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Abstract

In this article we study a homoclinic bifurcation in a general func-
tional differential equation of mixed type. More precisely, we investigate
the case when the asymptotic steady state of a homoclinic solution un-
dergoes a Hopf bifurcation. Bifurcations of this kind are hard to analyse
due to the lack of Fredholm properties. In particular, a straightforward
application of a Lyapunov-Schmidt reduction is not possible.

As one of the main results we prove the existence of center stable
and center unstable manifolds of steady states near homoclinic orbits.
With their help, we can analyse the bifurcation scenario similar to the
ODE-case and can show the existence of solutions which bifurcate near
the homoclinic orbit, are decaying in one direction and oscillatory in
the other direction. These solutions can be visualized as an interaction
of the homoclinic orbit and small periodic solutions, which exist on
account of the Hopf bifurcation, for exactly one asymptotic direction
t → ∞ or t → −∞.

1 Introduction

Functional differential equations of mixed type are equations of the form

ẋ(t) = f(xt), (1)

where f : C0([−a, b],RN ) → RN , a ≥ 0, b ≥ 0 and xt ∈ C0([−a, b],RN )
denotes the ”window” xt(θ) := x(t+θ). The case a > 0 and b = 0 corresponds
to a pure delay differential equation.
Mixed type equations, both linear and nonlinear, occur naturally in problems
of traveling waves in discrete spatial media such as lattices, see, for example
[4, 5, 9, 10, 15, 16]. Often mixed type equations arise as traveling wave equa-
tions of spatially nonlocal equations of convolution type [1, 2, 13]. Traveling
waves then appear as homoclinic or heteroclinic solutions of the corresponding
traveling wave equation. A better understanding of homoclinic and hetero-
clinic bifurcations is therefore a crucial step in the understanding of traveling

∗Institute of Mathematics I, Freie Universität Berlin, email: georgi@mi.fu-berlin.de

1



waves of the original equation, which may be a lattice differential equation for
example.

Let us now assume that equation (1) is equipped with two real parameters λ, c
and possesses a homoclinic solution h for (λ, c) = (λ∗, c∗). Thinking of the
special case of an ordinary differential equation (1) for the moment, the as-
sumption of a hyperbolic steady state will then generically lead to the existence
of a curve HOM in the two-dimensional parameter plane with the following
property: For every parameter point on HOM , equation (1) possesses a ho-
moclinic solution. It is now natural to ask what happens if the steady state
becomes non-hyperbolic. More specifically, we are interested in the case where
the linearization at the asymptotic steady state of equation (1) has exactly
two purely imaginary eigenvalues ±iω for some real number ω �= 0. This
would be a consequence of a Hopf bifurcation, which may occur at the steady
state. From a technical point of view, such a bifurcation scenario is not easy
to handle, since the linearization of (1) along the homoclinic solution h does
not induce a Fredholm operator. Therefore, Lyapunov-Schmidt reductions to
track down bifurcating solutions near the homoclinic orbit are not possible. It
is one of the aims of this article to provide tools for studying these kind of
bifurcations in the framework of general advance-delay equations.

Let us now illustrate the main results of this work for an ordinary differential
equation (1), where we assume that f depends on two real parameters, hence
f(·) = f(·, λ, c), and f(0, λ, c) = 0 for all λ, c. We are interested in the
interaction of a homoclinic solution h of (1) with the property

lim
t→∞

h(t) = 0

and a Hopf bifurcation, which occurs at the steady state. Let us furthermore
assume that zero is (nonlinearly) stable with respect to the dynamics on the
center manifold. As a consequence, h approaches zero for t → ∞ along the
center direction, generically. We conclude that the bifurcation has codimension
two, which justifies the introduction of the parameters λ, c. From now on, we
want to think of λ as the parameter, which induces the Hopf bifurcation. Thus,
varying λ near some critical parameter-vector (λ∗, c∗), nontrivial periodic orbits
arise near the steady state. Assuming that the Hopf bifurcation is supercritical
(meaning that the periodic orbits are stable for λ > λ∗ with respect to the
dynamics on the center manifold), the equilibrium becomes linearly unstable
when increasing λ. For simplicity, we assume that nontrivial periodic orbits
exist exactly for the parameter values (λ, c) and λ > λ∗. But in which way
does the existence of the periodic orbits near zero influence the homoclinic
solution h when varying (λ, c) near (λ∗, c∗)?
Our assumptions imply that the orbit of h lies in the intersection of the un-
stable and center stable manifold W u and W cs, respectively, of the steady
state zero. Generically, these manifolds will not intersect transversely but
with codimension one in the ambient space (which is RN in the case of an
ODE). However, if we supply (1) with ċ = 0 and consider the extended center
stable and unstable manifolds Ŵ cs, Ŵ u, respectively, in the extended phase
space RN×R, we expect a transverse intersection along the homoclinic solution
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(h(t), c∗). Thus, we conclude the existence of an intersection point of W u and
W cs for parameter values on some specific parameter curve (λ, c) = (λ, c(λ))
near (λ∗, c∗). Each intersection point induces a solution hλ of (1). What can
we say about the asymptotic behaviour of hλ?
Let us consider a point (λ, c(λ)) on the curve with λ > λ∗. Then the periodic
orbit is stable on the center manifold, and we expect hλ to converge towards
the periodic orbit for t → ∞. What happens in backward time? Since hλ

approaches the equilibrium zero in backward time with exponential rate, we
can actually think of two possibilities: Either hλ approaches the steady state
for t → −∞ as in figure 1, a) or converges to the periodic orbit for t → −∞,
see figure 1, b). On the other hand, if (λ, c) = (λ, c(λ)) and λ < λ∗ then the
steady state zero is linearly stable with respect to the dynamics on the center
manifold. As a consequence, hλ is a homoclinic solution to zero in this case.
Let us now summarize these observations in the next theorem, which is the
main result of this article. For the moment, the reader should again think of
(1) as an ordinary differential equation and we refer to theorem 6.1 in section
6 for a statement of this theorem in the general case.

Theorem 1.1
Consider the system

ẋ(t) = f(xt, λ, c), (2)

where f(0, λ, c) = 0 for all (λ, c). Assume that the steady state zero undergoes
a supercritical Hopf bifurcation for (λ, c) = (λ∗, c∗) when varying λ. Moreover,
let h(t) be a homoclinic solution of (2) for (λ∗, c∗) which approaches zero in
forward time along the center direction (that is, not exponentially). If the
extended center stable and strong unstable manifolds

Ŵ cs = {(x, c) ∈W cs × R : |c− c∗| < δ}, Ŵ u = {(x, c) ∈ W u × R : |c− c∗| < δ}

intersect transversely at (h(0), c∗) for λ = λ∗, the following is true. There
exist a continuous function c(λ) with c(λ∗) = c∗ and a family of functions
hλ = hλ,1 : R → R

N for λ ≈ λ∗, such that

i) h0,1 = h and each hλ,1 is a solution of (2) on R for the parameters
(λ, c) = (λ, c(λ)).

ii) Let λ > λ∗. Then hλ,1 approaches a periodic orbit in forward time and
converges to the steady state zero in backward time, see figure 1,a).

iii) Fix a λ+ ≈ λ∗. Then hλ,1 → hλ+,1 uniformly on compact intervals as
λ→ λ+

The discussion of the existence of solutions hλ,2, which are depicted in figure
1,b), is postponed to section 7.
We should point out that we assumed the existence of a homoclinic solution of
(1) as a starting point. This is a nontrivial assumption in the case of a general
advance-delay equation. However, by using center manifold theory [15, 16],
continuation methods [1, 2, 22] or variational methods [7, 8, 6], there has been
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Figure 1: The solution hλ,1 converges in backward time to zero, while the
solution hλ,2 approaches a periodic orbit with exponential rate in backward
time.

some recent progress concerning the existence of homoclinic and heteroclinic
solutions in advance delay equations.
Let us caution the reader that most of the above arguments are still formal
for general functional differential equations of mixed type (1) so far. Neither
the existence of a Hopf bifurcation (with the exception of a recent result of
Lunel [17]) nor the existence of a center stable manifold for equations of the
form (1) near the homoclinic orbit has been proved up to now. It is the goal of
this paper to make the above picture rigorous for general functional differential
equations.
Let us point out some difficulties which arise when studying equations of the
form (1) with a, b > 0 (i.e. nontrivial advance-delay). First of all it is well
known that (1) is ill-posed and will not generate a semiflow (see for exam-
ple [24]). Therefore standard techniques, such as Poincaré maps, to analyse
homoclinic bifurcations are not available. Thinking of a Lyapunov-Schmidt
reduction instead, the linearization of (1) along the homoclinic solution h,
namely the equation

ẏ(t) = D1f(ht, λ∗, c∗)yt, (3)

becomes important. This equation induces a linear operator

L : H1(R,RN) → L2(R,RN)

(Ly)(t) = ẏ(t) −D1f(ht, λ∗, c∗)yt.

Since the seminal work [20] of Mallet-Paret, the question under which condi-
tions this operator is a Fredholm operator has been answered. Namely, L is a
Fredholm operator if the limiting equation

ẏ(t) = D1f(0, λ∗, c∗) (4)

is hyperbolic. This means in our case that equation (4) does not possess
solutions of the form y(t) = eiβty∗ for any real number β. Unfortunately, on
account of the Hopf bifurcation occurring at (λ∗, c∗), we cannot expect L to be
a Fredholm operator. A straightforward application of the Lyapunov-Schmidt
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method therefore fails and we have to proceed differently. Instead, we will show
that equation (3) possesses center-dichotomies: There exist closed subspaces
on which we can solve (3) in forward and backward time, respectively. On the
contrary to exponential dichotomies, solutions do not decay exponentially, but
may even grow algebraically. We will use these center-dichotomies to construct
invariant manifolds along the homoclinic orbit in section 5. The existence
of solutions, which behave as in figure 1, a), are addressed in section 6. We
conclude with a discussion in section 7. Finally, we investigate a nontrivial toy-
example in section 8, for which all hypotheses of theorem 1.1 can be verified
explicitly.

We remind the reader that stable and unstable manifolds of steady states near
heteroclinic orbits have already been constructed in [13]. In our situation hy-
perbolicity of the steady state fails. However, we are still able to construct
center stable and center unstable manifolds of the steady state near the ho-
moclinic orbit. It should be pointed out that the existence of these invariant
manifolds can be used to analyse general homoclinc or heteroclinic bifurcations
arising in equations of the form (1). In this respect our bifurcation scenario
may be seen as a first example of a complicated bifurcation, where standard
techniques such as a Lyapunov-Schmidt reductions fail. Furthermore, we in-
troduce important and powerful tools from the theory of dynamical systems
in the framework of general advance-delay equations, which will prove very
helpful in analysing other bifurcations as well.

2 The framework

In the following we want to consider the system

ẋ(t) = f(xt, λ, c), (5)

where, for some a, b > 0, the function f : C0([−a, b],RN ) × R2 → RN satisfies
f(0, λ, c) = 0 for all λ, c. Furthermore, we want to assume that f ∈ C2.
Instead of working with (5) directly we prefer to study the related abstract
equation

(
∂tξ(t)
∂tφ(t, ·)

)
=

(
f(φ(t, ·), λ, c)
∂θφ(t, ·)

)
=: F ((ξ(t), φ(t, ·)), λ, c). (6)

Here F : X → Y

Y := R
N × L2([−a, b],RN ),

X := {(ξ, ϕ) ∈ Y | ϕ ∈ H1([−a, b],RN) and ϕ(0) = ξ}.

Let us note that this set-up has first been used in [15, 16] and is reminiscent of
the ”sun-star”-formulation of delay differential equations introduced by Lunel
et al [17]. The next lemma clarifies the connection between solutions of (6)
and our original equation (5). We first specify the notion of a solution of (6):
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Definition 2.1
We call a continuous function U(t) : [t1, t2) → Y a solution of (6) on (t1, t2),
where −∞ < t1 < t2 ≤ ∞, if t → U(t) is continuous regarded as a map on
(t1, t2) with values in X and differentiable regarded as a map on (t1, t2) with
values in Y and (6) is satisfied on (t1, t2).
We call a continuous function U(t) : [t1, t2) → Y a solution of (6) on (−∞, t2)
and t2 ∈ R, if t → U(t) is continuous regarded as a map on (−∞, t2) with
values in X and differentiable regarded as a map on (−∞, t2) with values in
Y and (6) is satisfied on (−∞, t2).

We can now state the next lemma:

Lemma 2.1
Let

U(t) =

(
ξ(t)
ϕ(t)(·)

)

be a solution of (15) on (t1 − a, t2 + b). Then ϕ(t)(θ) = ξ(t + θ) for all
t ∈ (t1 − a, b + t2) and θ ∈ [−a, b] with t + θ ∈ (t1 − a, t2 + b). Furthermore
ξ(t) solves (5) on the interval (t1, t2).

Proof
In order to show the lemma it suffices to prove

ϕ(t+ θ)(0) = ϕ(t)(θ)

for all t ∈ (t1 − a, t2 + b) and θ ∈ [−a, b] with t + θ ∈ (t1 − a, t2 + b), since
ϕ(t)(0) = ξ(t) for all t. For t ∈ (t1 − a, t2 + b) we introduce the coordinates
(τ, θ) = (t+ θ, θ) and consider

[ϕ̃(τ)](θ) := [ϕ(τ − θ)](θ).

Let now t ∈ (t1−a, t2+b) and t+θ ∈ (t1−a, t2+b) then we have τ ∈ (t1−a, t2+b)
and τ − θ ∈ (t1 − a, t2 + b). Since by assumption ∂tϕ = ∂θϕ holds on the in-
terval (t1 − a, t2 + b) with respect to the coordinates (t, θ), we can deduce
the identity ϕ̃(τ, θ) = ϕ̃(τ, 0) with respect to (τ, θ) for almost every τ . Since
ϕ̃(τ, 0) = [ϕ(τ)](0) and [ϕ(τ)](0) = ξ(τ) depends continuously on τ , we have
ϕ̃(τ, ζ) = ϕ̃(τ, 0) for every τ . This shows ϕ(τ − θ)(0) = ϕ(τ)(0) for all τ and
θ and we have ϕ(t+ θ)(0) = ϕ(t)(θ). �

3 The Hopf bifurcation

In this section we want to prove a theorem which assures the existence of
periodic solutions of equation (5) near zero. In the spirit of a Hopf bifurcation,
we therefore assume the existence of purely imaginary eigenvalues ±iω: More
precisely, let us consider the linearization of (5) at the steady state, which is

ẏ(t) = D1f(0, λ∗, c∗)yt. (7)
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Here, D1f(0, λ, c) ∈ L(C0([−a, b],CN ),CN) and we can therefore find a func-
tion ζλ,c : C → CN×N of bounded variation, such that D1f(0, λ∗, c∗)φ(·) =∫ b

−a
φ(θ)dζλ∗,c∗(θ), see the appendix of [17]. We make the following hypothesis.

Hypothesis 1 (Hopf eigenvalues)
For η ∈ C consider the CN×N -valued function

	(η, λ, c) = η · (id)N×N −
∫ b

−a

eηθ · (id)N×N dζλ,c(θ) (8)

and let ±iω for some ω �= 0 be simple zeros of det(	(·)). Assume that
det(	(ik)) �= 0 for k �= ±ω and k ∈ R.

Let us note that the function 	 in (8) appears naturally when looking for
solutions of (7), which are of the form y(t) = eηty∗ for some η ∈ C, y∗ ∈ CN .
Indeed, fix some η ∈ C. Then there exists a solution y(t) = eηty∗ of (7)
for some y∗ ∈ C

N if and only if det(	(η, λ∗, c∗)) = 0. Moreover, as we will
see in lemma 3.1 below, det(	(·, λ∗, c∗)) is the characteristic function of the
linearization of the abstract equation (6) in (ξ, φ) = (0, 0), which is(

∂tξ(t)
∂tφ(t, ·)

)
=

(
D1f(0, λ∗, c∗)φ(t, ·)

∂θφ(t, ·)

)
=: A

(
ξ(t)
φ(t, ·)

)
.

Note that A has a compact resolvent. Therefore, every η ∈ spec(A) is an
eigenvalue of finite multiplicity (i.e. the generalized eigenspace is finite dimen-
sional).

Lemma 3.1
Let η ∈ C. Then η is an eigenvalue of A if and only if det(	(η, λ∗, c∗)) = 0.
Moreover, the algebraic multiplicity of η as an eigenvalue coincides with the
order of η as a zero of det(	(·, λ∗, c∗)).

For a proof of this theorem we refer to [11]. Alternatively, the results in [17]
can easily be adapted to our situation.
Hypothesis 1 states that ±iω are simple eigenvalues of A. Let us denote
by Ec ⊂ X the center-eigenspace with respect to the eigenvaules ±iω and
with Pc : Y → Y , Rg(Pc) = Ec, a corresponding projection. Finally, we set
Eh := Rg(idY −Pc). In order to prove a Hopf bifurcation result for the abstract
equation (15), we use the existence of a center manifold near the steady state
0 ∈ X. Let us therefore state the next result concerning the existence of such
a manifold.

Theorem 3.1 (Center manifold)
Let U denote a sufficiently small neighborhood of zero. Then under the as-
sumptions on the smoothness of f and hypothesis 1, equation (15) possesses
a two-dimensional, local invariant manifold M ⊂ X, which is tangent to Ec

at 0 ∈ M. In particular, solutions exist locally in M. Moreover, M depends
two times differentiable on λ, c, i.e. M can be locally represented as a graph
of a function Ψλ,c : Ec ∩ U → Eh ∩X for (λ, c) ≈ (λ∗, c∗), which is two times
differentiable with respect to (λ, c).
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This theorem has been proved in [11]. Alternatively, the existence of a center
manifold can be deduced similarly to the existence of a center stable manifold,
see section 5.
We call M center manifold for equation (15). Hypothesis 1 now implies that
the linearization of the reduced vector field on M possesses the eigenvalues
{±iω}. An additional condition, which guarantees that the eigenvalues cross
the imaginary axis with non vanishing speed when varying λ, will now gener-
ically assure the existence of a Hopf bifurcation.

Hypothesis 2 (Crossing condition)
We assume the non-degeneracy condition

∂λRe(µ(λ∗, c∗)) = −Re[∂µdet 	 (iω, λ∗, c∗)−1(∂λdet 	 (iω, λ∗, c∗))] < 0.

This assumptions implies that the critical Hopf eigenvalues of A cross the imag-
inary axis from left to right when increasing λ ≈ λ∗. Moreover, this hypothesis
implies the existence of a ”Hopf-curve” CH in the (λ, c)-plane near (λ∗, c∗) that
has the following property: The linearization of (5) at the steady state 0 for
some parameter (λ, c) ≈ (λ∗, c∗) possesses purely imaginary eigenvalues ±iκ
if and only if (λ, c) ∈ CH . It is convenient to choose new parameters (λ̃, c),
such that CH coincides with the c-axis in the (λ̃, c)-plane; i.e. (λ̃, c) ∈ CH

if and only if λ̃ = 0. Indeed, the existence of such parameters can be easily
seen by an application of the implicit function theorem. Moreover we get the
representation (λ, c) = (σ∗(c)+ λ̃, c) for some differentiable function σ∗(c) with
σ∗(c∗) = λ∗. From now on we will work with the equation

ẋ(t) = f(xt, λ̃, c), (9)

where the Hopf-curve CH locally coincides with the c-axis.
Let us now consider the reduced vector field Fred : R2 → R2 of (6) on the
center manifold M. Written in complex coordinates the normal form of the
reduced vector field is of the form

Fred(z, λ̃, c∗) =
(
A(λ̃, c∗) + i[B(λ̃, c∗)]

)
z +D(λ̃, c∗)z|z|2 + h.o.t,

where A(0, c∗) = 0, B(0, c∗) = ω. Aiming at a supercritical Hopf bifurcation
we have to assure that the nontrivial periodic orbits occur for λ̃ > 0 and are
stable with respect to the dynamics of the equation ż = Fred(z, λ̃, c) if λ̃ > 0
and c ≈ c∗, which is the content of the next hypothesis.

Hypothesis 3
Re(D(0, c∗)) < 0.

Theorem 3.2 (Supercritical Hopf bifurcation)
Suppose that the hypotheses 1,2 and 3 are true. Consider equation (6) with

the new parameters (λ̃, c) (i.e. f(·, λ, c) is replaced by f(·, λ̃, c)). Then (6)
possesses nontrivial periodic solutions

Γ(t) = Γλ̃,c(t) = (γλ̃,c(t), γλ̃,c
t )
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for every (λ̃, c) ≈ (0, c∗) and λ̃ > 0, where γλ̃,c(t) : R → R
N . The solutions

Γ(t) are stable with respect to the dynamics on the center manifold M = Mλ̃,c

and γλ̃,c(t) is a periodic solution of the equation (9). Moreover, Γλ̃,c(t) has the
representation

Γλ̃,c(t) = AH

√
λ̃eiωt + O(|c− c∗|

√
λ̃+ |λ̃|). (10)

for some AH ∈ X with AH �= 0.

Proof
With the help of theorem 3.2, the proof follows directly by an application of
the corresponding version for Hopf bifurcations of ordinary differential equa-
tion, see [17]. �

4 Center-dichotomies

The homoclinic solution h(t) of equation (5) induces via H(t) := (h(t), ht) a
solution of the abstract equation (6). Since we are interested in the existence
of center stable and unstable manifolds near the homoclinic orbit H , we have
to deal with non-autonomous linear equations of the form(

∂tξ(t)
∂tφ(t, ·)

)
=

(
L(t)φ(t, ·)
∂θφ(t, ·)

)
=: A(t)

(
ξ(t)
φ(t, ·)

)
, (11)

which are asymptotically constant, meaning that the limit limt→±∞ L(t) = L±
exists in the norm L(C0([−a, b],CN ), C0([−a, b],CN )). Equations of this form
arise naturally by linearizing (6) along the homoclinic solution H .

Hypothesis 4
L(t) : C0([−a, b],CN ) → CN can be represented in the form

L(t)ϕ(·) =

∫ b

−a

p(t, θ)ϕ(θ)dθ +
m∑

k=1

Ak(t)ϕ(rk),

where t �→ p(t, ·) ∈ BC0(R, C0([−a, b],CN×N )) and Ak(·) is an element of
BC0(R,CN×N) for each k. We want to assume furthermore that the functions
A1(·) and Am(·) do not vanish identically and −a = r1 < . . . < rm = b.

Our main goal in this section is to prove the existence of (time-dependent)
closed subspaces of Y , on which we can solve (11). Before we do that we need
a further assumption.

Hypothesis 5 (Unique-extension-property)
Let x ∈ H1(R,CN) be a solution of ẋ(t) = L(t)xt with xτ = 0 for some τ ∈ R.
Then x ≡ 0.

We can now state the next theorem which is the main result of this section.
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Theorem 4.1 (Dichotomy on R+)
Assume that the hypotheses 4 and 7 are satisfied. Consider an equation of
the form (11) and assume that A(t) is asymptotically constant. Choose δ > 0.
Then there exists a κ > 0, a constantK > 0 and a family of strongly continuous
projections Q(t) : Y → Y for t ∈ R+, such that the following holds: Let U ∈ Y
and t0 ∈ R+ then

• there exists a continuous function V cs(·) : [t0,∞) → Y with V cs(t0) =
Q(t0)U . Moreover, V cs(t) ∈ Rg(Q(t)) and |V cs(t)|Y ≤ Keδ|t−t0||U |Y for
all t ≥ t0 with t, t0 ∈ R+.

• There exists a continuous function V u(·) : (0, t0] → Y with V u(t0) = (id−
Q(t0))U . Moreover, V u(t) ∈ ker(Q(t)) and |V u(t)|Y ≤ Ke−κ|t−t0||U |Y for
all t0 ≥ t with t, t0 ∈ R+.

Moreover, if U ∈ X then the functions V cs(t) and V u(t) are classical solutions
of (11). In any case, if U ∈ Rg(Q(t0)) and U = (ξ, φ(·)) then V cs(t) =
(x(t), xt), where x : [−a + t0,∞) → RN denotes the unique solution of ẋ(t) =
L(t)xt on (t0,∞) with xt0 = φ. A similar statement holds for V u(t).

Theorem 4.1 has been proved in the case that limt→±∞A(t) := A± exist and
are hyperbolic; see Scheel et al [24] and [12]. Here, hyperbolicity means that
the characteristic equations det(	±(·)) (corresponding to the operators A±)
do not possess purely imaginary zeros. In this scenario even more is true,
namely, the functions V cs(t) additionally converge to zero exponentially for
t → ∞ and we say that equation (11) possesses exponential dichotomies, see
also [12].

Proof of theorem 4.1
Let us consider the equation ẋ(t) = L(t)xt, where L(t) satisfies hypothesis 4.
Actually, we only need not to assume that L(t) is asymptotically constant, but
not necessarily with the same limits and we define by Lnh

± := limt→±∞ L(t) the
corresponding limits. Let us denote by det	±(λ) the associated characteristic
equations, where

	±(η) = η − Lnh
± (eη·).

By assumption at least one of these functions possesses purely imaginary zeros.
Let us now choose µ > 0 small enough and consider the function y(t) :=
e−µtx(t) for a solution x(t) of ∂tx(t) = L(t)xt. Then y(t) solves

∂ty(t) = −µy(t) + L(t)[eµ·yt(·)] =: L−µ(t)yt. (12)

Now L−µ(t) → L±
h for t→ ±∞, where

L±
h ϕ = −µϕ(0) + Lnh(e

µ·ϕ(·))

for φ ∈ C0([−a, b],CN ). If we denote by 	±
h (·) the characteristic equation with

respect to L±
h , we observe the relation 	±

h (λ) = 	±(λ + µ). Thus, if µ > 0 is
small enough, the abstract equation(

∂tξ(t)
∂tφ(t, ·)

)
=

(
L−µ(t)φ(t, ·)
∂θφ(t, ·)

)
=: Aµ(t)

(
ξ(t)
φ(t, ·)

)
(13)
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is asymptotically hyperbolic. Theorem 4.1 applies for equation (13) by the
results in [24, 12], where we have the stronger estimate |V cs(t)| ≤Me−σ|t−t0||V |
for some arbitrary µ > σ > 0 and M = M(σ). Let us denote the family of
projections corresponding to (13) by Qµ(t), such that Rg(Qµ(t)) coincides with
the stable subspace. Before we proceed with the proof, we need the following
definition. Let us denote by eη

µ : Y → Y the bounded linear map

eη
µ

(
ξ
ϕ(·)

)
:=

(
eηµξ

eµ(η+·)ϕ(·)

)
. (14)

With the help of this map we can now define our desired family of projections
by Q(t0) := e0

µQ
µ(t0)e

0
−µ. Obviously, this defines projections from Y to Y ,

which are strongly continuous for t0 ≥ 0. It is now straightforward to show
that initial values in Rg(Q(t0)) give rise to solutions which behave as stated
in theorem 4.1. Similarly, the other claims of the theorem can be proved. �

We want to point out that the idea of the proof was to shift the spectrum of
the asymptotic operators A± to the left. In this way we obtained center stable
dichotomies on R+ for equation (11), meaning that solutions do not necessarily
decay exponentially in forward time. Analogously, we may shift the spectrum
to the right instead. We can then prove that there exist solutions V s(t), defined
for t > t0, which decay exponentially for t→ ∞ and there exist solutions V cu(t)
for 0 < t < t0, which satisfy the estimate |V cu(t)| ≤ Meδ|t−t0|.

5 Invariant manifolds near the homoclinic or-

bit

Let us now consider the abstract equation(
∂tξ(t)
∂tφ(t, ·)

)
=

(
f(φ(t, ·), λ̃, c)
∂θφ(t, ·)

)
= F ((ξ(t), φ(t, ·)), λ̃, c). (15)

Our starting point is the existence of a homoclinic orbit H(t) of (15). For
convenience, we will state all hypotheses in terms of our original equation (9).

Hypothesis 6
The equation ẋ(t) = f(xt, 0, c∗) possesses a homoclinic solution h(t), such that
limt→±∞ h(t) = 0.

Note that due to the nonlinear stability of the steady state zero with respect
to the dynamics on the center manifold, H(t) (and therefore also h(t)) must
approach zero along a strong unstable direction as t → −∞ and thus with
exponential rate. We will make this claim rigorous in the next section, where
we introduce and prove the existence of various invariant manifolds.
It is the aim of this chapter to prove the existence of solutions, which are
depicted in figure 1 a). In order to achieve that, we will prove the existence of
a center stable manifold W cs,+(0) of zero near the homoclinic orbit. This will
be done in the next section.
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5.1 The center stable manifold

If we parametrize solutions U(t) of equation (15) near H(t) by U(t) = V (t) +
H(t) then V (t) solves the equation

V̇ (t) = A(t)V (t) + G(t, V (t), λ̃, c). (16)

Here, A(t) : X → Y is defined by

A(t)

(
ξ(t)
φ(t, ·)

)
=

(
D1f(ht, 0, c∗)φ(t, ·)

∂θφ(t, ·)

)

and we have set

G(t, V, λ̃, c) = F(H(t) + V, λ̃, c) − F(H(t), 0, c∗) −A(t)V.

More explicitly, G can be represented in the form

G(t, (ξ, ϕ), λ̃, c) :=

(
f(ht + ϕ, λ̃, c) −D1f(ht, 0, c∗)ϕ− f(ht, 0, c∗)

0

)
.

Let us assume from now on that L(t) := D1f(ht, λ̃, c) satisfies hypothesis 4 for
all t, λ̃, c. On account of theorem 4.1 the system V̇ (t) = A(t)V (t) possesses a
center-stable dichotomy on R+. Let us denote the associated solution operators
by Φcs

+ (t, s) and Φu
+(t, s) for t ≥ s ≥ 0 and s ≥ t ≥ 0, respectively. These are

defined by Φcs
+ (t, s)V := V cs(t) and Φu

+(t, s)V := V u(t), where the solutions
V cs(t),V u(t) are defined in theorem 4.1. Furthermore, there exist solution
operators Φcs

− (t, s) and Φu
−(t, s) on R−, which are defined for 0 ≤ t ≤ s and

0 ≤ s ≤ t, respectively, and satisfy the estimates

‖Φcs
− (t, s)‖L(Z̃,Z̃) ≤ Meδ|t−s|

‖Φu
−(t, s)‖L(Z̃,Z̃) ≤ Me−κ|t−s| (17)

for some κ > 0 and any small δ > 0, where M = M(δ) > 0 depends on the
choice of δ > 0.

Definition 5.1
We define Ecs

± (0) := Rg(Φcs
± (0, 0)), Eu

±(0) := Rg(Φu
±(0, 0)). Moreover, let us

set
X̂ := {(ξ, φ) ∈ R

N × C0([−a, b],RN ) : ξ = φ(0)},
equipped with the norm ‖(ξ, φ)‖X̂ := |ξ|RN + |φ|C0. Furthermore, let us set

Êcs
± := Ecs

± (0) ∩ X̂, Êu
± := Eu

±(0) ∩ X̂. Both spaces are regarded as closed

subspaces of X̂. Finally, let Z̃ := R
N × L∞([−a, b],RN ).

Theorem 5.1 (Center stable manifold)
Equation (15) possesses a local invariant C2-manifold W cs,+(0) = W cs,+

λ̃,c
(0) ⊂

X̂ near H(0) which has the following properties:

a) W cs,+
0,c∗ (0) is tangent to Êcs

+ at H(0) ∈W cs,+
0,c∗ (0).
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b) The manifold contains all points U+, which are close to H(0) with respect
to the X̂-norm and which admit a solution U(t) of (15) on (0,∞) that
stays uniformly close to H(t) for t→ ∞.

c) If U+ ∈ W cs,+(0) is close enough to H(0) and λ̃ > 0, there exists a
continuous function U : [0,∞) → X̂ with U(t) = (ξ(t), ξt), such that
U(0) = U+ and ξ(t) ∈ C1(R+,R

N) solves

ξ̇(t) = f(ξt, λ̃, c) (18)

on (0,∞). Morever, if λ̃ > 0 then the ω-limit set of U(t) consists either
of the steady state zero or the periodic orbit Γ = Γλ̃,c.

d) W cs,+(0) is continuously differentiable with respect to λ̃ and c: If we

supply equation (15) with ˙̃λ = 0, ċ = 0 then the extended system pos-
sesses a local invariant C1-manifold W cs,+

ex (0) ⊂ X̂ × R2 and W cs
λ̃,c

:=

W cs,+
ex (0) ∩

(
X̂ × {λ̃} × {c}

)
satisfies the properties a), b), c).

Remark 5.1
The property that every initial value in W cs,+(0) near H(0) gives rise to a

global defined solution U(t) for λ̃ > 0 and t > a, which additionally stays
uniformly close to H(t) for all t > 0, cannot be expected in general. As we will
see, this is a consequence of the fact that the periodic solutions, which appear
due to the Hopf bifurcation, are stable with respect to the dynamics on the
center manifold.

Proof of theorem 5.1
Let us define for V ∈ X̂ the modified nonlinearity by Gmod(t, V, λ̃, c) :=
χσ(‖V ‖X̂) · G(t, V, λ̃, c), where χσ is a cut-off-function with compact support
in [−σ, σ]. Then for small enough δ > 0

Gmod(t, ·, ·, ·) : X̂ × (−λ̃∗, λ̃∗) × (−δ + c∗, c∗ + δ) → X̂

is well defined, two times continuously differentiable, and a global Lipschitz
map with a small (σ-dependent) Lipschitz constant. Our goal is to construct
V (·) as a fixed point of the equation

V (t) = Φcs
+ (t, 0)V cs

0 +

∫ t

0

Φcs
+ (t, s)Gmod(s, V (s), λ̃, c)ds (19)

+

∫ t

∞
Φu

+(t, s)Gmod(s, V (s), λ̃, c)ds,

where V cs
0 ∈ Êcs

+ . We want to find fixed points V (·) in the space BCγ :=

BCγ(R+, X̂) for some γ > 0, which satisfies 0 < δ < γ < κ (see theorem 4.1
for the definition of δ, κ). Here, the norm ‖V (·)‖γ in BCγ is defined by

‖V (·)‖γ = sup
t≥0

e−tγ |V (t)|X̂ .

13



Let us now discuss in which sense the right hand side of (19) is defined for
fixed t. Note that the map s �→ Φcs

+ (t, s)U , regarded as a map with values in

Z̃, is not Lebesgue integrable in general. Therefore the integrals, which appear
in (19), cannot be considered in the Lebesgue sense. But they are well defined
as weak∗ integrals as explained in the appendix. Lemma 9.1 states that the
integral terms are actually elements of the space X̂. Furthermore, lemma 9.2
in the appendix implies that the right hand side of (19) defines a (well defined)
contraction K on the space BCγ(R+, X̂), if the Lipschitz constant δ0 of the
map V �→ Gmod(s, V, λ̃, c) and γ > 0 both are small enough. Indeed, we can
estimate the first integral in (19) with the help of lemma 9.2 in the appendix
by∫ t

0

eδ(t−s)|Gmod(s, V (s), λ̃, c)|X̃ds ≤
∫ t

0

eδ(t−s)δ0|V (s)|X̃ds

≤
∫ t

0

eδ(t−s)δ0Ce
γsds

= δ0Ce
δt

[
e(γ−δ)s/(γ − δ)

]t

0
= δ0O(eγt)

and the other integral can be estimated analogously. Thus, if the Lipschitz-
constant δ0 of Gmod is chosen small enough, (19) possesses a unique fixed-
point V∗(·) ∈ BCγ(R+, X̂) for every V cs

0 ∈ Êcs and λ̃ ≈ 0, c ≈ c∗. Due to
Vanderbauwhede [26], theorem 2, the map

Ψ(·, λ̃, c) : Êcs
+ → Êu

+

Ψ(·, λ̃, c) : V cs
0 �→ Φu

+(0, 0)V∗(0)

is a global Lipschitz function and we can define our desired manifold by

W cs,+
ε,c (0) := graph(Ψ(·, λ̃, c)) +H(0). (20)

This manifold is then locally invariant; see [11] or [26] for more details. We
will comment on the smoothness of this manifold in the last step of this proof.
Parameter dependence:
In order to study the parameter dependence of W cs,+

ε,c (0) we consider the ex-
tended system


˙̃V (t)
˙̃λ
ċ


 =


 A(t)Ṽ (t) +Dλ̃,cG(t, 0, 0, c∗)(λ̃, c) + Grest(t, Ṽ (t), λ̃, c)

0
0


 ,

(21)
where Grest + Dλ̃,cG = G and Grest is quadratic in V, c, λ̃. The geometric
multiplicity of the eigenvalue zero of the t-dependent linear part Aex(t) : X ×
R2 → Y ×R2 of (21) increases by two for every fixed t. Therefore, the equation
Ẇ (t) = Aex(t)W (t) possesses a dichotomy on R+ with associated solution
operators Φ̃cs

+ (t, s) : Y × R
2 → Y × R

2 and Φ̃u
+(s, t) : Y × R

2 → Y × R
2 for

t ≥ s ≥ 0. We observe that the map (V, λ̃, c) �→ Grest(t, V, λ̃, c) with values in
X̂ is a C2-function. Arguing as in the step before, we see that equation (21)
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possesses a Lipschitz manifold. This proves claim d) of theorem 5.1.
Solutions of the fixed-point equation:
Let us now clarify in which sense fixed points V∗ ∈ BCγ of (19) induce solutions
of (18). The next claim has been proved in [13]: There exists an α > 0, such
that the following holds: If V∗(·) ∈ BCγ is a fixed point of (18) and ‖V∗(t)‖X̂ <
α for all t > 0 then U∗(t) := H(t) + V∗(t) has the form U∗(t) = (ξ∗(t), ξ∗t ) for
some C0- function ξ∗ : [−a,∞) → RN and ξ ∈ C1(R+,R

N) is a solution of (18)
on (0,∞). So part b) of the theorem is proved, if we verify that the solutions
V∗ of (19) remain uniformly close to zero for all t > 0. This will follow from
the next step.
Asymptotic behaviour:
We now want to study the asymptotic behaviour of solutions U(t) with initial
values U+ ∈W cs,+(0). Let us consider a point U+ ∈W cs,+(0) ∩X; then there
exists a classical solution U(t) = H(t) + V (t) of the modified equation

U̇(t) = Fmod(U(t), λ̃, c) (22)

= F(H(t)) + A(t)(U(t) −H(t)) + Gmod(U(t) −H(t), λ̃, c).

Let us write U(t) = (ξ(t), ξt), suppress the parameter dependence from now
on and note that D1f(ht)• = D1f(0) • +D2

1f(0)[ht, •] + R̃(ht, •), f(ht) =
f(0) +D1f(0)ht +R(ht). Using (22) we obtain the equation

ξ̇(t) = D1f(0, 0, c∗)ξt + fmod(ξt, λ̃, c)

− fmod(ht, 0, c∗) −D1fmod(ht, 0, c∗)(ξt − ht)

+ R(ht) + R̃(ht, ξt − ht) +D2
1f(0)[ht, ξt − ht].

This equation defines an abstract differential equation

U̇(t) = AU(t) +G(t, U(t), λ̃, c) (23)

for U = (ξ, φ) ∈ X, where the operator A : X → Y and G(t, U, λ̃, c) : X̂ → X̂
are defined by

A

(
ξ
φ(·)

)
=

(
D1f(0, 0, c∗)φ(·)

∂θφ(·)

)
and

G(t, (ξ, φ)) =

(
fmod(φ, λ̃, c) − fmod(ht, 0, c∗)

0

)

−
(

−D1fmod(ht, 0, c∗)(φ− ht) +R(ht)
0

)

+

(
R̃(ht, φ− ht) +D2

1f(0)[ht, φ− ht]
0

)
.

Again on account of theorem 4.1, the linear equation Ẇ = AW possesses
a center-stable dichotomy on R+ (and even on R). If we choose t∗ > 0
large enough, then for fixed t ∈ (t∗,∞) the nonlinearity G(t, ·, λ̃, c) is a
Lipschitz-function with a globally small Lipschitz-constant δ0 = δ0(t∗). It is

15



now straightforward to show that (23) possesses a local center stable manifold
Ŵ cs near zero. The existence of Ŵ cs follows analogously to the construction of
W cs,+(0) with the help of an appropriate fixed point equation, which is posed
on BCσ([t∗,∞), X̂) for some σ > 0, see [11] for further details. As in theorem
5.5 in [26], one can now prove that every orbit in W cs approaches some orbit
on the center manifold. Note that the results in [26] are stated for ordinary
differential equations. However, the results only rely on the existence of solu-
tion operators of linear equations; the existence of which has also been shown
for our equations and we refer the reader to [11] for a detailed proof.
Let us now prove claim c) of the upper theorem and consider λ̃ > 0 with λ̃ ∼ 0.
In this case the picture on the center manifold is the following: there exists a
periodic orbit, which is the ω-limit set of every orbit on the center manifold
except the steady state. This shows that every orbit in Ŵ cs stays uniformly
close to zero and either the ω-limit set contains zero or a periodic orbit. Since
every orbit starting in W cs,+(0) close enough to H(0) finally lies in Ŵ cs we
have shown that orbits starting in W cs,+(0) are uniformly close to the orbit of
H for all times.
Smoothness
Finally, we want to discuss the smoothness of the constructed manifoldW cs,+(0).
Since X̂ is not an Hilbert space, the modified nonlinearity Gmod is not differen-
tiable. Indeed, the cut off function is not C1, because the norm is not necessar-
ily C1. Still we can prove that W cs,+(0) is of class C2, where we use the general
theory developed for the abstract formulation for retarded functional differen-
tial equations in [17], chapter 9. Indeed, the operator Gmod is C2, when re-
stricted to a sufficiently small neighborhood of zero, since there the cut off func-
tion is constant with value one. If we denote, as before, by V ∗(·, V cs

0 ) ∈ BCγ

the unique fixed point of the integral equation (19) for V cs
0 ∈ Êcs

+ , then the

previous step actually shows that V ∗(·, V cs
0 ) ∈ BC0([0,∞), X̂) with small sup-

norm, if V cs
0 ∈ Êcs

+ is sufficiently small. Hence, for all t ≥ 0 and V cs
0 small

enough, V ∗(·, ·) takes values in a set where Gmod(t, ·, λ̃, c) is C2. This, however,
is the main ingredient of the proof of smoothness and we refer to [17], section
9.7, for further details. �

Analogously, one can show the existence of the following manifolds:

• There is a Lipschitz center unstable manifold W cu,−(0) of zero near
H(0) that contains all solutions U(t) of (15), which exist for all t < 0 and
stay uniformly close to the orbit of H . However, in contrast to W cs,+(0)
not every solution starting in W cu,−(0) will necessarily stay near H(t)
for all negative t, since the periodic orbits Γ are unstable in backward
time.

• The local strong stable manifold W ss,loc of zero which is of class C2.
This manifold is characterized as follows: Let U+ ∈ W ss,loc. Then there
exists a continuous function U(t) : [0,∞) → X̂ with U(0) = U+ and
‖U(t)‖X̂ ≤ Me−κ|t| for some constants κ,M > 0 as t → ∞. Moreover,
U(t) has the form U(t) = (ξ(t), ξt) for some C0-function ξ : [−a,∞) →
RN , ξ ∈ C1((0,∞),RN) and ξ(t) solves the equation ẋ(t) = f(xt, λ̃, c).
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• The strong unstable manifold W u,−(0) of zero which is of class C2.
This manifold is tangent to Êu

−(0) at H(0) ∈ W u,−(0) and is character-
ized as follows: Let U− ∈W u,−. Then there exists a continuous function
U(t) : (−∞, 0] → X̂ with U(0) = U− and ‖U(t)‖X̂ ≤ Me−κ|t| for some
constants κ,M > 0 as t → −∞. Moreover, U(t) has the form U(t) =
(ξ(t), ξt) for some C0-function ξ : (−∞, b] → R

N , ξ ∈ C1((−∞, 0),RN)
and ξ(t) solves the equation ẋ(t) = f(xt, λ̃, c).

• The local center unstable W cu
loc of zero of Lipschitz class. Let U− ∈

W cu,loc. Then there exists a continuous function U(t) : (−∞, 0] → X̂
with U(0) = U− and ‖U(t)‖X̂ ≤ Meκ|t| for some constants κ,M > 0
as t → −∞. Moreover, U(t) has the form U(t) = (ξ(t), ξt) for some
C0-function ξ : (−∞, b] → RN , ξ ∈ C1((−∞, 0),RN) and ξ(t) solves the
equation ẋ(t) = f(xt, λ̃, c).

6 Solutions connecting the steady state to a

periodic orbit

In this section we will construct solutions of the original equation

ẋ(t) = f(xt, λ̃, c), (24)

which begin to oscillate as t→ +∞ and look like in figure 1 a). For simplicity,
let us restrict to the generic case that the homoclinic orbit h of (24) approaches
the steady state zero in forward time t→ ∞ along the center direction. More
precisely, we want to assume that the homoclinic orbit H of the rescaled equa-
tion (15) does not lie in the strong stable manifold W ss,loc of zero for any t > 0
large enough.
Note that H(0) ∈W cs,+

0,c∗ (0)∩W u,−
0,c∗ (0). We now want to prove the existence of

an intersection point of these two manifolds as the parameters λ̃, c are varied.
Let us make the generic assumption that the manifolds W cs,+

0,c∗ (0) and W u,−
0,c∗ (0)

intersect only along H . As always, the hypothesis will be stated in terms of
our original equation (9).

Hypothesis 7
Fix η > 0 and consider the linear operator

Lη(t) : H1,η(R,RN) → L2,η(R,RN)

(Lηv)(t) = v̇(t) −D1f(ht, 0, c∗)vt,

where the norm |v|L2,η is defined by |v|2L2,η :=
∫

R
e−ηt|v(t)|2dt and |v|H1,η =

|v|L2,η + |v′|L2,η . Assume that there exists a η∗ > 0, such that Lη is a Fredholm
operator of index zero with a one-dimensional kernel for every η ∈ (0, η∗).

Note that Lη is indeed always a Fredholm operator of index zero, if η > 0 is
chosen small enough; thus the only assumption concerns the dimension of the
kernel.
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Lemma 6.1
Suppose that hypothesis 7 is satisfied. Then Σ = Eu

−(0) + Ecs
+ (0) is a closed

subspace of Y , where Eu
−(0) = Rg(Φu

−(0, 0)
∣∣
Y
) and Ecs

+ (0) = Rg(Φcs
+ (0, 0)

∣∣
Y
)

and Φu
− is defined in (17). Furthermore, Σ has codimension one in Y .

Proof
Let us observe that for η ∈ (0, η∗) the ”translated” operator

Ltrans
η : H1(R,RN) → L2(R,RN)

(Ltrans
η w)(t) = ẇ(t) + ηw(t) −D1f(ht, 0, c∗)(eη·wt(·))

is a Fredholm operator of index zero with a one-dimensional kernel. Indeed,
this is true due to theorem A of Mallet-Paret, see [20]. Now let v(·) ∈ ker(Lη).
Then w(t) := e−ηtv(t · T (0, c∗)) ∈ H1(R,RN) is a solution of Ltrans

η w = 0. On
the other hand, every element in ker(Ltrans

η ) induces an element in ker(Lη).
Thus, the kernel of Ltrans

η is one-dimensional. Lemma 4 in [12] now states that
the Fredholm index of Ltrans

η and T η : D(T η) ⊂ L2(R, Y ) → L2(R, Y ) and the
dimension of their kernels coincide, where

T η :

(
ξ(t)

Φ(t, ·)

)
�→

(
∂tξ(t) + ηξ(t) −D1f(ht, 0, c∗)(eη·Φ(t, ·))

∂tΦ(t, ·) − ∂θΦ(t, ·)

)
.

The domain D(T η) is actually independent of η and given by

D(T η) = {(ξ,Φ(·, ·)) ∈ L2(R, Y ) : (∂t − ∂θ)Φ(·, ·) ∈ L2(R × I,CN),

ξ ∈ H1(R,CN),Φ(t, 0) = ξ(t) ∀t},

see [12],[24]. The operator T η induces the abstract equation(
∂tξ(t)
∂tΦ(t, ·)

)
=

(
−ηξ(t) +D1f(ht, 0, c∗)(eη·Φ(t, ·))

∂θΦ(t, ·).

)
.

By theorem 5 in [11] this equation has exponential dichotomies with solu-
tion operators Φs,+

η ,Φu,+
η and Φs,−

η ,Φu,−
η on R+ and R−, respectively. By

lemma 4 in [13] the codimension of Ση := Rg(Φs,+
η (0, 0)) + Rg(Φu,−

η (0, 0))
in Y is one. But on account of the proof of theorem 4.1, we observe that
Eu

−(0) = Rg(e0
η[Φ

u,−
η (0, 0)]) and Ecs

+ (0) = Rg(e0
η[Φ

s,+
η (0, 0)]), see (14) for the

definition of e0
η . Thus, also Σ has codimension one in Y and the lemma is

proved except the claim concerning the closeness of Σ, which will be addressed
in the next lemma. �

Finally, we show that Σ is a closed subspace of Y .

Lemma 6.2
The vector space Ecs

+ (0) + Eu
−(0) ⊂ Y is closed.

Proof
It is sufficient to show that for suitable small η > 0 the space Ση = Rg(Φs,+

η (0, 0))+
Rg(Φu,−

η (0, 0)) is closed (where the operators Φs,+
η ,Φu,−

η have been introduced
in the previous lemma). Indeed, note that Eu

−(0) = Rg(e0
η[Φ

u,−
η (0, 0)]) and
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Ecs
+ (0) = Rg(e0

η[Φ
s,+
η (0, 0)]), which would then prove the lemma, since e0

η maps
closed sets to closed sets (see (14) for a definition of e0

η). We now eliminate
the intersection of the spaces Rg(Φs,+

η (0, 0)), Rg(Φu,−
η (0, 0)) and write

Ση =: Rg(Φs,+
η (0, 0)) ⊕ Eu,−

η ,

where Eu,−
η is a closed subspace of Y , which has only a nontrivial intersection

with Rg(Φs,+
η (0, 0)). Let us now consider a sequence Un = V n + W n, where

V n ∈ Rg(Φs,+
η (0, 0)), W n ∈ Eu,−

η , and Un → U with respect to the Y -norm.
By approximation, if necessary, we can assume that V n,W n ∈ X. Let us write
V n = (ξn,Φn), W n = (ρn,Ψn). Then two cases are possible: Either

i) Φn(·) and Ψn(·) are bounded in the L2([−a, b],Cn)-norm, or

ii) at least one sequence is unbounded.

We consider the first case and define the operator P+ : Rg(Φs,+
η (0, 0)) →

RN × L2([0, b],RN) by

(ξ,Φ(·)) �→ (ξ, ξ0(·)
∣∣
[0,b]

) = (ξ,Φ(·)
∣∣
[0,b]

), (25)

where ξ(·) ∈ L2([−a,∞),Cn) ∩H1(R+,C
n) denotes the unique solution of

ẋ(t) = D1f(ht, 0, c∗)xt (26)

with respect to the initial value Φ(·). Then P+ is compact, since ξ0(·) ∈
H1([0, b],RN). Analogously, P− : Rg(Φu,−

η (0, 0)) → R
N × L2([−a, 0],RN),

defined by
(ρ,Ψ(·)) �→ (ρ, ρ0(·)

∣∣
[−a,0]

) = (ρ,Ψ(·)
∣∣
[−a,0]

) (27)

is compact, where ρ(·) ∈ L2([−∞, b),Cn) ∩ H1(R−,Cn) denotes the unique
solution to (26) with respect to the initial value Ψ(·). Since Φn(·),Ψn(·) are
bounded, we conclude that the L2-part of P+(V n) converges in L2([0, b],Cn).
Due to W n = Un − V n also the L2-part of W n converges, if restricted to the
interval (0, b). Analogously, we can prove that the sequence Ψn(·) converges on
(−a, 0) and therefore also Φn(·) converges on (−a, 0). This shows that Φn(·)
and Ψn(·) converge in L2((−a, b),Cn) and possess a limit in Rg(Φs,+

η (0, 0)) and
Eu,−

η since these spaces are closed. This proves the first case i).
The second case ii) can be shown analogously to the proof of lemma 5 in [12].
It is here where we make use of the fact that the intersection of Eu,−

η and
Rg(Φs,+

η (0, 0)) is trivial. �

Remark 6.1
We shall point out that the last two lemmas imply that the codimension of

Êcs
+ + Êu

− in the space X̂ is less or equal to one (see the notation on page 12

for the definition of Êcs
+ , Ê

u
−). Indeed,

Êcs
+ + Êu

− = Rg(Φcs
+ (0, 0)

∣∣
X̂

) + Rg(Φu
−(0, 0)

∣∣
X̂

) (28)

is dense in a codimension one subspace of X̂. Moreover, arguing as in the proof
of the previous lemma 6.2 one can show that the space Êcs

+ + Êu
− is closed in

X̂.
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6.1 Transversality of the extended manifolds

We now want to look for intersection points of W cs,+(0) and W u,+(0) for
(λ̃, c) �= (0, c∗). However, since these manifolds do not intersect transversely
at H(0) for (λ̃, c) = (0, c∗), we cannot expect an intersection point for all pa-
rameter values as c and λ̃ are varied. It is therefore natural to consider the
extended manifolds

W̃ cs
λ̃

= {(U, c) ∈W cs,+

λ̃,c
(0) : |c− c∗| < δ},

W̃ u
λ̃

= {(U, c) ∈W u,−
λ̃,c

(0) : |c− c∗| < δ}

in the extended phase space X̂ × R, where δ > 0 is some small real number.
Generically, these extended manifolds then intersect transversely in X̂ × R,
which is true if hypothesis 8 below is satisfied. As before, we will state the
hypothesis in terms of our original equation (9). For the statement of that
assumption we need the next lemma:

Lemma 6.3
Assume that the linear map L(t) := D1f(ht, 0, c∗) satisfies hypothesis 4 with
some function p(t, θ, 0, c0) and matrices Ak(t, 0, c0), such that t �→ p(t, ·, 0, c0) ∈
BC0(R, C0([−a, b],RN×N )) and t �→ Ak(t, 0, c0) ∈ BC0(R,RN×N) for each k.
Consider the adjoint equation

∂tv(t) = −
∫ b

−a

p∗(t− θ, θ, 0, c∗)v(t− θ)dθ−
m∑

k=1

A∗
k(t− rk, 0, c∗)v(t− rk), (29)

where p∗(t−θ, θ, 0, c∗) denotes the adjoint of the matrix p(t−θ, θ, 0, c∗). Then
equation (29) possesses a unique bounded solution ρ(t) : R → RN (up to scalar
multiples), which tends to zero exponentially fast as t→ ∞.

Proof
Consider the equation V̇ (t) = A(t)V (t), defined in (11), with L(t) = D1f(ht, 0, c∗).
Then this equation possesses a center stable dichotomy on R+ and R− by the-
orem 4.1 with solution operators Φcs

+ ,Φ
u
+ and Φcs

− ,Φ
u
−, respectively. We choose

a non-zero vector

Ψ0 ∈ (Rg(Φcs
+ (0, 0) + Rg(Φu

−(0, 0)))⊥,

where ⊥ denotes the orthogonal complement with respect to the Y -scalar-
product. It has been proved in [12] (see the proof of theorem 6 there) that
the operators Φcs,+

adj (t, s) := (Φu
+(s, t))∗, Φu,+

adj (t, s) := (Φcs
+ (s, t))∗ and also

Φcs,−
adj (t, s) := (Φu

−(s, t))∗, Φu,−
adj (t, s) := (Φcs

− (s, t))∗ define dichotomies of the

adjoint equation Ẇ (t) = (A(t))∗W (t) on R+ and R−, respectively, see [11].
Here, for fixed t the map A(t)∗ denotes the adjoint operator of the operator
A(t) with respect to the Y -scalar product. Now Φu

+(0, 0)∗Ψ0 = Φcs
− (0, 0)∗Ψ0

and therefore

W (t) =

{
(Φu

−(0, t))∗Ψ0 : t ≥ 0
(Φcs

+ (0, t))∗Ψ0 : 0 ≥ t
(30)
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defines a solution of the adjoint equation Ẇ (t) = A(t)∗W (t) on R. On ac-
count of lemma 3 in [12], W (t) has the form W (t) = (ρ(t),Ψ(t, ·)) for some
function ρ, which solves equation (29) and is an element in H1

loc. Moreover,
due to the definition of W (t) in (30), the function ρ(t) decays exponentially
as t → ∞. We remark that ρ(t) also remains bounded for t → ∞. This is
a consequence of the simplicity of the Hopf-eigenvalues and we refer to [11],
theorem 3.5, for a proof of the boundedness of ρ in backward time. Let us
point out that we won’t make use of the boundedness of ρ in backwards time,
though. It is sufficient to know that ρ(t) can grow at most with small expo-
nential rate as t → ∞, which can be seen by the definition of W (t) in (30).
Since every solution ρ(t) of (29) induces a bounded solution of the abstract
adjoint equation Ẇ (t) = A(t)∗W (t) via W (t) = (ρ(t),Ψ(t, ·)) for some ap-
propriate function Ψ(t, ·) (see [11]), we know that W (t) can be represented in
the form (30) for some appropriate vector Ψ∗ ∈ Y , which then also satisfies
Ψ∗ ∈ (Rg(Φcs

+ (0, 0) + Rg(Φu
−(0, 0)))⊥. Therefore, Ψ∗ is a scalar multiple of Ψ0,

which proves uniqueness (up to scalar multiples) of ρ(t) as a bounded solution
of (29), which decays exponentially in forward time. �

We can now state the next hypothesis.

Hypothesis 8
For g(t, •, λ̃, c) := f(•, λ̃, c) −D1f(ht, 0, c∗)[•] let

∫ ∞

−∞
ρ(s)∂cg(s, hs, 0, c)

∣∣
c=c∗

ds �= 0, (31)

where ρ(·) : R → RN denotes the unique bounded solution of the adjoint
equation in the statement of the previous lemma 6.3.

This hypothesis will now assure that the extended manifolds W̃ cs
λ̃

and W̃ u
λ̃

intersect transversely in X̂ × R at H(0) for λ̃ = 0.

Lemma 6.4
Assume that the hypotheses 7 and 8 are satisfied. Then

T(H(0),c∗)W̃
cs
0 + T(H(0),c∗)W̃

u
0 = X̂ × R

T(H(0),c∗)W̃
cs
0 ∩ T(H(0),c∗)W̃

u
0 = span 〈(∂tH(0), 0)〉 .

Proof
Let us first observe that

T(H(0),c∗)W̃
cs
0 = (Êcs

+ × {0}) + span{(∂tH(0), 0)}+ span{(Ṽ cs
0,c∗(0), 1)},

T(H(0),c∗)W̃
u
0 = (Êu

− × {0}) + span{(∂tH(0), 0)}+ span{(Ṽ u
0,c∗(0), 1)},

where Ṽ cs
0,c∗(0) can be computed by differentiating (19) with respect to c at

c = c∗,V cs = 0, V (·) = 0, λ̃ = 0. Similarly, Ṽ u
0,c∗(0) can be computed by

differentiating the corresponding fixed point equation of W u,−
λ̃,c

(0) with respect
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to c at c = c∗. More explicitly, we obtain

Ṽ cs
0,c∗(0) =

∫ 0

∞
Φu

+(0, ξ)∂cG(ξ, 0, 0, c∗)dξ,

Ṽ u
0,c∗(0) =

∫ 0

−∞
Φcs

− (0, ξ)∂cG(ξ, 0, 0, c∗)dξ.

On account of the remark after lemma 6.2 we know that codim(Êcs
+ + Êu

−) = 1

in X̂. Let Ψ0 denote a vector, which spans the orthogonal complement of the
space Σ = Ecs

+ (0) +Eu
−(0) in Y and note that Êcs

+ ⊂ Ecs
+ (0), Êu

− ⊂ Eu
−(0). For

the proof of this theorem it is therefore enough to show that〈
Ψ0, Ṽ cs

0,c∗(0)
〉

Y
�=

〈
Ψ0, Ṽ u

0,c∗(0)
〉

Y
. (32)

Indeed, this would prove that Ṽ cs
0,c∗(0)− Ṽ u

0,c∗(0) does not lie in Ecs
+ (0) +Eu

−(0)

and therefore not in Êcs
+ + Êu

− ⊂ Ecs
+ (0) + Eu

−(0). The condition (32) can be
represented in the form〈

Ψ0,

∫ 0

−∞
Φcs

− (0, ξ)∂cG(ξ, 0, 0, c∗)dξ −
∫ 0

∞
Φu

+(0, ξ)∂cG(ξ, 0, 0, c∗)dξ
〉

Y

�= 0,

which can be further simplified to∫ ∞

−∞

〈
Ψ̃(ξ)Ψ0, ∂cG(ξ, 0, 0, c∗)

〉
Y
dξ �= 0, (33)

where

Ψ̃(t) =

{
Φu

+(0, t)∗ : t ≥ 0
Φcs

− (0, t)∗ : 0 > t

By the definition of G (see the definition below (16)) we have

∂cG(t, 0, 0, c∗) =

(
∂cg(t, ht, 0, c)

∣∣
c=c∗

0

)
,

where g(t, •, λ̃, c) := f(•, λ̃, c) − D1f(ht, 0, c∗)[•]. As we have already argued
in lemma 6.3, the function Ψ̃(t)Ψ0 can be represented in the form Ψ̃(t)Ψ0 =
(ρ(t),Ψ(t, ·)), where ρ(·) : R → RN solves the adjoint equation

∂tz(t) = −
∫ b

−a

p∗(t− θ, θ, 0, c∗)z(t− θ)dθ (34)

−
m∑

k=1

A∗
k(t− rk, 0, c∗)z(t− rk).

Therefore, (33) is equivalent to
∫

R

〈
ρ(ξ), ∂cg(ξ, hξ, 0, c)

∣∣
c=c∗

〉
RN

dξ �= 0, which

is satisfied if and only if hypothesis 8 is true. �

An application of the implicit function theorem leads to the following result.
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Corollary 6.1
There exists a continuous curve c = c(λ̃) in the (λ̃, c)-plane, such that the

manifolds W cs,+(0) and W u,−(0) have an intersection point U λ̃ for (λ̃, c) =

(λ̃, c(λ̃)). U λ̃ induces a classical solution U λ̃(t) = (hλ̃,1(t), hλ̃,1
t ) of (15) on R,

which satisfies U λ̃(0) = U λ̃. Furthermore, hλ̃,1 solves the equation ẋ(t) =
f(xt, λ̃, c(λ̃)) on R and approaches the periodic orbit γλ̃,c(λ̃) in forward time.

Proof
Fix λ̃ ≈ and let the functions

Ψλ̃
1(·, ·) : (Êcs

+ × (−δ + c∗, c∗ + δ)) ∩ U → Êu
+,

Ψλ̃
2(·, ·) : (Êu

− × (−δ + c∗, c∗ + δ)) ∩ U → Êcs
−

be defined by the property that

(graph[Ψλ̃
1 ], ·) + (H(0), c∗) = W̃ cs

λ̃

(graph[Ψλ̃
2 ], ·) + (H(0), c∗) = W̃ u

λ̃
,

where U ⊂ X̂ ×R denotes a sufficiently small neighborhood of zero and δ > 0
is small enough. Then Ψ0

1(0, c∗) = Ψ0
2(0, c∗) = 0. Let us now choose a small

neighborhood Û of (0, 0, c∗) ∈ X̂ × X̂ × R and consider the bifurcation map

Γ(·, ·, ·, ·) : ((Êcs
+ × Êu

− × R) ∩ Û) × (−δ0, δ0) → X̂ × R

Γ(V, Ṽ , c, λ̃) =
[
(H(0) + V + Ψλ̃

1((V, c), c)
]
−

[
(H(0) + Ṽ + Ψλ̃

2((Ṽ , c), c)
]
.

for δ0 > 0 small enough. Then Γ((0, 0, c∗), 0) = 0 and the linearization
D(V,Ṽ ,c)Γ((0, 0, c∗), 0) of Γ is surjectiv on account of the previous lemma 6.4.
The claims of the corollary therefore follow by an application of the implicit
function theorem, if we can show that the one-dimensional kernel

K = span 〈∂tH(0), ∂tH(0), 0, 0〉

of D(V,Ṽ ,c)Γ((0, 0, c∗), 0) admits a closed complement in Êcs
+ × Êu

− × R. In

order to show this, we construct a closed complement of K∩ (Êcs
+ × Êu

− ×{0})
in the space Êcs

+ × Êu
− × {0}. By considering K ∩ (Êcs

+ × Êu
− × {0}) as a

subspace of Rg(Φcs
+ (0, 0)

∣∣
X

) × Rg(Φu
−(0, 0)

∣∣
X

) with the X-topology, we may

define a complement C of K in X via C := Rg(Φcs
+ (0, 0))×Rg(Φu

−(0, 0)
∣∣
E
) first.

Here, E denotes a closed subspace of the Hilbert X of codimension one, which
satisfies

Rg(Φu
−(0, 0)

∣∣
E
) ⊥ span 〈∂tH(0)〉 ,

i.e. ∂tH(0) is perpendicular to Rg(Φu
−(0, 0)

∣∣
E
) with respect to the X-scalar

product. In particular, Rg(Φu
−(0, 0)

∣∣
E
) + span 〈∂tH(0)〉 = Rg(Φu

−(0, 0)
∣∣
X

).
Note that such a vector space E ⊂ X is easy to construct, since X is a Hilbert
space. Moreover,

C ⊂ Rg(Φcs
+ (0, 0)

∣∣
Y
) + Rg(Φu−(0, 0)

∣∣
E
) =: Π, (35)
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where the closure of Rg(Φu
−(0, 0)

∣∣
E
) is considered with respect to the Y -

topology. The crucial observation is that

∂tH(0) /∈ Rg(Φu−(0, 0)
∣∣
E
),

since any nontrivial vector in the orthogonal complement of Rg(Φu
−(0, 0)

∣∣
E
)

with respect to the Y -scalar product remains in the orthogonal complement
upon considering the closure of Rg(Φu

−(0, 0)
∣∣
E
) in Y . Hence, Π defines a closed

complement of K in Y (in particular, with trivial intersection). Let us finally
consider the closure C of C in X̂, i.e. C = C̄ with respect to the X̂-norm.
Then C defines a closed complement of K in Êcs

+ × Êu
−: Note first that C

intersects only trivially with K on account of (35). Indeed, the closure C is
still contained in Π. Finally, since by construction of C the space C + K is
dense in X̂ × X̂ we only have to show that C + K is closed. But this follows
analogously to the proof of lemma 6.2. �

Let us note that we have only shown that initial values in W cs,+(0) give rise
to solutions which converge either to a periodic orbit or the steady state, if
(λ̃, c) is auch that λ̃ > 0. But since we have assumed that H(t) does not lie in
the strong stable manifold W ss,loc for any t > 0 large enough and since W ss,loc

depends continuously on the parameters λ̃, c we conclude that U λ̃(t) does not

lie in W ss,loc. That means that hλ̃,1 does not approach the steady state zero in
forward time. Let us now summarize our results in the next theorem, which is
the main result of this section. The bifurcation diagram is discussed in section
7.

Theorem 6.1 (Solutions with one oscillating tail)
Consider the equation

ẋ(t) = f(xt, λ̃, c), (36)

xt ∈ C0([−a, b],RN ), which has been introduced in equation (9). Assume
that the hypotheses 1 - 8 are satisfied and that the homoclinic solution h(t)
of (36) does not converge to zero exponentially fast for t → ∞. Then there
exists a continuous curve HET(λ̃) in the (λ̃, c)-parameter plane locally near

(λ̃, c) = (0, c∗). For every point on the curve there exists a solution hλ̃,1 of
(36), which is defined on R and has the following properties (see also figure 1
a)):

• (0, c∗) = HET(0) and h0,1 = h.

• Let λ̃ > 0. Then there exist M,β > 0, such that hλ̃,1(t) satisfies

|hλ̃,1(t)| ≤ Me−β|t| as t → −∞ and |hλ̃,1(t) − γλ̃,c(λ̃)(t + θ∗)| → 0 as
t→ ∞ for some asymptotic phase θ∗.

• Fix λ̃∗ ≈ 0. Then hλ̃,1 → hλ̃∗,1 uniformly on compact intervals of R as
λ̃→ λ̃∗.
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7 Discussion

Exponential decay
Theorem 6.1 is also true if the homoclinic solution h approaches zero with
exponential rate, though this behaviour is generically not expected. In this
case, however, H(t) ∈ W ss,loc for t > 0 large enough and one has to argue

why U λ̃(t) does not lie in W ss,loc for t > 0 large enough and λ̃ > 0. Since

the construction of the solutions hλ̃,1 in this case is a little bit more compli-
cated, we refer to the discussion in [25], page 1283, or to [11] for further details.

Solutions with two oscillating tails
Let us now discuss how one can prove the existence of solutions hλ̃,2, which are
depicted in figure 1 b). The existence proof we will present relies strongly on
the existence of a C1 local center unstable manifold W cu

loc of the steady state
zero. Note that we have only shown that W cu

loc is a Lipschitz-manifold, see the
end of section 5. If, however, this manifold is of class C1 we can consider the
intersection W cu

loc ∩W cs,+(0) for (λ̃, c) = (0, c∗) near H(τ), τ < 0 small enough.
This intersection is then two-dimensional and therefore one-dimensional within
a suitable Poincaré-section at H(τ) (note that we have shown in the proof of
corollary 6.1 how to construct Poincaré-sections in the space X̂). By the
implicit function theorem, the manifolds W cu

loc and W cs,+(0) also intersect for
(λ̃, c) �= (0, c∗) and in particular for (λ̃, c) = (λ̃, c(λ̃)). Hence, there exist points

U λ̃, V λ̃ ∈ W cu
loc ∩W cs,+(0)

with associated solutions U λ̃(·), V λ̃(·) of (6) for t ≥ 0, which approach the

periodic orbit Γλ̃,c(λ̃) in forward time t → ∞. Moreover, U λ̃(t) is also defined

for t ≤ 0 and converges to the steady state zero as t→ −∞. V λ̃(t), on the other
hand, solves the equation (15) for all t ≤ 0 with a suitable modified nonlinearity
f , which appears in the proof of the center-unstable manifold. Since every
solution in the center unstable manifold approaches a unique solution Z(·) on
the center manifold with exponential rate in backward time, and the periodic
orbit is unstable in backward time t → −∞ with respect to the reduced
dynamics, we can choose V λ̃ in such a way that Z(0) (i.e. the initial value of

the solution on the center manifold, which is approached by V λ̃(t)) lies outside
the set that is enclosed by the periodic solution on the two-dimensional center
manifold. Since the projection l : V cu �→ Z(0) is continuous with respect
to the X̂-norm, where V cu ∈ W cu

loc (see [27]), we conclude that there exists a
point V ∈ W cu

loc ∩W cs,+(0) with associated solution V (·) of (15) that satisfies

l(V ) = Γλ̃,c(0). Hence, V (t) = (hλ̃,2(t), hλ̃,2
t ) for some solution hλ̃,2 of (1),

which looks as depicted in figure 1 b).

We should point out that once the existence of the solutions hλ̃,2 has been
proved, we generically expect complicated behaviour near these solutions: Al-
ready for ordinary differential equations it is known that there exist compli-
cated behaviour near orbits, which are homoclinic to periodic orbits. However,
it is not clear how to detect this behaviour in general functional differential
mixed type equations. We remark that for nonautonomous functional differ-
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ential equations the existence of invariant sets, on which the dynamic of (1) is
conjugated to a shift on two symbols, has been proved in [12].

The bifurcation diagram
Let us now take a closer look at the bifurcation diagram, figure 2, where the
curve HET (see the statement of theorem 6.1) is depicted. First note that for
each point (λ̃, c) on HET the center stable manifold W cs,+(0) and unstable
manifold W u,−(0) of zero have an intersection point. This intersection point

induces a solution hλ̃(·) of equation (9). If λ̃ < 0, i.e. (λ̃, c) ∈ HET lies in
the half plane λ̃ < 0, no periodic orbits exist and zero is linearly stable with
respect to the dynamics on the center manifold. Thus, hλ̃(t) converges to zero
for t → ±∞. Since the steady state is hyperbolic, a result of Mallet-Paret
[21] implies the existence of periodic solutions with large period near the curve
HET in that region under some appropriate non degeneracy conditions. These
periodic solutions are indicated with ”Per” in figure 2. Let us now consider the
other branch of the curve HET, where λ̃ > 0. For parameters on the curve in
this region there exist solutions hλ̃,1 of (9), which converge to zero in backward
time t → −∞. Since the steady state is linearly stable in backward time and
unstable in forward time with respect to the center dynamic, we expect the
asymptotic behaviour of hλ̃,1 to be stable upon variation of the parameters
λ̃, c. Thus, in the regions which are indicated by ”Het”, we still obtain solu-
tions which converge towards a periodic orbit in forward time and approach
the steady state in backward time. Of course, these solutions are induced by
an intersection of the center stable and center unstable manifold of the system
(15). Hence, these solutions will generically approach the steady state zero in
backward time t → −∞ along a solution on the center manifold rather than
along the strong unstable manifold.

Het
Het

HET
λ̃

Per c− c∗

Figure 2: The bifurcation diagram of theorem 6.1.

8 An example

In this section we want to discuss a toy example, where all hypotheses of
theorem 6.1 can be verified explicitly. Our main motivation for discussing this
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example is that it can serve as a guideline how certain assumptions of theorem
6.1 can be verified in view of of more relevant examples.
The toy example under investigation is

 ẋ(t)
ẏ(t)
ż(t)


 =


 y(t)

x(t) − x(t)2 + (c− 1)x(t) + γx(t− χ)z(t)
2
3
(L(zt) − z(t)) + g(z(t), λ̃, c) + k(x(t))z(t)


 , (37)

where x, y, z ∈ R and k(·), g(·, λ̃, c) are real-valued functions, χ, γ, ζ, c, λ̃ ∈ R

are constants and L : C0([−2π, 2π],R) → R is a linear map, which will be
specified later.
This toy example has been discussed in [11]. For the sake of completeness
we will present most of the relevant calculations. The structure of equation
(37) is as follows: If we set λ̃ = 0, z = 0 in equation (37) and assume that
g(0, 0, c) = 0 then the dynamics of (37) reduces to the ordinary differential
equation

ẍ(t) = x− x2 + (c− 1)x.

This equation possesses a homoclinic solution h1(t) for c = 1. The ż-equation
is a nontrivial functional differential equation of mixed type; posed on the
space C0([−2π, 2π],R). We now want to show that there exist functions k, g
and a constant χ, such that the ż-equation undergoes a supercritical Hopf bi-
furcation and that the hypotheses 1-8 are satisfied.

Hopf bifurcation
Let us define the linear operator L by

A1) Lϕ(·) := 1
20
ϕ(−2π) + 1

5
ϕ(0) + 3

4
ϕ(2π),

where we note that 1
20

+ 1
5

+ 3
4

= 1; that is L(1) = 1. Furthermore we set
k(0) = 0. Let us now look at the linearization of (37) at (x, y, z) = (0, 0, 0).
The characteristic function det	(µ, c, λ̃) reads in this case:

det 	 (µ, c, λ̃) = (µ2 − 1) · (2
3
(L(eµ·) − 1) + g′(0, λ̃, c) − µ). (38)

Here and in the following we denote by ’ the derivative with respect to the
x-component. Let us now make the ansatz g(x, λ̃, c) := g̃(x, λ̃)+ (c− 1)x for a
still unspecified function g̃(·, λ̃). We observe that purely imaginary zeros of the
characteristic function occur if and only if the factor (2

3
(L(eµ·)−1)+g̃′(0, 0)−µ)

vanishes for some µ ∈ iR. For µ = is and s ∈ R we obtain from (38):

Im(is) =
Re(is) =

2
3
L(sin(s•)) − s

2
3
(L(cos(s•)) − 1) + g̃′(0, 0).

(39)

We observe that there exists a zero sN �= 0 of the imaginary part on account
of 2

3
L(θ) > 1 and the mean value theorem. Of course sN < 2

3
, since otherwise

s > 2
3
≥ 2

3
L(sin(s•)). The next assumption guarantees that sN is also a zero

of the real part:

A2) Let g(x, λ̃, c) = g̃(x, λ̃)+ (c− 1)x and g̃′(0, 0) := −2
3
(L(cos(sN•))− 1).

27



Now let s∗ be an arbitrary real number, which satisfies (39). Then

2

3
cos(s∗2π) =

[
1

20
+

3

4

]−1 (
g̃′(0, 0) − 2

3
cos(0)

1

5

)
2

3
sin(s∗2π) =

[
3

4
− 1

20

]−1

s∗.

Squaring and adding both equations leads to a quadratic equation in s∗, which
possesses two solutions, namely ±sN . This shows that there are no other
purely imaginary zeros of the characteristic equation det	(·, 1, 0). An anal-
ogous argument now shows that the zeros µ = ±isN are simple zeros of the
characteristic function. The additional assumption

A3) ∂λ̃g̃
′(0, λ̃)

∣∣
λ̃=0

�= 0

assures that the real parts of the critical Hopf eigenvalues ±isN cross the
imaginary axis with non vanishing speed as λ̃ is varied near λ̃ = 0. Indeed, let
µ(λ̃) denote the branch of critical eigenvalues with µ(0) = isN . Then

∂λ̃µ(λ̃) = −[∂µdet(	(µ(λ̃), 1, λ̃))]−1
[
∂λ̃g̃

′(0, λ̃)
]

near λ̃ = 0 and the real part satisfies

∂λ̃Reµ(0) = −C(−s2
N − f ′(0, 1))

[
2

3
L((•)cos(sN•)) − 1

]
∂λ̃g̃

′(0, 0) �= 0,

where C > 0 is a constant. Note that the term 2
3
L((•)cos(sN•)) − 1 does not

vanish. The next hypotheses guarantee that the Hopf bifurcation is supercrit-
ical. The relevant calculations have been carried out in [11].

A4) Let ∂λ̃g̃
′(0, λ̃)

∣∣
λ̃=0

�= 0 with sign chosen such that

−(−s2
N − 1)

[
2

3
L((•)cos(sN•)) − 1

]
∂λ̃g̃

′(0, 0) > 0.

A5) Let g̃′′(0, 0) + k′′(0) = 0 and g̃′′′(0, 0) + k′′′(0) �= 0, such that

(g̃′′′(0, 0) + k′′′(0))(−s2
N − 1)(

2

3
L((•)cos(sN•)) − 1) < 0.

The Unique-Extension-Property
We consider the linearization of (37) along the homoclinic solution (h1(t), h2(t), 0)
for c = 1 and λ̃ = 0:

 u̇(t)
v̇(t)
ẇ(t)


 =


 v(t)

(1 − 2h1(t))u(t) + γ(h1(t− χ))w(t)
2
3
(L(wt) − w(t)) + ∂1g̃(0, 0)w(t) + k(h1(t))w(t)


 . (40)

Let (u(t), v(t), w(t)) be a bounded solution of (40), such that (uτ , vτ , wτ ) = 0
for some τ ∈ R. On account of section 4.4 in [24] we conclude w(·) = 0.
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Therefore (40) reduces to a system of ordinary differential equation, which
shows that (u(·), v(·), w(·)) = 0.

The kernel of L
Let us now show that under further conditions we can assure that L : H1(R,R3) →
L2(R,R3) has a one-dimensional kernel, where

(L(u(·), v(·), w(·)))(t) = ∂t(u(t), v(t), w(t)) − L(t)(ut, vt, wt) (41)

and L(t)(ut, vt, wt) is defined by the right hand side of equation (40) for each
fixed t. We start with w-component of L(u, v, w) = 0, which is

ẇ(t) = (
2

3
(L(wt) − w(t)) + g̃′(0, 0)w(t) + k(h1(t))w(t)) =: Λ(t)wt. (42)

We want to denote by W 1,∞
0 (−ζ, ζ) the set of all functions w(·) ∈W 1,∞(−ζ, ζ),

which satisfy w(ζ) = w(−ζ) = 0. We can now use theorem 7.3 of Mallet-Paret
and Lunel in [19].

Theorem (Mallet-Paret)
Consider the equation

ẇ(t) = a(t)w(t− 2π) + b(t)w(t) + c(t)w(t+ 2π),

where a, b, c : R → R are bounded and measurable. Let a(t) > 0, c(t) > 0
or a(t) < 0, c(t) < 0 for almost every t ∈ R. Then kern(Bζ) = {0} for every
ζ > 0, where Bζ : W 1,∞(−ζ, ζ) → L∞(−ζ, ζ) is defined by

(Bζw(·))(t) := ∂tw(t) − (a(t)w(t− 2π) + b(t)w(t) + c(t)w(t+ 2π))

and where we have extended w(·) by zero outside (−ζ, ζ).

In our case a(t) = 1
20

and c(t) = 3
4
. With the help of this theorem we can now

show that:

a) The kernel of the operator Bζ with (Bζw(·))(t) := ∂tw(t) − Λ(t)wt is at
most three-dimensional.

b) Let w(·) be a nontrivial solution of (42) on R. Then there exists at most
one interval J ⊂ R with |J | = 4π on which w(·) possesses zeros. If w(·)
has more than one zero, then w(·) is identical zero between two successive
zeros.

For a proof of these facts let w1, w2, w3, w4 ∈ H1(R,R) denote four linear in-
dependent solutions of (42). Choose any ζ > 0, such that [−2π, 2π] ⊂ (−ζ, ζ).
Then there exist linear combinations v1 of w1, w2 and v2 of w3, w4, respectively,
such that v2(ζ) = v1(ζ) = 0. If v1 and v2 would be linear independent there
would exist a nontrivial linear combination z of v1, v2 with z(−ζ) = z(ζ) = 0.
z defines a kernel element of Bζ and z = 0 on [−2π, 2π] and thus z = 0. This
shows that there are at most three linear independent solutions w1, w2, w2

which proves claim a). With similar arguments one can show claim b).
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We note that a nontrivial kernel element of the adjoint operator L∗ : D(L∗) ⊂
L2(R,R3) → L2(R,R3) is given by

t �→ (−∂th
2(t), ∂th

1(t), 0). (43)

Let us denote by Θ : H1(R,R2) ⊂ L2(R,R2) → L2(R,R2) the map

Θ(u, v)(t) = (∂tu(t), ∂tv(t)) − (v(t), (1 − 2h1(t))u(t))

We now want to show that there exist a constant χ ∈ R, such that we have
(0, h1(· − χ)w(·)) /∈ Rg(Θ) for any solution w(·) of (42). This is equivalent to∫

R

[h1(s− χ)w(s)]∂th
1(s)ds �= 0, (44)

if we show that there is a unique kernel element (up to scalar multiples) of
L∗. The function ∂th

1(t) = h2(t) is different from zero for all t > t∗ for
some appropriate t∗ and converges to zero for |t| → ∞ with exponential rate.
Moreover, there exists some M > 0, such that all wi(t) have a constant sign
on (M,∞) and we can assume that all functions are positive. With these
arguments we can state the next assumption.

A6) Let χ ∈ R be such that (44) is satisfied for w = wi, i = 1, 2, 3.

This assumption shows that ker(L) is one-dimensional, if the kernel of Θ is
one-dimensional. But kernel elements of Θ solve an ordinary differential equa-
tion on R. The results in [23] now show that the kernels of Θ and Θ∗ are in
fact one-dimensional.

Transversality
Let us now show that 

 0
∂th

1(·)
0


 /∈ Rg(L), (45)

which arises by differentiating (37) with respect to c at (h′1, h
′
2, 0). But (45) is

satisfied, since 〈
 0

∂th
1(·)
0


 ,


 −∂th

2(·)
∂th

1(·)
0


〉

�= 0,

on account of
∫

R
∂th

1(s)∂th
1(s)ds �= 0, where 〈·, ·〉 denotes the scalar product

with respect to L2(R,R3). Analogously to the calculation of ker(L) one can
now show that hypothesis 7 is satisfied. Thus, if the assumptions A1)-A6) are
satisfied, we have verified all assumptions of theorem 6.1 (note that theorem 6.1
is true even if the homoclinic solution decays exponentially in both asymptotic
directions t→ ±∞; see section 7). Therefore, we have proved the existence of
solutions of equation (37) for suitable parameters (λ̃, c) ≈ (0, 1) which converge
towards a periodic solution in forward time and approach a steady state in
backward time.
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9 Appendix: The weak∗ integral

In this section we want to clarify, in which sense the integral∫ t

0

T (t, s)G(s)ds (46)

is well defined, if s → G(s) = (g(s), 0) maps continuously into the space
X̃ = CN ×C0([−a, b],CN ) and a, b ≥ 0. For the case of pure delay differential
equations, where a = 0, b > 0, our results follow from [17]. Without loss
of generality, we only consider the case that T (t, s) is the solution operator
associated to a dichotomy on R+. More precisely, let us make the following
assumption.

Assumption 1
Let L(·) ∈ BC0(R, L(C0([−a, b],CN ),CN)) and let L(t) → L± with respect to
the operator norm as t→ ±∞, where L± ∈ L(C0([−a, b],CN ),CN). Consider(

∂tξ(t)
∂tφ(t, ·)

)
= A(t)

(
ξ(t)
φ(t, ·)

)
=

(
L(t)φ(t, ·)
∂θφ(t, ·)

)
. (47)

If the equations ẏ(t) = L±yt are hyperbolic, (47) possesses an exponential
dichotomy on R+ with associated solution operators Φs

+(τ, σ), Φu
+(σ, τ) for

τ ≥ σ ≥ 0. Otherwise, equation (47) possesses a (center-) dichotomy on R+

with solution operators Φcs
+ (t, s),Φu

+(s, t) or Φs
+(t, s),Φcu

+ (s, t) for t ≥ s ≥ 0.
We now consider the case that T (t, s) is one of these solution operators on R+.

Let us now choose some element

(η, ψ) ∈ Ỹ := C
N × L1([−a, b],CN )

and note that
s �→ 〈T (t, s)G(s), (η, ψ)〉 ∈ L1([0, t],C), (48)

where 〈·, ·〉 denotes the pairing between Z̃ = CN ×L∞([−a, b],CN ) and Ỹ ; that
is

〈(ξ, φ), (η, ψ)〉 = ξ · η +

∫ b

−a

φ(θ)ψ(θ)dθ

for (ξ, φ) ∈ Z̃ and (η, ψ) ∈ Ỹ . Here, Z̃ can be identified with the dual space
of Ỹ . Hence, there exists a unique Q ∈ Z̃, such that

〈Q, (η, ψ)〉 =

∫ t

0

〈T (t, s)G(s), (η, ψ)〉ds (49)

for every (η, ψ) ∈ Ỹ ; see the appendix of [17]. Note that if s �→ G(s) is
continuous and takes values in X, then the weak∗ integral coincides with the
Riemann integral.

Definition 9.1
We set

∫ t

0
T (t, s)G(s)ds := Q and call Q the weak∗ integral.
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From now on we view the integral term in (46) as a weak∗ integral, which is an
element of Ỹ ∗ = Z̃ by definition. Let us now prove that the integral is actually
an element of X̂ = {(ξ, φ) ∈ CN × C0([−a, b],CN ) : φ(0) = ξ}.

Lemma 9.1
For each fixed t ≥ 0 we have

∫ t

0
T (t, s)G(s)ds ∈ X̂.

Proof
Consider

F δ(t) :=

∫ t

0

T (t, s)

(
g(s)

g(s) · l(δ)(·)

)
ds, (50)

where

l(δ)(θ) :=

{
2 · 2

1
(θ/δ)2−1 θ ∈ (−δ, δ)

0 else

for θ ∈ [−a, b] and |δ| < min{a, b}. Hence, for fixed δ > 0, (50) defines an
element in X for each fixed t. Moreover, the integral can be regarded as the
usual Riemann integral since the integrand is continuous when considered as
a map with values in X. We can now differentiate F δ(·) : R+ → Y and obtain

∂tF
δ(t) = ∂t

(
f δ(t)
ξδ(t, ·)

)
= T (t, t)

(
g(t)

g(t)l(δ)(·)

)
+ A(t)F δ(t) (51)

=

(
ζ(t)
h(t, ·)

)
+

(
L(t)[ξδ(t, ·)]
∂θξ

δ(t, ·)

)
.

Let us take a closer look at the second component of (51). Since F δ(t) ∈ X
for each fixed t, δ and therefore ξ(t, 0) = f(t), we obtain from

∂tξ
δ(t, θ) = ∂θξ

δ(t, θ) + h(t, θ)

via the method of characteristics the identity

ξδ(t, θ) =

{
f δ(t+ θ) +

∫ θ

0
h(t+ θ − η, θ)dη t+ θ � 0

ξδ(0, θ + t) +
∫ t

0
h(t, θ + t− η)dη, −a � t+ θ < 0.

(52)

Note that ξδ(0, ·) = 0 and f δ(0) = 0 for any δ > 0. Since T (t, t) : Y → Y
is a bounded projection for each t, we conclude that h(t, ·) → σ(t, ·) for some
function σ(t, ·) ∈ L2 as δ ↘ 0 in L2([−a, b],CN ), because g(t)l(δ)(·) converges
in L2 as δ ↘ 0. Moreover, the integral in (50) converges with respect to the
Y -norm to the value

F 0(t) =

∫ t

0

T (t, s)

(
g(s)
0

)
ds

as δ ↘ 0. Let us write F 0(t) = (f(t), ξ(t, ·)). Convergence of (50) in Y implies
by definition that f δ(t) → f(t) for fixed t as δ ↘ 0. Therefore, we can pass to
the limit δ ↘ 0 in (52) and get

ξ(t, θ) = f(t+ θ) +

∫ θ

0

σ(t+ θ − η, θ)dη (53)
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as long as t+θ � 0. Hence, ξ(t, ·) is continuous if the spatial variable θ satisfies
t+ θ ≥ 0. In particular we conclude that

ξ(t, 0) = f(t)

for all t � 0. Because ξδ(t, ·) also converges with respect to the sup-norm in
the region t + θ � 0 and fixed t (namely, it converges to zero), we conclude
that ξ(t, ·) ∈ C0, which proves that (f(t), ξ(t, ·)) ∈ X̂.
Finally, we note that F 0(t) actually coincides with the weak∗ integral; i.e.
F 0(t) = Q. Indeed, F 0(t) ∈ X̂. Moreover, for any (ξ, ψ(·)) ∈ CN×L1([−a, b],CN)
the identity

〈
F δ(t), (ξ, ψ(·))

〉
=

∫ t

0

〈
T (t, s)Gδ(s), (ξ, ψ(·))

〉
ds

holds. Passing to the limit δ ↘ 0 we obtain

〈
F 0(t), (ξ, ψ(·))

〉
=

∫ t

0

〈T (t, s)G(s), (ξ, ψ(·))〉ds.

By uniqueness this shows that Q = F 0(t). �

The next lemma tells us that the weak integral actually depends continuously
on t.

Lemma 9.2
The function v : t →

∫ t

0
T (t, s)G(s)ds is continuous as a function from [0,∞)

to X̃ := CN × C0([−a, b],CN ) and

‖v(t)‖X̃ �
∫ t

0

Meα(t−s)ds · sup
0�s�t

‖G(s)‖X̃ ,

if T (t, s) satisfies the estimate ‖T (t, s)‖L(Z̃,Z̃) � Meα(t−s) for t ≥ s ≥ 0 and

some α ∈ R, where, as before, Z̃ = CN × L∞([−a, b],CN ).

Proof
Note that the integral is well defined with values in X̃ by the previous lemma.
Since the map t →

∫ t

0
T (t, s)G(s)ds is continuous when regarded with values

in Ỹ ∗ = Z̃ (see lemma 2.1, page 54 in [17]) and the norm of L∞([−a, b],CN ) of
an element in C0([−a, b],CN ) coincides with the usual norm in C0, the claim
concerning continuity follows immediately by lemma 2.3 in [17]. �
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