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Abstract. Competitions between different interactions in strongly correlated
electron systems often lead to exotic phases. Renormalization group is one of
the powerful techniques to analyze the competing interactions without presumed
bias. It was recently shown that the renormalization group transformations to
the one-loop order in many correlated electron systems are described by potential
flows. Here we prove several rigorous theorems in the presence of renormalization-
group potential and find the complete classification for the potential flows. In
addition, we show that the relevant interactions blow up at the maximal scaling
exponent of unity, explaining the puzzling power-law Ansatz found in previous
studies. The above findings are of great importance in building up the hierarchy
for relevant couplings and the complete classification for correlated ground states
in the presence of generic interactions.

1. Introduction

Interactions in many-particle systems often lead to novel collective phenomena,
inaccessible by the mean- field theory based on the single-particle picture. Exact
solutions for these strongly correlated systems are illuminating and helpful, but
scarce. Renormalization groups (RG) ([1]-[3]) are one of the powerful techniques
to address these challenging issues in all branches of science. By integrating out
the degrees of freedom at the longer length scale, the couplings of the effective
Hamiltonian flow are described according to a set of RG equations. This approach
is particularly helpful when the quantum fluctuations in the system are strong so
that the mean-field description is invalid or hard to justify. For instance, it has been
demonstrated that, despite of the repulsive interactions at the short length scale,
electrons form pairs with unconventional d-wave symmetry in the low-energy limit
in the two-leg ladder or the doped carbon nanotubes. RG analysis predicts that the
ground state is a spin liquid beautifully realized in recent experiments.

To be precise, interactions of a correlated system are characterized by a set of
couplings gi. By integrating out the fluctuations at shorter length scale, these cou-
plings are renormalized accordingly and described by a set of first-order differential
equations. In general, the perturbative RG equations to the one-loop order take the
following form,

dgi
dl

=
∑
j

∆ijgj +
∑
jk

Aijkgjgk, (1.1)

where the last two indices in the coefficient tensor can be made symmetric, Aijk =

A
(i)
jk = A

(i)
kj = Aikj . While the derivation of the RG equations are rather standard
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and can be found in the literature, interpreting the RG flows obtained in numerics
can be subtle and tricky. At the tree-level, classification of relevance for the couplings
with non-vanishing scaling dimensions is often straightforward. The fates of the RG
flows are dictated by the scaling dimensions obtained by diagonalizing the matrix
∆ij and the phases can be classified rather easily.

However, it is often encountered that ∆ij = 0 for many interesting correlated
systems ([4]-[11]) and the RG equations become homogeneously quadratic. Analytic
solutions are not known ([12]-[13]) and, at the current stage, numerical integration
is the common approach to analyze the RG flows. It is rather subtle to classify the
relevant couplings gi in that case because they often flow to fixed points outside
of the scope of perturbative regime. The typical recipe is to integrate the RG
equations up to the cutoff length scale lc where the maximal coupling is of order
one. At l = lc , we identify the couplings gi(lc) ∼ O(1) to be relevant while those
couplings gi(lc) ≪ 1 are irrelevant. But, this face-value classification scheme does
not always work and some couplings are ambiguous to be classified as either relevant
or irrelevant.

A recent breakthrough ([11]) points out the existence of the RG potential and
renders a better analytic understanding of the RG flows in these correlated systems.
To show the existence of an RG potential, we can apply the rescaling transformation
to all couplings, xi =

√
λigi, and replace the derivative with respective to the loga-

rithmic length l by the derivative with respective to some fictitious time t, denoted
as the dot,

ẋi =
∑
jk

Pijkxjxk. (1.2)

Here Pijk =
√
λi/(λjλk)A

(i)
jk is the coefficient tensor after rescaling. The RG equation

can be viewed as a strongly over-damped particle moving in the multidimensional
space under the influence of the external force on the right-band side of the equation.
The existence of a potential requires the curl of the force to vanish, ∂jFi−∂iFj = 0.
This leads to the following constraint on the rescaled coefficient tensor,

∑
k

(Pijk − Pjik)xk = 0. (1.3)

Because xk is arbitrary and Pijk = Pjik , this requires Pijk to be totally symmetric.
It has been shown explicitly how the coefficient tensor Pijk can be made totally
symmetric under appropriate rescaling transformation.

The remaining part of the paper is organized as follows. In section 2 we consider
the dynamics of the model equations in the presence of a renormalization-group
potential and give a sufficient condition on the initial conditions for the blow up
behavior of the solutions. In section 3, we derive the polar equation for the governing
system. In section 4, we prove that the blow up rate of the solution xi is (t− T )−1

where T is the blow-up time. Section 5 is the discussion section.
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2. The Model

Consider the following governing system of equations

dxi

dt
= xTA(i)x, i = 1, 2, ..., n, (2.1)

where x = (x1, ..., xn)
T ∈ Rn, A(i) = (a

(i)
jk ) is a symmetric n × n matrix satisfying

the totally symmetric conditions:

a
(i)
jk = a

(j)
ik = a

(k)
ij for all i, j, k = 1, 2, ..., n. (H)

Suppose the initial condition x(0) satisfies

x(0) ̸∈ E (2.2)

where E is the set of equilibria of (2.1). Let

V (x) = −1

3

n∑
i=1

xi(x
TA(i)x). (2.3)

Then from (H)

−3
∂V

∂xi

= xTA(i)x+ xi
∂

∂xi

(xTA(i)x) +
∑
j ̸=i

xj
∂

∂xi

(xTA(i)x)

= xTA(i)x+ 2xi(
n∑

j=1

a
(i)
ij xj) +

∑
j ̸=i

2xj

n∑
k=1

a
(j)
ik xk

= xTA(i)x+ 2xi(
n∑

j=1

a
(i)
ij xj) + 2

∑
j ̸=i

xj(
n∑

k=1

a
(j)
jk xk) (from (2.2))

= 3xTA(i)x.

Hence we have

−∂V

∂xi

= xTA(i)x (2.4)

and (2.1) can be rewritten as
dx

dt
= −∇xV. (2.5)

Obviously (2.1) is a gradient system satisfying

V̇ = −∇xV · (−∇xV ) = −|∇V |2 ≤ 0. (2.6)

Let V (t) := V (x(t)).

Theorem 2.1. Let x(t) be any solution of the initial value problem (2.1) satisfying
(2.2) and (H). If V (x(0)) < 0 then the solution x(t) blows up in finite time.

Proof. Let g(t) =
∑n

i=1 x
2
i (t) = |x(t)|22 and V (t) := V (x(t)). Then from (2.3) we

have
g′(t) = −6V (t). (2.7)

Claim:
g′(t) ≥ C(g(t))δ (2.8)
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for all t > 0 for some C > 0 independent of δ, and for all 1 < δ ≤ 3/2.
Suppose (2.8) holds. Then

1

(g(0))δ−1
− 1

(g(t))δ−1
≥ (δ − 1)Ct,

or

(g(t))δ−1 ≥ 1
1

(g(0))δ−1 − (δ − 1)Ct
. (2.9)

Then g(t) → ∞ as t → (t∗)−, t∗ = t∗(δ) = 1
(δ−1)C

1
(g(0))δ−1 . We note that from

(2.6) and (2.7), g′(t) ≥ −6V (0) > 0. Either g(t) bolws up in finite time or g(t) ≥
(−6V (0))t for all t > 0. In either case without loss of generality we may assume
g(0) > 1. Then t∗(δ) is decreasing strictly in δ. Hence t∗(δ) > t∗(3

2
) = T for all

1 < δ < 3
2
. Let δ = 3

2
, from (2.9) it follows that

|x(t)| ≥ 2

C

( 1

T − t

)
, 0 < t < T.

Now we prove that (2.8) holds. Consider 1 < δ ≤ 3/2, C sufficiently small such that

−6V (0)− C(g(0))δ > 0,

or

0 < C < min
1≤δ≤ 3

2

−6V (0)

(g(0))δ

From (2.7), (2.8) is equivalent to

−6V (t) ≥ C(g(t))δ for all t ≥ 0.

Let

h(t) = −6V (t)− C(g(t))δ.

Then h(0) > 0. From (2.6)

h′(t) = −6V ′(t)− Cδ(g(t))δ−1g′(t)

= 6
n∑

i=1

(xTA(i)x)2 − Cδ(g(t))δ−1(−6V )

= 6
[ n∑

i=1

(xTA(i)x)2 + Cδ(g(t))δ−1
]

By the Cauchy-Schwarz inequality and (2.3), it follows that

9V 2(t) =
( n∑

i=1

xi(x
TA(i)x)

)2

≤
( n∑

i=1

x2
i

)( n∑
i=1

(xTA(i)x)2
)
.
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Then

h′(t) ≥ 6
[9V 2(t)

g(t)
+ Cδ(g(t))δ−1

]
=

6V (t)

g(t)

[
9V (t) + Cδ(g(t))δ

]
=

6V (t)

g(t)

[
9V (t) + δ

(
− 6V (t)− h(t)

)]
=

6V (t)

g(t)

[
3V (t)(3− 2δ)− δh(t)

]
. (2.10)

From (2.6) and V (0) < 0, we have V (t) < 0 for all t ≥ 0. Since h(0) > 0, 1 < δ <
3/2, then from (2.10), h′(0) > 0 and h(t) > 0 for all t > 0. Thus we complete the
proof of (2.8). �

Corollary 2.1. If V (x(0)) = 0 and x(0) is not an equilibrium, then V̇ (x(0)) < 0
and the conclusion of Theorem 2.1 holds.

Proof. From (2.6), V̇ (x(0)) ≤ 0. If V̇ (x(0)) = 0 then x(0) is an equilibrium of the
system (2.1), a contradiction to the assumption on the initial condition. �
Corollary 2.2. If V (x(0)) > 0 then either

(i) there exists t1 > 0 such that V (x(t1)) = 0, V̇ (x(t1)) < 0 and the conclusion
of Theorem 2.1 holds, or

(ii) V (x(t)) > 0 for all t ≥ 0 and dist(x(t), E) → 0 as t → ∞, where E is the
set of equilibria of (2.1).

Proof. If V (x(t1)) = 0 then V̇ (x(t1)) < 0. Otherwise x(t1) is an equilibrium, a
contradiction.

If V (x(t)) > 0 for all t ≥ 0, then from (2.7), x(t) is bounded for all t ≥ 0.
From LaSalles invariance principle ([14]-[15]), dist(x(t), E) → 0 as t → ∞ where
E = {x : V̇ (x) = 0}. �

3. Polar coordinates

In this section we derive the polar equation for the gradient system (2.5).
Let x = rϕ where r = |x|2, ϕ = x

r
∈ Sn−1. Then

x′ = r′ϕ+ rϕ′ = −∇xV (x). (3.1)

We note that ϕTϕ = 1 and ϕTϕ′ = 0. Let

P ϕ = Id− ϕϕT

be the orthogonal projection onto the tangent space TϕS
n−1 = ⟨ϕ⟩T to the unit

sphere Sn−1 at ϕ. Then from (3.1)

ϕT (r′ϕ+ rϕ′) = ϕT (−∇xV (x)).

Thus we obtain the radical part

r′ = −ϕT∇xV (x). (3.2)
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Similarly applying P ϕ to both sides of (3.1) and using P ϕϕ′ = 0 yields the tangential
part

rϕ′ = −P ϕ∇xV (x). (3.3)

We now express ∇xV (x) in polar coordinates.
From (2.3), V (x) is a homogeneous polynomial with degree p = 3. Therefore

V (x) = V (rϕ) = rpV (ϕ). (3.4)

Differentiating both sides of (3.4) with respect to xi yields

∂V

∂xi

= prp−1 ∂r

∂xi

V (ϕ) + rp
∂

∂xi

V (
x1

r
,
x2

r
, ...,

xn

r
). (3.5)

Since ∂r
∂xi

= ϕi and
∂
∂xi

(1
r
) = −ϕi

r2
, it follows that

∂

∂xi

V (
x1

r
, ...,

xn

r
) =

∂V

∂ϕi

∂

∂xi

(
xi

r
) +

∑
k ̸=i

∂V

∂ϕk

xk
∂

∂xi

(
1

r
)

=
∂V

∂ϕi

(
1

r
+ xi

−ϕi

r2
) +

∑
k ̸=i

∂V

∂ϕk

xk(
−ϕi

r2
)

=
1

r

∂V

∂ϕi

− ∂V

∂ϕi

ϕ2
i

r
+
∑
k ̸=i

∂V

∂ϕk

(−1)
ϕkϕi

r

=
1

r

∂V

∂ϕi

+
−1

r

( n∑
k=1

∂V

∂ϕk

ϕk

)
ϕi

Hence we have

∇xV (ϕ1, ..., ϕn) = −1

r
(ϕT∇ϕV )ϕ+

1

r
∇ϕV. (3.6)

Differentiating (3.4) with respect to r, we have

ϕT∇xV (rϕ) = prp−1V (ϕ).

Hence (3.2) implies

r′ = −prp−1V (ϕ).

From (3.3), (3.5), (3.6) and P ϕϕ = 0, we have

rϕ′ = −P ϕ∇xV (x)

= −P ϕ
[
prp−1V (ϕ)ϕ+ rp

(
− 1

r
(ϕT∇ϕV )ϕ+

1

r
∇ϕV

)]
= −rp−1P ϕ∇ϕV

Thus with p = 3 the polar equation of (2.5) is

dr

dt
= −3r2V (ϕ) (3.7)

dϕ

dt
= −rP ϕ∇ϕV (3.8)

We discuss the resulting dynamics of system (3.7), (3.8) in the next section.
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4. Blow up rate

In this section we discuss the global dynamics of system (3.7), (3.8). In particular
we summarize blow up rates versus convergence behavior in Theorem 4.1.

The trivial equilibrium x ≡ 0 of (2.1), alias r ≡ 0 of (3.7), (3.8) implies that the
set {r > 0} of positive radii r = |x|2 is forward and backward invariant. More-
over, systems (2.1) and (3.7), (3.8) are time reversible: x(t), r(t), ϕ(t) solve their
respective equations, if and only if −x(−t), r(−t), −ϕ(−t) do, with respective odd
Lyapunov functions V (−x) = −V (x) and V (−ϕ) = −V (ϕ). Therefore we restrict
attention to forward solutions 0 ≤ t < T ≤ ∞ on their maximal time interval of
existence up to T = T (r(0), ϕ(0)). Finite time blow up occurs if and only if T < ∞,
i.e.

lim
t↑T

r(t) = +∞. (4.1)

Here we used that ϕ ∈ Sn−1 is compact, and hence cannot blow up. Common
terminology speaks of grow up if (4.1) holds with T = ∞, i.e. in case of global
existence of solutions (r(t), ϕ(t)).

To study the global behavior of system (3.7), (3.8), it is useful to rescale time t
to a new time τ . Writing t = t(τ) for the inverse transformation, introducing the
new variables R(τ) := r(t), Φ(τ) := ϕ(t) we rescale system (3.7), (3.8) to become

dt

dτ
=

1

R
> 0, (4.2)

dR

dτ
= −3RV (Φ), (4.3)

dΦ

dτ
= −P ϕ∇ϕV (Φ), (4.4)

with initial condition t = 0 at τ = 0 and R = r, Φ = ϕ there. Because Φ ∈ Sn−1 is
compact and V is bounded on Sn−1, all solutions of (4.3)-(4.4) exist globally for all
times τ ∈ R. Moreover t = t(τ) is strictly increasing and

0 < T = lim
τ→∞

t(τ) =

∫ ∞

0

1

R(τ)
dτ ≤ ∞, (4.5)

is the maximal time of existence in the original time variable 0 ≤ t < T . In
particular, finite time blow-up T < ∞ is equivalent to a finite integral in (4.5).

We proceed with care and study the autonomous equation (4.4) on Φ ∈ Sn−1 first.

Lemma 4.1. The system (4.4) is autonomous in Φ and leaves Sn−1 invariant. Fur-

thermore V (Φ) is a Lyapunov function for the system (4.4). Hence dist(Φ(τ), Ẽ) →
0 as τ → ∞, where Ẽ ⊆ Sn−1 denotes the set of equilibria of (4.4).

Proof. Since P ϕ projects orthogonally onto the tangent space TϕS
n−1, the system

(4.4) leaves Sn−1 invariant in forward and backward time τ .
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Next we show that (4.4) is a gradient system. By Cauchy Schwarz inequality we
have

d

dτ
V (Φ(τ)) =V̇ (Φ) = (∇ϕV )T (−P ϕ∇ϕV )

=− (∇ϕV )T (I − ΦΦT )∇ϕV

=− |∇ϕV |2 + |ΦT∇ϕV |2 ≤ 0. (4.6)

Let M = {Φ ∈ Sn−1 : V̇ (Φ) = 0}. Equality in (4.6) holds if and only if ∇ϕV (Φ) =

αΦ for some α ∈ R. It is easy to verify that M = Ẽ = {Φ ∈ Sn−1 : Φ is an equilib-

rium of (4.4)}. By LaSalle’s invariance principle, it follows that dist(Φ(τ), Ẽ) → 0
as τ → ∞. �

Since V (Φ) is a Lyapunov function of (4.4) on the compact sphere Φ ∈ Sn−1, we
have a finite monotone limit

V∗ = lim
τ→∞

V (Φ(τ)) ∈ R. (4.7)

We can now formulate our main blow up and convergence result for system (3.7),
(3.8) alias (2.1).

Theorem 4.1. Let x(0) ̸= 0, alias, r(0) = |x(0)|2 > 0, and define the angular limit
V∗ by (4.5) above. Then two cases arise for the solutions (r(t), ϕ(t)) of (3.7), (3.8)
and their maximal time interval of existence 0 ≤ t < T ≤ ∞.

Case 1: V∗ ≥ 0.
Then T = +∞ and r(t) ↓ r∗ decreases monotonically to r∗ for t → ∞. The limit r∗
is strictly positive if and only if∫ ∞

0

V (Φ(τ))dτ < ∞. (4.8)

If the integral is infinite, however, then r∗ = 0 and x(t) converges to the trivial
equilibrium for t → ∞. The latter case occurs, in particular, whenever V∗ > 0.

Case 2: V∗ < 0.
Then T < ∞ and r(t) blows up in finite time, as in (4.1). The blow up rate is
(T − t)−1; more pricisely

lim
t↑T

(T − t)r(t) = (3|V∗|)−1. (4.9)

In either case, the angular direction ϕ(t) = x(t)
|x(t)|2 = Φ(τ) of blow up or of convergence

converges to the equilibrium set Ẽ of (4.4) for t ↑ T ≤ ∞.

Proof. We address the case V∗ ≥ 0, first. Since V (ϕ(t)) = V (Φ(τ)) ≥ V∗ ≥ 0,
the variable r(t) > 0 indeed decreases monotonically, by (3.7), and hence remains
bounded. Therefore T = ∞, and solutions exist globally in t. Moreover the mono-
tone limit r∗ = limt→∞ r(t) ≥ 0 exists. Note r∗ = R∗ = limτ→∞R(τ). In particular
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(4.3) implies

− lnR∗ + lnR(0) = −
∫ ∞

0

d

dτ
ln(R(τ))dτ = −

∫ ∞

0

(R(τ))−1 d

dτ
R(τ)dτ

= 3

∫ ∞

0

V (Φ(τ))dτ.

This proves the remaining claims of Case 1; see in particular (4.8).
We address the case V∗ < 0, next. Let ρ(t) = 1

r(t)
. Then (3.7) implies

dρ

dt
= 3V (ϕ(t)). (4.10)

Choose τ0 > 0 such that V (Φ(τ0)) < 0 and let t0 = t(τ0) > 0 be defined by
the time rescaling (4.2). Since V (ϕ(t)) = V (Φ(τ)) is monotonically decreasing,
V (ϕ(t)) ≤ V (Φ(τ0)) < 0 for t ≥ t0. Therefore (4.10) implies that ρ(t) is decreasing
monotonically and ρ(T ) = 0 at some finite time T , where

1

r(t)
= ρ(t) = ρ(t)− ρ(T ) = 3

∫ T

t

(−V (ϕ(s)))ds

=3

∫ T

t

(−V∗ + o(1))ds

=3(T − t)(−V∗ + o(1)). (4.11)

Here o(1) = V∗ − V (ϕ(t)) denotes a correction which converges to zero for t ↑ T .
The reciprocal of (4.11) implies blow up of r(t) with rate (T − t)−1 and positive
coefficient −V∗ as claimed in (4.9). This proves Theorem 4.1. �

We remark that dichotomy of the two cases of Theorem 4.1 does not allow for
infinite time grow up r(t) → ∞ for t → T = ∞. The case V∗ = 0 of an equilibrium
ϕ = Φ of the rescaled angular equation (4.4) is of course degenerate: by homogeneity
of V , it implies ∇xV = 0 at x = rϕ for all r. Thus we may consider convergence to
finite r∗ > 0 as exceptional nongeneric or degenerate , and we arrive at the dichotomy
that either r(t) → 0 or else r(t) → ∞ in forward time t → +∞. By reversibility,
the same holds true in backward time. Trajectories which start at the zero level set
{V = 0} with r(0) > 0, then blow up in, both, forward and backward finite time
t = T±, for some maximal time interval of existence T− < t < T+. Trajectories
which do not cross {V = 0} blow up in precisely one time direction, depending on
their sign of V , and converge to zero in the opposite direction.

In case the rescaled angular equation (4.4) possesses only a discrete, and hence
finite, set of equilibria, the asymptotic direction Φ = Φ∗ of blow up or convergence
is also well-defined and

Φ∗ = lim
t→∞

x(t)/|x(t)|2 (4.12)

exists, for t → T . If the equilibrium Φ∗ of (4.4) is a nondegenerate critical point of
V on Sn−1, i.e. hyperbolic, then the convergence of Φ(τ) to Φ∗, and of V (Φ(τ)) to
V∗, is exponential. This further refines the blow up result (4.9). We neither pursue
this equation any further here, nor do we address the general case of p-homogeneous
potentials V , p > 3 which can be treated in a similar spirit.
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5. Discussion

The rigorous results in the previous sections make a fundamental advance in
renormalization group analysis. One common challenge in studying strongly cor-
related electron systems is the huge dimension of the couplings xi. For instance,
renormalization-group analysis ([16]-[18]) for iron-based superconductors, easily in-
volves hundreds or even thousands of couplings. With modern computation pow-
ers, these coupled differential equations can be solved numerically within negligible
errors. However, because a huge number of couplings diverges under RG transfor-
mations, the interpretation of the numerical outcome remains a difficult task.

Our theorems provide a systematic classification for the ultimate fates of the RG
flows. Depending on the sign of the RG potential V , the flows can be classified
into three regimes: divergent, backward-orbit and stable. One can introduce the
distance to the trivial fixed point x = 0 as r(t) = |x|2. In the divergent regime, r(t)
grows monotonically and the ground state is driven away from the trivial fixed point
under RG transformations. On the other hand, in the stable regime, r(t) decreases
monotonically and all interactions become irrelevant, i.e. no instability develops
within the stable basin. The most interesting case is the backward-orbit regime. The
distance r(t) decreases initially and starts to grow upon hitting the zero-potential
surface. Because the fictitious time t corresponds to cooling down the temperature
(logarithmically) in realistic situations, the backward-orbit regime implies a non-
trivial crossover from the trivial fixed point (Fermi liquid) to the correlated ground
state. This peculiar crossover behavior in unconventional superconductivity is the
realization of the backward-orbit regime. The complete classification presented here
answers the long-standing puzzle why limit cycles, chaos and so on are rarely seen in
RG transformations while they often occur in generic coupled differential equations.

The presence of the RG potential enables the complete classification of the phase
diagram. In addition, it also provides a powerful scheme to quantify the relevance
of runaway couplings. Because the blow-up rate for the radius is r(t) ∼ (t − T )−1,
where T is the blow-up time, it implies the couplings can at most diverge at the
same exponent of unity. Linear analysis near the blow-up regime shows that the
relevant couplings scales as xi ∼ (t−T )−γi , with exponents 0 ≤ γi ≤ 1. This inverse
power law was proposed before in previous studies, but can now be derived from
Theorem 4.2. The robustness of these exponents renders the unique way to build
up the hierarchy of all relevant couplings and will be extremely helpful to identify
the dominant interactions in numerical RG studies.

In summary, the presence of a homogeneous renormalization-group potential V
allows us to prove several rigorous theorems and, in consequence, find the complete
classification for the potential flows. Meanwhile, the relevant couplings follow the
scaling form described by a set of RG exponents. The above findings are of great
importance in interpreting numerical RG studies and also revealing the generic struc-
ture of the phase diagrams for strongly correlated electron systems.
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