



14 Jörg Härterich, Stefan Liebscher

To identify points on Σs where crossing is possible, one needs to desingularise the

vector field near the hypersurface Σs. To this end one uses the adjugate matrix adj A(u, s)

which is defined as the transpose of the matrix of cofactors of A(u, s) and which satisfies

the identity

(adj A(u, s))A(u, s) = A(u, s)(adj A(u, s)) = det A(u, s) · id. (3.5)

Solution curves of (3.3) coincide outside Σs with trajectories of the desingularised system

u′ = adj A(u, s)g(u) = adj (Df(u)− s · id) g(u). (3.6)

This system is obtained by multiplying (3.3) from the left with adj A(u, s) and rescaling

time by using det A(u, s) as an Euler multiplier. Also, the direction of the orbits is reversed

in that part of the phase space where det A(u, s) < 0.

In addition to the equilibria of (3.3), equation (3.6) may possess additional fixed

points on Σs. Since they are not equilibria of the original system they are called pseudo-

equilibria. As we will see, they play an important role in the bifurcations. The time

rescaling is singular at the impasse surface Σs, so trajectories of (3.6) that need an infinite

time to reach a pseudo-equilibrium correspond to solutions of the original system (3.3)

which reach the pseudo-equilibrium in finite time. A solution of (3.3) may therefore

consist of a concatenation of several orbits of (3.6).

The dynamics near the impasse surface is strongly affected by the interaction be-

tween “true” equilibria and pseudo-equilibria, when equilibria cross the impasse surface

as s is varied. In the context of differential-algebraic equations, such a passage of a

non-degenerate equilibrium U0 through the impasse surface was first studied by Venkata-

subramanian et al. in [VSZ95]. Their Singularity-Induced Bifurcation Theorem states

that under certain non-degeneracy conditions one eigenvalue of the linearisation of (3.3)

at U0 moves from the left complex half plane to the right complex half plane or vice versa

by diverging through infinity, while all other eigenvalues remain bounded and stay away

from the origin.

3.2 Scalar balance laws

Let us very briefly consider the simplest situation of a scalar balance law to describe some

of the features that show up in larger systems, too. Let f : IR → IR be a convex flux

function with f ′(0) = 0 and g : IR → IR be a nonlinear source term with three simple

zeroes u` < um < ur and the sign condition g(u) · u < 0 outside [u`, ur]. Looking for

travelling waves of (3.3) with speed s then leads to the scalar equation

(∂uf(u)− s)u′ = g(u). (3.7)
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It is easy to check that the “impasse surface” consists here of a single point us where

∂uf(us) = s. No trajectory can pass through this impasse point except when us = um,

i.e. s = ∂uf(um). For this exceptional wave speed there is a heteroclinic orbit from u`

to ur which consists of the concatenation of two heteroclinic orbits of the desingularised

system

u′ = g(u). (3.8)

Note that the flow has to be reversed for u > um such that the two heteroclinic orbits of

(3.8) from u` to um and from ur to um can indeed be combined to yield a single heteroclinic

orbit of (3.7).

3.3 The p-system with source

While in scalar balance laws heteroclinic waves crossing Σs occur only for isolated values

of s, already in (2 × 2)-systems of balance laws such heteroclinic waves may occur for a

open set of wave speeds.

Instead of studying general (2×2)-systems with arbitrary source terms we are going

to illustrate our results for this case using the well-known p-system. This does not change

the results in an essential way, however, it has the advantage that the impasse surface Σs

is a straight line u = const.

Consider therefore the system

ut + vx = g1(u, v)

vt + p(u)x = g2(u, v).
(3.9)

We assume that p′(u) > 0 such that the conservation-law part is strictly hyperbolic.

Moreover we require that there exists an non-degenerate equilibrium, i.e. a point (u0, v0)

with g1(u0, v0) = g2(u0, v0) = 0 and det Dg(u0, v0) 6= 0.

The travelling-wave equation corresponding to this balance law is −s 1

p′(u) −s

 u′

v′

 =

 g1(u, v)

g2(u, v)

 (3.10)

such that for fixed s the impasse set Σs is either empty or consists of the line Σs :=

{(u, v); p′(u) = s2}. While orbits which do not cross this line can be treated by standard

methods, some care is needed for orbits which reach the line Σs.

The Singularity-Induced Bifurcation Theorem tells that the stability type of the

equilibrium (u0, v0) changes when it crosses the impasse surface at s = s0 =
√

p′(u0). To



16 Jörg Härterich, Stefan Liebscher

Σs Σs Σs

s < s0 s = s0 s > s0

(u0, v0)

Figure 3.1: A Singularity Induced Bifurcation occurs when a non-degenerate equilibrium

crosses the impasse surface (dotted line). The pseudo-equilibrium involved in the trans-

critical bifurcation of the desingularised system is drawn in grey. For s > s0 there exist

orbits which pass through Σs.

describe more precisely what happens at this bifurcation, we perform the desingularisation

via the adjugate matrix. This leads to the desingularised system

 u′

v′

 =

 −sg1(u, v)− g2(u, v)

−p′(u)g1(u, v)− sg2(u, v)

 (3.11)

The implicit-function theorem can now be applied to this equation restricted to Σs to find

for |s− s0| small a branch of pseudo-equilibria (ũ(s), ṽ(s)) with ũ(s0) = 0 and ṽ(s0) = v0

if

s0∂vg1(u0, v0) + ∂vg2(u0, v0) 6= 0. (3.12)

Assuming that this condition holds, one can describe the dynamics close to (u0, v0) for |s−
s0| sufficiently small by using classical bifurcation theory for system (3.11) and translating

the results back to the original system (3.10).

Lemma 3.1 Consider the p-system with a source term which possesses a non-degenerate

equilibrium at (u0, v0) for all wave speeds s.

Then the desingularised travelling-wave system (3.11) undergoes a transcritical bi-

furcation at s = s0. The trivial branch of equilibria crosses a branch (ũ(s), ṽ(s)) of

equilibria which are pseudo-equilibria of system (3.10). For |s− s0| sufficiently small the

pseudoequilibrium (ũ(s), ṽ(s)) and the equilibrium (u0, v0) are connected by a heteroclinic

orbit.
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There are different cases depending on the eigenvalue structure at the equilibria.

One of them is depicted in Fig. 3.1.

Remark 3.2 Recall that system (3.11) and system (3.10) are related via a rescaling of

time with the factor det A(u, v, s) which is singular at the impasse surface Σs. For this

reason the trajectory of (3.10) corresponding to the heteroclinic orbit between (u0, v0) and

(ũ(s), ṽ(s)) needs only a finite time to reach the pseudo-equilibrium (ũ(s), ṽ(s)).

3.4 Heteroclinic waves in the p-system

Since we are basically interested in heteroclinic travelling waves, we will now assume that

there exists some heteroclinic orbit of (3.10) asymptotic to the equilibrium (u0, v0) at

s = s0.

We restrict our attention to heteroclinic orbits which connect some equilibrium

(u−, v−) to (u0, v0) and which are structurally stable.

There are three cases which may occur:

• Case I: (u−, v−) is of source type while (u+, v+) is a saddle equilibrium of (3.3)

• Case II: (u−, v−) is a saddle while (u+, v+) is a sink.

• Case III: (u−, v−) is of source type while (u+, v+) is a sink.

In the first two cases we may think of the heteroclinic orbit for instance as coming from

a saddle-node bifurcation.

As the parameter s is varied across s0 the stationary point (u0, v0) moves through

Σs. The following lemma tells what happens to the heteroclinic connection for s > s0

when the two equilibria lie on different sides of Σs.

Theorem 3.3 Assume that (3.10) possesses two stationary points (u−, v−) and (u0, v0)

which are on the same side of Σs for s < s0. Assume furthermore that there is a hete-

roclinic connection from (u−, v−) to (u0, v0) at s = s0 and that the tangent vector to this

heteroclinic orbit at (u0, v0) is transverse to Σs0. Then for s − s0 > 0 sufficiently small

the following holds:

(i) In case I the desingularised system (3.11) possesses a unique heteroclinic orbit from

the pseudo-equilibrium (ũ(s), ṽ(s)) to the saddle (u−, v−) and a unique heteroclinic

orbit from (ũ(s), ṽ(s)) to the saddle (u0, v0). The concatenation of these two orbits

provides a heteroclinic orbit from (u−, v−) and (u0, v0) in the original system (3.3).

See Fig. 3.2(a).
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s > s0

s = s0

s < s0

(u−, v−)

a)

s > s0

s = s0

s < s0

(u−, v−)

b)

Figure 3.2: Continuation of heteroclinic orbits in the p-system: a) Case I, b) Case II

The impasse surface is depicted as a dotted line the pseudo-equilibrium is shown in grey,

the heteroclinic connection from (u−, v−) to (u0, v0) is the bold curve.
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(ii) In case II the pseudo-equilibrium (ũ(s), ṽ(s)) is of saddle-type and possesses unique

heteroclinic connections to (u−, v−) and (u0, v0). A heteroclinic orbit of the original

system (3.3) is obtained by piecing these two orbits together. See Fig. 3.2(b).

(iii) Case III is similar to case I with the difference that there exist infinitely many het-

eroclinic orbits from the pseudo-equilibrium sink (ũ(s), ṽ(s)) to the source (u−, v−).

This in turn yields infinitely many heteroclinic orbits of (3.3) from (u−, v−) and

(u0, v0).

Remark 3.4 When the pseudo-equilibrium is of saddle type (case II), the heteroclinic

orbit between the source and a sink is as smooth as the vector field. In contrast, if the

pseudo-equilibrium is of source/sink-type and the heteroclinic wave connects two saddle

equilibria, then the heteroclinic orbit has in general only a finite degree of smoothness

which depends on the ratio of the eigenvalues at the pseudo-equilibrium.

An analogous result for general (2 × 2)-systems can be obtained using Lyapunov-

Schmidt reduction. Under a certain non-degeneracy condition the passage of a non-

degenerate equilibrium through the impasse surface corresponds to a transcritical bifur-

cation of the desingularised system. Close to the bifurcation point there exist solutions

which pass through the impasse surface and converge to the equilibrium.

It turns out that the situation is similar for N -dimensional systems (3.6) associated

with (N×N)-systems of hyperbolic balance laws. Here, the impasse surface Σs is of codi-

mension one and generically within Σs there is a codimension one set of pseudo-equilibria.

The linearisation of (3.6) in such a pseudo-equilibrium possesses 0 as an eigenvalue of mul-

tiplicity at least N −2 corresponding to the (N −2)–dimensional set of pseudo-equilibria.

3.5 Shock profiles in extended thermodynamics

Extended thermodynamics comprises a class of systems of hyperbolic balance laws which

describe for instance the thermodynamics of rarefied gases under the physical assumption

that the propagation speed of heat flux and shear stress is finite. We concentrate on one

specific model, the 14-moment system, as described in [Wei95], [MR98].

It is one in a hierarchy of models based on the kinetic theory of gases. In partic-

ular, they are used to get a better resolution of the internal structure of shock waves in

rarefied gases if more moments are taken into account. For brevity, we do not write down

the full system consisting (in one space dimension) of three conservation laws for mass,

momentum, and energy and of three balance laws. Since it is invariant under Galilei

transformations it suffices to look for stationary solutions instead of travelling waves with
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arbitrary speed. Integrating the three conservation laws allows to eliminate three vari-

ables and to replace them by integration constants. Moreover, by scaling the variables

suitably, it is possible to reduce the system to a DAE in the three variables v, p and ∆

with a single real parameter α which can be related to the Mach number. In quasilinear

implicit form the travelling-wave equation then reads

A(v, p, ∆, α)


v′

p′

∆′

 =


−(1− v − p)

−(4α + 2v(1− 6p− 2v))/3

−(4v3 + 4v2 + 36pv2 − 16αv − 2∆)/3

 . (3.13)

where A(v, p, ∆, α) is a polynomial matrix function. We omit here most of the (lengthy)

calculations and formulas and concentrate on the geometric situation. A more detailed

treatment will be performed elsewhere. The impasse surface

Σα = {(v, p, ∆); det A(v, p, ∆, α) = 0}

is a graph over the v-p-plane. For any α < 25/32, there are precisely two equilibria

E1,2 =

(
5∓

√
25− 32α

8
,
3±

√
25− 32α

8
, 0

)

which bifurcate at α = 25/32 in a subcritical saddle-node bifurcation. The main object

of interest are continuous heteroclinic orbits from E2 to E1 alias shock profiles. It is

clear that for α close to the bifurcation value there exists a unique heteroclinic connection

between E2 and E1.

It has been observed numerically by Weiss [Wei95] that in the 14-moment system

this heteroclinic orbit can be continued to values of α where the shock profiles has to

cross the impasse surface Σα because E1 and E2 lie on different sides of Σα. However,

in this parameter regime, the dimension of the unstable manifold of E1 is one while the

stable manifold of E2 is two-dimensional. Without some additional structure one cannot

explain that a heteroclinic connection between these two saddle-type equilibria persists

for a whole range of α.

In the following we propose a scenario how a one-dimensional manifold E of pseudo-

equilibria can be responsible for a structurally stable heteroclinic connection between E1

and E2 in a way similar to case I in the p-system with source. Let α1 be the parameter

value where E1 lies in Σα.

Proposition 3.5 For α < α1 the one-dimensional stable manifold of E1 connects to

some pseudo-equilibrium Epseudo(α) on E. The two-dimensional unstable manifold of E2

connects to a whole interval of points on E containing Epseudo(α). The concatenation

of the two heteroclinic orbits of the desingularised system involving Epseudo(α) yields a

heteroclinic orbit from E2 to E1 in the original system (3.13).
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The scenario is in accordance with numerical calculations performed for the 14-

moment system, although we do not have an analytic proof that the heteroclinic orbit

created in the saddle-node bifurcation at α = 25/32 can be continued down to α = α1

without intersecting the impasse surface Σα. However, assuming the existence of such a

heteroclinic profile at α = α1 proposition 3.5 is able to explain why the heteroclinic shock

profile persists for α < α1.

Let us remark that the bifurcation is connected to a change of stability along the

line E of pseudo-equilibria, similar to the situation considered in section 2.

3.6 Viscous profiles

In many situations systems of balance laws include a small viscous term:

ut + f(u)x = εuxx + g(u), x ∈ IR, u ∈ IRN . (3.14)

The travelling-wave equation now becomes a singularly perturbed equation of the form

εu′′ = (Df(u)− s · id)u′ − g(u) (3.15)

where the prime denotes differentiation with respect to the comoving coordinate ξ :=

x − st. Note that, unlike in viscous conservation laws, the viscosity ε is still present in

the travelling-wave equation.

For scalar balance laws, the travelling-wave equation is a planar system with one

fast and one slow variable involving the small parameter ε and the wave speed s as an

additional parameter. Returning to the setting of section 3.2 where the flux was convex

and the source term had three simple zeroes u` < um < ur one might ask whether (3.14)

possesses a travelling wave close to the monotone solution of (3.1) that connects u` to ur.

However, it turns out that such a solution necessarily has to pass close to a non-

hyperbolic point on the slow manifold such that standard techniques in geometric singular

perturbation theory can give no answer. For this reason, recent blow-up techniques [KS01]

have to be used to establish the following existence result:

Theorem 3.6 [Här03] Consider a scalar viscous balance law (3.14) with a convex flux

f : IR → IR and a source term g : IR → IR which possess three simple zeroes u` < um < ur.

Let s0 = f ′(um) be the velocity of the heteroclinic wave that connects u` to ur for ε = 0.

Then for ε > 0 sufficiently small there is a unique velocity s(ε) such that a unique

monotone heteroclinic wave uε of (3.15) connects u` to ur. To first order the wave speed
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s(ε) depends linearly on the viscosity ε:

s(ε) = s0 −
1

2

d

du

(
g′(u)

f ′′(u)

)∣∣∣∣∣
u=um

ε + O(ε3/2).

Since the heteroclinic travelling wave uε follows both stable and unstable parts of

the slow manifold, it is a so-called canard trajectory.

For larger systems the viscous travelling-wave equation (3.15) can be written as a

fast-slow-system with N slow and N fast variables:

εu′ = w + f(u)− su

w′ = −g(u)

The N -dimensional slow manifold {(u, w) ∈ IR2N ; w + f(u)− su = 0} is a graph over the

subspace {w = 0} spanned by the variables of the hyperbolic balance laws. A short calcu-

lation shows that points on the slow manifold where normal hyperbolicity fails correspond

exactly to the impasse surface Σs. This implies that the problem of finding heteroclinic

travelling waves of the viscous system which are close to travelling waves of the hyper-

bolic system intersecting Σs will necessarily lead to a rather difficult singularly perturbed

problem involving Canard solutions.

An interesting and completely open question is the stability of such viscous travelling

waves. In particular, as we have seen in the p-system with source, “ordinary” heteroclinic

waves can become rather singular when one of the asymptotic states crosses the impasse

surface Σs as s is varied. In the viscous setting this would correspond to a transition from

a “ordinary” heteroclinic orbit to a canard orbit. It is not clear whether this transition

affects the stability of heteroclinic waves.
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