
Beim Fachbereich Mathematik und Informatik der Freien Universität Berlin
eingereichte Bachelorarbeit

On manifolds admitting Anosov
diffeomorphisms

p

Anna Karnauhova
Betreuer: Prof. Dr. Bernold Fiedler, Prof. Dr. Martin Väth
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Movesi l’aria come fiume e tira con seco di nuvoli,
si come l’acqua corrente tira tutte le cose
che sopra di lei si sostengano.

Die Luft bewegt sich wie ein Fluß und führt Wolken mit sich,
wie das fließende Wasser jedes Ding mit sich führt,
das sich auf ihm hält.

Leonardo da Vinci
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0.1 Introduction and overview

0.1.1 Anosov’s question

The problem to classify the manifolds admitting Anosov diffeomorphisms goes
back to the question of Dimitrii Anosov in his Congress talk, Moscow 1966
[Smale], whether there exist non-toral examples of Anosov diffeomorphisms. By
an Anosov diffeomorphism f ∈ C1, we mean a diffeomorphism for which the
whole compact manifold M without boundary is a hyperbolic set, for exact def-
inition see chapter 2. Id est, there is a continuous Df-invariant splitting of the
tangent bundel TM of the manifold M TM = Es ⊕ Eu and for any Riemannian
metric on M, there exist constants c, λ, c > 0, 0 < λ < 1 with

||Dfn(x)|Esx|| < cλn and ||Df−n(x)|Eux || < cλn

for any n > 0 and x ∈ M , [Manning]. In fact, the only known construction of
Anosov diffeomorphisms until the year 1967 was on the n-dimensional torus Tn =
Rn/Zn, which are also called algebraic Anosov diffeomorphisms [Gorbatsevitch].
The reason for this is because the construction of Anosov diffeomorphism on
the n-torus is obtained via a hyperbolic automorphism, which is representable
as a hyperbolic matrix A ∈ SL(n,R), i.e has no eigenvalues modulus 1 (this
is the property of hyperbolic) and has the determinant equals ±1 (corresponds
to A ∈ SL(n,R)). The easiest and the most famous example appears up the
dimension 2 on T2 via

A : T2 → T2,

(x, y) 7→ (2x+ y, x+ y)(mod 1),

or equivalently A

(
x
y

)
=

(
2 1
1 1

)(
x
y

)
(mod 1). The matrix A has exactly two

eigenvalues which are both not equal to one. Precisely, one of the eigenvalues is
smaller than 1 and the other is bigger, so that iteration of the map A gives us
a contruction or an expansion in each point p ∈ T2, see the figure on the first
page. This map is named after the russian mathematician Vladimir I. Arnol’d
”Arnold’s cat map”, who with the aid of a cat head demonstrated the hyperbolic
behavior of A on the 2-dimensional torus T2. This is an example for a system
which is extremely sensitive to initial conditions. The eigendirections E±p are the
directions in which small perturbations p grow fastest in forward E+

p / backward
E−p iteration direction. This phenomenon is known as ”butterfly effect” due to the
metheorologist Edward Lorenz, the inventor of the Lorentz attractor standing for
chaotic systems. More precisely, he described the sensitive dependence on initial
conditions with the following: Weather appears to be a chaotic dynamical system,
so it is conceivable that a butterfly that flutters by in Rio may cause a typhoon
in Tokyo a few days later [Ha/Kat].
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0.1.2 Answer to Anosov’s question

The answer to Anosov’s question was given by Steve Smale in [Smale] in 1967
which was a construction of an Anosov diffeomorphism on a nilmanifold N /Γ,
where N is a nilpotent Lie group and Γ is a lattice in N . N /Γ can be interpreted
as the generalization of the n-torus Tn = Rn/Zn, since Rn is abelian and Z2 is a
lattice in Rn. The generalized version of an abelian Lie group is a nilpotent Lie
group. More precisely, abelian Lie groups are 1-step nilpotent. As we will see,
the notion of the nilpotency of a Lie group can be more easily understood with
the aid of the nilpotency of a Lie algebra because a Lie group is nilpotent if and
only if its Lie algebra is nilpotent, see theorem 1.4.6. A Lie algebra is roughly
speaking a tangent space to the corresponding Lie group in the identity. With a
Lie bracket, it becomes a vector space. It will be essential to keep in mind the
toral example mentioned above. Also, at this stage, we will give some historical
background concerning Lie groups and Lie algebras, as well. The theory of Lie
groups was introduced by Sophus Lie. The aim of the theory of Lie groups was to
apply algebraic concepts to the theory of differential equations and to geometry
[Onishchik]. In fact, as we will see throughout this paper, we will deal with many
algebraic concepts. Then Michael Shub gave a famous construction of an Anosov
diffeomorphism on an infra-nilmanifold , i.e. is covered by a finite number of
nilmanifolds in [Dekimpe] (this explains the prefix ”infra” lat. beneath). In fact,
there are even two examples. One of them is four dimensional and the other
is six dimensional, but they are constructed in a very similar way. As I found
out, the examples mentioned many times in the subsequent papers (for example
[Porteous], [Nitecki]) are not correct and which was affirmed by Michael Shub
personally.
Indeed, the only known manifolds admitting Anosov diffeomorphisms are nil-
manifolds and infra-nilmanifolds, which lead to the following open conjecture
[Gorbatsevitch]:

Conjecture 0.1.1. If a compact manifold M admits Anosov diffeomorphism,
then M is homeomorphic to a nilmanifold or an infra-nilmanifold .

0.1.3 Paper Layout

This work is organized in four chapters. Chapter 1 should be regarded as a
review of basic algebraic concepts which are needed to understand the material
in the subsequent chapters. It starts with the group actions in order to later
introduce infra-nilmanifolds and Anosov flows. However, the central part of the
first chapter is the introduction of Lie groups and Lie algebras. The chapter
thoroughly describes the relation between them concentrating on the notion of
the nilpotency and the investigation of the existence of a lattice in a nilpotent
Lie group. These concepts lead at the end of the chapter to the definition of
a nilmanifold and of an infranil-manifold. The notion of the infranil-manifold
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is regarded in terms of the completeness and is not discussed and introduced
as much as the notion of the nilmanifold. In fact, there are less examples on
the algebraic as well topological concepts such as semi-direct product, torsion
free, covering space because they can be found in every good book on algebra or
topology.
Chapter 2 introduces Anosov flows and Anosov diffeomorphisms in order to give
an idea of the hyperbolicity in both cases. More precisely, we will study a geodesic
flow on a surface of a constant negative curvature, which turns out to be an
Anosov flow, and then draw the appropriate picture. This will not only simplify
the problem of imagination, but also help us to motivate the definition of Anosov
diffeomorphisms. After having introduced nilmanifolds and infra-nilmanifolds in
chapter 1 and Anosov diffeomorphisms in chapter 2, we will discuss the non-toral
examples of Anosov diffeomorphisms in chapter 3. More precisely, we will study
the example given by Steve Smale on a six-dimensional nilmanifold [Smale] and
an example on a six dimensional infranil-manifold by Michael Shub [Shub], which
does not work since the lattice Γq turns out to be not torsion free. In the last
chapter, we will give a short review on known results concerning the classification
problem of the manifolds admitting Anosov diffeomorphisms. Most of the results
stated in the last chapter are of topological character and are not explained in
great detail. It should be seen as a background information on known results.

0.2 Aknowledgements

The conversation with V.V. Gorbatsevich was not only very interesting but more
importantly essential for my understanding of the subject. He encouraged me to
look at the algebra from a different perspective and study the algebraic geometry
in order to gain the complete understanding of the proof of the theorem 4.0.11.
Indeed, as he pointed out to me, one needs to have a certain picture in mind to
understand what is going on in the abstract level. I would also like to thank Mark
Pollicott who helped me to understand the notation in Michael Shub’s paper.
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Chapter 1

Basic algebraic concepts

First of all, we will introduce the basic algebraic concepts such as group actions,
Lie groups, and Lie algebras. Most importantly, we will investigate what the
nilpotency of a Lie group and Lie algebra means and when a nilpotent Lie group
allows a lattice. This will lead us at the end of this chapter to the definition of a
nilmanifold, which will become an essential concept later in the paper.

1.1 Group actions

First, we will give a formal definition of a group action. It turns out that one
of the fundamental objects analyzed by the theory of dynamical systems are
the flows, which are examples of differentiable group actions and are considered
throughout this work. More precisely, we will introduce Anosov flow with cer-
tain interesting properties and which performs hyperbolic behavior on the whole
compact manifold.

Definition 1.1.1. Group action
Let (G, ∗) be a group with the neutral element e and M a set. A group action is

a map
G×M →M

(g,m) 7→ mg = mg = g(m)

such that the following holds:

(i) me = m, ∀m ∈M

(ii) mg∗h = (mg)h
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Remark. More precisely, for each g ∈ G we get a map

ρg : M →M,m 7→ mg = ρg(m)

with

(i) ρe = id

(ii) ρg∗h = ρg ◦ ρh

this implies that ρg : M →M is an isomorphism. This means that a group action
of G on M is a group homomorphism ρ : G→ Iso(M). If M is a linear space and
ρg is linear for each g ∈ G, we call ρ a representation of G.

First examples:

1. Normal forms

(a) The action of GL(N,R) leads to the so called Jordan Normal Form

GL(N,R) = {A ∈Mat(N ×N ;R)|A is invertible, i.e.det(A) 6= 0}

acts on Mat(N ×N,R) by conjugation, i.e.

GL(N,R)×Mat(N ×N,R)→ Mat(N ×N,R), (S,A) 7→ SAS−1

2. The action of isometry group of a geometry

(a) The PSL(2,R) = SL(2,R)/{±id} of Lobachevsky’s plane

(b) The SE(2,R) of Euclidean plane

3. The flows (also known as dynamical systems with continuous time) are
actions of the group (R,+) on a differentiable manifold M. This is the most
important term in the theory of dynamical systems.

As an example for a flow we will introduce the geodesic flow of the
Lobachevsky’s plane, which turns out to be an Anosov flow. We will
return to this example because of its beauty when we introduce Anosov
flows in chapter 2.

1.2 Lie groups

Initially, the Lie groups were invented for constructing the analogue of Galois
theory for differential equations by Sophus Lie, see for example [Onishchik]. They
will become very important for our study concerning the manifolds admitting
Anosov diffeomorphisms.

9



Definition 1.2.1. Lie group[Onishchik]
A Lie group over a field K = (R,C) is a group (G, µ) equipped with the structure
of a differentiable manifold over K in such a way that the map

µ : G × G → G

(x, y) 7→ xy

is differentiable.

Remarks 1.2.2. 1. We call Lie groups over the field C complex Lie groups
and over the field R real Lie groups.

2. Instead of differentiability of µ, it is also possible to require its analyticity
in a neighbourhood U ⊂ G of the neutral element e = id ∈ G.

Examples 1.2.3. 1. The general linear group

GL(N,R) = {A ∈Mat(N ×N ;R)|A is invertible, i.e. det(A) 6= 0}

is a Lie group.

2. The following subgroups of GL(N,R) are Lie groups. More precisely that
are:

(a) SO(N,R) = {A ∈Mat(N×N ;R)|AAT = Id, det(A) = 1}, the special
orthogonal.

(b) O(N,R) = {A ∈Mat(N ×N ;R)|AAT = ATA = Id}, the orthogonal.

(c) SE(N,R) = SO(N,R) + translations

(d) SU(N,C) = {A ∈ Mat(N ×N ;C)|A∗A = Id, A∗ := A
T
, det(A) = 1},

the special unitary.

(e) U(N,C) = {A ∈ Mat(N × N ;C)|A∗A = AA∗ = Id, A∗ := A
T}, the

unitary.

(f) SL(N,R) = {A ∈Mat(N ×N ;R)|det(A) = 1}, the special linear.

(g) HEIS(3,R) = {A ∈ Mat(3 × 3;R)|A =

1 a b
0 1 c
0 0 1

 , a, b, c ∈ R},

the Heisenberg group. For the definition of the Heisenberg Lie group
one can slso take the 3× 3 lower triangular matrices [see chapter 4 in
Shub’s example]. We will also learn its Lie algebra, which also appears
in the Bianchi classification (named after Luigi Bianchi) applied to
cosmology.
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1.3 Lie algebras

Now it is important to know the relation between a Lie group and its Lie algebra.
We will need the Lie algebra not only in order to understand the nilpotency much
more easily, but also in chapter 3 where we introduce Smale’s idea. To each Lie
group G, we can consider its tangent algebra g, which determines the group G.
This makes the theory of Lie groups attractive in that the problems concerning
Lie groups can be translated in the language of linear algebra by regarding the
tangent algebra g corresponding to the Lie group G [Onishchik].

Definition 1.3.1. Let G be a Lie group, g(t) and h(s) (s,t ∈ R) be differentiable
paths on G such that g(0) = h(0) = e, g′(0) = ξ h′(0) = η.
Define the Lie bracket [ξ, η] := ∂2

∂t∂t
(g(t), h(s))|t=s=0 := ∂2

∂t∂t
g(t)h(s)g−1(t)h−1(s)|t=s=0

such that the Lie bracket defined as above has the following properties:
For ξ, ξ1, ξ2, η, η1, η2, µ ∈ TeG, a, b ∈ R

(i) [, ] is a bilinear form, i.e. linear in both components:

[a(ξ1 + ξ2), η] = a([ξ1, η] + [ξ2, η])

[ξ, b(η1 + η2)] = b([ξ, η1] + [ξ, η2])

(ii) [, ] is antisymmetric, i.e [ξ, η] = − [η, ξ]

(iii) The Lie bracket satisfies the Jacobi-identity:
[ξ, [µ, η]] + [η, [ξ, µ]] + [µ, [η, ξ]] = 0.

The space TeG with the operation [, ] defined in this way, is the tangent algebra
of the group G and will be denoted by the gothic letter g. (see [Onishchik])

Remark. 1 If the Lie group G consists of matrices, then so does the corre-
sponding Lie algebra g and the following holds for the Lie bracket:

[X, Y ] = XY − Y X, X, Y ∈ g

Example 1.3.2. Now we give the corresponding Lie algebras to the Lie groups
given in example 1.2.2. via differentiation. In the next paragraph, we will try to
figure out which of them are nilpotent.

1. O(N,R) = {A ∈Mat(N ×N ;R)|AAT = ATA = Id}
o(N,R) = {A ∈Mat(N ×N ;R)|AT = −A}, see appendix.

2. SO(N,R) = {A ∈ O(N,R)|det(A) = 1}
so(N,R) = {A ∈ o(N,R)|trace(A) = 0}

3. U(N,C) = {A ∈Mat(N ×N ;C)|A∗A = AA∗ = Id, A∗ = A
T}

u(N,C) = {A ∈Mat(N ×N ;C)|A∗ = −A,A∗ = A
T}
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4. SU(N,C) = {A ∈ U(N,C)|det(A) = 1}
su(N,C) = {A ∈ u(N,C)|trace(A) = 0}

5. SL(N,R) = {A ∈Mat(N ×N ;R)|det(A) = 1}
sl(N,R) = {A ∈Mat(N ×N ;R)|trace(A) = 0}

6. SE(N,R) = SO(N,R) + translations
se(N,R) = so(N,R) + translations

7. HEIS(3,R) = {A ∈Mat(3× 3;R)|A =

1 a b
0 1 c
0 0 1

 , a, b, c ∈ R}

heis(3,R) = {A ∈Mat(3× 3;R)|A =

0 a b
0 0 c
0 0 0

 , a, b, c ∈ R}

If we wish to go the other direction, i.e. from a Lie algebra to a Lie group,
we can do this by the exponential map, which is defined in the following way
[Onishchik]:

Definition 1.3.3. Let ξ ∈ g, gξ(t) the one-parameter subgroup with velocity
ξ(t) ≡ ξ. We will refer to the vector ξ as its dirctin vector. For any Lie group
G, we set by definition expξ = gξ(1). The map exp : g→ G defined in this way is
known as the exponential map.

Remark. The exponential map exp : Mat(n,C)→ GL(n,C) is defined by
exp(X) := Σ∞n=0

Xn

n!
= Id +X + 1

2
X2 + 1

6
X3 + . . . , see [Bump].

1.4 Nilpotency

Generally speaking, the term nilpotency (lat. ”nil” from ”nihil” nothing, ”po-
tentia” power, potency) in mathematics stands generally speaking for vanishing
of an object from a certain step in an iteration. As an example, one can consider
nilpotency of a matrix A ∈Mat(3× 3,R),

A =

0 a12 a13

0 0 a23

0 0 0


by raising A to a higher power. The matrix A becomes the zero matrix when we
raise it to the power of three, A3 = 0. We then say that A is a 2-step nilpotent
matrix, because we need exactly two steps to obtain the zero matrix. As we will
see, one of the most important results concerning the manifolds admitting the
Anosov diffeomorphisms will be the following theorem [Jacobson], for the proof
of the theorem see chapter 4:
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Theorem 1.4.1. If a Lie algebra g admits the existence of a hyperbolic automor-
phism, then the Lie group g is nilpotent.

From the above theorem follows:

Theorem 1.4.2. If a Lie group G admits the existence of a hyperbolic automor-
phism, then the Lie group G is nilpotent.

Even if we don’t know what a hyperbolic automorphism is [see chapter 2]
and how it is related to an Anosov diffeomorphism, we have to first understand
what it means for the Lie group to be nilpotent. Thus, let us now turn to the
formal definitions concerning the nilpotency of Lie groups and Lie algebras. In
fact, we now look at the already known Lie groups and find out which of them
are nilpotent.

1.4.1 Nilpotency of a Lie group

Definition 1.4.3. nilpotent Lie group
Let G be a group, e the neutral element of G and G = G0 ⊃ G1 ⊃ G2 ⊃ ... the

decreasing (or lower) central series, i.e

(i) Every Gi is normal in G.

(ii) ∀i : Gi/Gi+1 is contained in the center ofG/Gi+1.

A group G is called nilpotent if there exists an m such that Gm = {e}.

1.4.2 Nilpotency of a Lie algebra

Definition 1.4.4. nilpotent Lie algebra
Let g be a Lie algebra and

G = g0 ⊃ g1 ⊃ g2 ⊃ ... ,

gk+1 := [g, gk]. We call g nilpotent if there exists m ∈ N such that
gm = 0.[Onishchik]

Remarks 1.4.5. 1. There exists a theorem, which says [Onishchik] :

Theorem 1.4.6. A connected Lie group G is nilpotent if and only if its
tangent algebra g is nilpotent. Moreover, Gm = {e} if and only if gm = 0.

This theorem simplifies the question whether a Lie group is nilpotent be-
cause it is sufficient to prove the nilpotency of its corresponding linear space,
namely its Lie algebra.
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2. Every subalgebra and every quotient algebra of a nilpotent Lie algebra is
nilpotent.

We first give an example of a Lie group for which the lower central ceries stays
constant.

Example 1.4.7. The special euclidean group
Consider once again the SE(N,R) = SO(N,R) + translations
with its tangent algebra se(N,R) = so(N,R) + translations . Now, we want to
understand why this group is not nilpotent. For that reason, we consider the
2-dimensional case, namely the SE(2,R).

Step 1 Identify SE(2,R) = {

cos a − sin a b
sin a cos a c

0 0 1

 |a, b, c ∈ R}}. This we can do by

considering motions of the plane as projective transformations taking the
line at infinity to itself [Onishchik]. Then by differentiating with respect to
t in zero, we get the corresponding Lie algebra

se(2,R) = {

0 −a b
a 0 c
0 0 0

 | a, b, c ∈ R}

Step 2 Write the generators of the Lie algebra se(2,R):

Rot =

0 −1 0
1 0 0
0 0 0

, X =

0 0 1
0 0 0
0 0 0

, Y =

0 0 0
0 0 1
0 0 0

.

Step 3 Calculate the Lie brackets with each generator, i.e. consider the following
computed table:

[•, •] Rot X Y
Rot 0 Y -X
X -Y 0 0
Y X 0 0

For example we have

[Rot, X] =

0 −1 0
1 0 0
0 0 0

0 0 1
0 0 0
0 0 0

−
0 0 1

0 0 0
0 0 0

0 −1 0
1 0 0
0 0 0

 =

0 0 0
0 0 1
0 0 0


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Step 4 Understand what the lower central series do, i.e. consider
g0 := se(2,R), ..., gk+1 = [gk, se(2,R)]. We have:
g1 = [se(2,R), se(2,R)] = spanR{X, Y }.
g2 = [se(2,R), g1] = spanR{X, Y } = g1.

g3 = [se(2,R), g2] = [se(2,R), g1] = spanR{X, Y } = g1.
Thus, the lower central series of se(2,R) stays constant, i.e. can’t vanish.
From this fact we derive that the special euclidean group is not nilpotent
(see the theorem 1.4.6 in remark 1.4.5).

Example 1.4.8. The three dimensional Heisenberg group
As we had already defined, the three dimensional Heisenberg group is:

HEIS(3,R) = {A ∈Mat(3× 3;R)|A =

1 a b
0 1 c
0 0 1

 , a, b, c ∈ R}

with its tangent algebra:

heis(3,R) = {A ∈Mat(3× 3;R)|A =

0 a b
0 0 c
0 0 0

 , a, b, c ∈ R}

Now, we shall proof that the heis(3,R) is nilpotent.

Step 1 In the case of the Heisenberg Lie algebra we can immediately begin with
naming its generators.

X =

0 1 0
0 0 0
0 0 0

, Y =

0 0 0
0 0 1
0 0 0

, Z =

0 0 1
0 0 0
0 0 0


Step 2 By computing the Lie brackets of the above generators, we get the following

table:

[•, •] X Y Z
X 0 Z 0
Y -Z 0 0
Z 0 0 0

Step 3 Consider now the lower central series:
h1 = spanR{Z} h2 = [h, h1] = [spanR{X, Y, Z}, spanR{Z}] = 0
Thus, the Heisenberg Lie group is 2-step nilpotent.
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1.5 Uniform discrete subgroups of a Lie group

A subgroup Γ of a topological group G is said to be a discrete subgroup if Γ is
a discrete subset of G as a topological space. This is equivalent that each point
x ∈ Γ has a neighbourhood U(x) such that Γ∩U(x) = {x} [Onishchik/Vinberg].
A Lie group is always a topological group whereas the converse does not hold.
For example, Z with the cofinite topology is a topological group, but not a Lie
group. Let us first give some definitions concerning the subgroups of a Lie group,
see [Onishchik/Vinberg] .

Definition 1.5.1. Discrete subgroups of a Lie group
Let G be a Lie group. L ⊂ G a discrete subgroup in G. We call L a lattice, if

there exists a finite, invariant measure on G/L. L is called a uniform subgroup
of G, if G/L is compact.

Note that if G/L is compact i.e. L is uniform, then G/L the measure is finite
i.e L is a lattice. The converse does not hold see example 2.

Example 1.5.2. 1 Let e1, . . . en the canonical basis of Rn. Then the discrete
subgroup Γ = Σm

i=1Zei ⊂ Rn is a uniform lattice if and only if n = m
[Onishchik/Vinberg].

2 SL(N,Z) is a lattice in SL(N,R), but for N ≥ 2 it is not uniform
[Onishchik/Vinberg].

Remark. For nilpotent Lie groups, it turns out that a discrete subgroup D of G is
a lattice if and only if D is uniform which means that the lattices of the nilpotent
Lie groups are exactly the uniform discrete subgroups [Onishchik/Vinberg].

Now, we have the answer to the question how the compactness of a Lie group
can be achieved. However, we do not know in which Lie groups the lattices occur.
Thus, we need certain restrictions on a Lie group, which are stated in the theorem
of Malcev, see [Smale].

Theorem 1.5.3. [Malcev]

(a) A necessary and sufficient condition for a discrete group Γ to occur as a
uniform subgroup of a simply connected nilpotent Lie group is that Γ be
finitely generated nilpotent group containing no elements of finite order.

(b) A necessary and sufficient condition on a nilpotent simply connected Lie
group G that there exist a uniform discrete subgroup Γ is that the Lie algebra
of G has rational constants of structure in some basis.

(c) If Γi is a uniform discrete subgroup of a simply connected nilpotent group
Gi, i=1,2, then any isomorphism Γ1 → Γ2 can be uniquely extended to an
isomorphism.
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1.6 Nilmanifolds

We will mention that all details are in [Onishchik]. As the simplest example of
a nilmanifold, one can consider a connected abelian Lie group acting on itself by
left translations, as it is stated in [Onishchik]. Here is the formal definition.

Definition 1.6.1. Let G be a nilpotent Lie group and Γ ⊂ G a uniform discrete
subgroup. We call the qoutient space G/Γ a nilmanifold.

Example 1.6.2. i The n-dimensional torus Tn := Rn/Zn is a nilmanifold,
since Rn is abelian with respect to + and Zn is a lattice in Rn.

ii Let N := HEIS(3,R), and L := HEIS(3,Z). Then M := N /L is a
3-dimensional nilmanifold.

1.7 Infranil-manifolds

Definition 1.7.1. semi-direct product of abstract groups [Onishchik]
Let G1, G2 be arbitrary groups and g1, h1 ∈ G1, g2, h2 ∈ G2, b : G2 → AUT (G1)
a homomorphism. Let us recall that by the semi-direct product of the sets G1

and G2, we mean the direct product of the sets G1 and G2 equipped with a group
operation by means of the formula (g1, g2)(h1, h2) = (g1b(g2)h1, g2h2). We will
denote the semi-direct product by G1 oG2 or, more correctly, by G1 ob G2.

Remarks 1.7.2. 1. The semi-direct product for Lie groups is defined as the
semi-direct product of the abstract groups with the differentiable structure
of the direct product of differentiable manifolds. Moreover, the homomor-
phism b is required to define a differentiable action of the group G2 on G1.(In
particular, the automorphism b(g2) of the group G1 should be differentiable
for any g2 ∈ G2.) [Onishchik]

2. Let N be a connected and simply connected nilpotent Lie group and let
Aut(N ) be the group of continuous automorphisms of N . Then Aff(N ) =
N o Aut(N ) acts on N in the following way:
∀(n, α) ∈ Aff(N ), ∀x ∈ N : (n, α) · x = nα(x). We call Aff(N ) the affine
group of N . So an element of Aff(N ) consists of a translational part n ∈ N
and a linear part α ∈ AUT (N ) (as a set Aff(N ) is just N oAUT (N ) and
Aff(N ) acts on N by first applying the linear part and then multiplying on
the left by the translational part). In this way, Aff(N ) can also be seen as
a subgroup of Diff(N ) [Dekimpe].
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Definition 1.7.3. [Hirsch] LetN be a simply-connected Lie group, C ⊂ AUT (N )
a finite group of automorphisms of N and H := N o C the semidirect product.
Let Γ ⊂ H be a uniform discrete subgroup (H/Γ compact).
Γ acts on the space H/C of left cosets of C in H by left translations. The space
H/C is naturally diffeomorphic to N . If this action of Γ on N is totally dis-
continuous (i.e. if the map N → N /Γ is a covering space) then the double
coset space Γ \ H/C ' N /Γ is a smooth manifold M0. Such an M0 is called an
infrahomogeneous space.

Remark. M0 as defined above has as a covering space the homogeneous
space N /N ∩ Γ [Hirsch].

Remarks 1.7.4. 1. The semidirect product of N o C is denoted by Aff(N )
which stands for the affine group. This was not mentioned in [Hirsch],
instead he denotes the semi-direct product by H. So the aim is actually to
construct Aff(N ) of a nilpotent Lie group N .

2. We could also have assumed that Γ is torsion-free, i.e. if the only element in
Γ of finite order is the identity. It can be shown that it follows that Γ acts
freely on N [Franks], i.e ∀ x ∈ N , the subgroup {g ∈ Γ|g(x) = x} is trivial.
If the action is free we sometimes say that Γ acts without fixed points or
has no fixed points [Wolf].

Proof. [Franks] Let g ∈ Γ, x ∈ N such that g(x) = x, which implies gn(x) =
x for all n. For some n, gn is left translation by an element of N . Thus,
gn(x) = x would imply gn is the identity of Γ, which contradicts to the
assumption that Γ is torsion free.

Then Franks claims that N /Γ (the quotient space of N under the action of
Γ) is a compact manifold [Franks].

3. We shall give some warnings concerning the infra-nilmanifold case due to
[Dekimpe]. This article is very important, in that sense that it points out
the mistakes in the definition of infra-nilmanifold endomorphisms given by
Franks. The definitions were given first by M.Hirsch in [Hirsch] and then by
Franks in [Franks], whose definition was taken instead of the one by Hirsch.
But exactly the definition by Franks caused problems, which was also taken
by M.Shub.

Remark.

Definition 1.7.5. Let M0 be an infrahomogeneous space. If N is nilpotent, we
call M0 an infranil-manifold. In this case N ∩ Γ is uniform and of finite index in
Γ (see Auslander) and M0 is covered by the nilmanifold N /N ∩ Γ [Hirsch].

Example 1.7.6. Flat Riemannian manifolds are infranil-manifolds withN =
Rn and Γ = Zn [Hirsch].
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Chapter 2

Hyperbolicity in the sense of
dynamical systems

Historically, hyperbolic dynamical systems have its origin in the theory of Steve
Smale [Smale] in 1967 and in the theory of U-systems of Dmitrii Anosov. (In
literature one can find the following explanations for the letter U which may
stand for structurally stable, moustache, condition. All of the three words start
with an ”U” in Russian.) The U-systems introduced by Dmitrii Anosov were
called by Steve Smale Anosov flows in honour to its inventor.

2.1 Anosov flows

Although this work is dedicated to the Anosov diffeomorphisms and especially
the manifolds admitting them, it is essential to first understand the Anosov flows
on an example. More precisely, we will study the geodesic flow on a surface
of constant negative curvature. This will lead us to a detail understanding of
hyperbolic behaviour of an Anosov flow on a unit tangent bundel. The following
definition is from [Gorbatsevitch].

Definition 2.1.1. Anosov flow
Let M be a compact manifold without boundary,

Φ : R×M →M, (t, x) 7→ Φ(t, x) =: Φt(x)

be a flow, i.e. smooth one-parameter group action, of class Ck, k ≥ 1. We call Φt

an Anosov flow, if the following three conditions hold:

(i) [splitting of the tangentbundle] There exists a continuous decomposition of
the tangent bundle

TM = Es ⊕ Ec ⊕ Eu,

where Es stands for the stable eigenspace, Ec for the central eigenspace, Eu

for the unstable eigenspace.
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(ii) [invariance] The splitting defined in (i) is invariant under the flow Φt.

(iii) [contraction/expansion] ∃ C, D constants, α > 0, such that:

|| (dΦ) (t) (v) || ≤ Cexp (−αt) ||v||, ∀v ∈ Es, t > 0,

|| (dΦ) (t) (v) || ≥ Dexp (αt) ||v||, ∀v ∈ Eu, t > 0

in order to understand, what is meant by this definition of an Anosov flow,
we give a very famous example.

2.1.1 Example: Geodesic flow on the Lobachevsky’s plane

Before we start with the example, let us recall the following definition [Burns/Gidea]

Definition 2.1.2. A Riemannian metric on a smooth manifold M is a mapping
g that assigns to every point p ∈ M an inner product gp = 〈·, ·〉p on the tangent
space TpM , which depends smoothly on p ∈ M , in the sense that, for any two
smooth vector fields X and Y on M, the function p ∈ M → 〈Xp, Yp〉p ∈ R is
smooth. A manifold M endowed with a Riemannian metric is called a Riemannian
manifold.

Remarks 2.1.3. [Burns/Gidea]

1. We can write the Riemannian metric in terms of the functions gij(p) =
gij(x1, . . . , xm) = 〈 ∂

∂xi
|p, ∂

∂xj
|p〉. (gij)i,j=1,...,m is a m×m matrix.

2. For Riemannian metric the following notation is convenient
ds2 = Σm

i,j=1gijdxidxj, where s stands for ”arc-length” element.

Let us consider the following two dimensional Riemannian manifold

H2 := {z = x+ iy ∈ C|y > 0}, endowed with the metric

ds2 =
1

y2
dx2 +

1

y2
dy2 =

dx2 + dy2

y2
.

Thus, (gij) =

( 1
y2

0

0 1
y2

)
.

The two dimensional manifold as defined above is called the Lobachevsky1′s
plane being a two dimensional model of hyperbolic geometry2, i.e the non-euclidean

1Lobachevsky 1792-1856
2hyperbolic geometry was the answer to the 2000 years old problem concerning the fifth

postulate of Euclid’s elements. Until the independence of the fifth postulate from the other
postulates was recognized by Janos Bolyai, Nikolai Lobachevsky, Carl Friedrich Gauß many
mathematicians were involved in the vicious circle of deducing the fifth postulate from the other
axioms.
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space in which the sum of three angles is smaller than 180◦ and to each line there
exist infinitely many parallels. The mean curvature of H2 is -1, i.e. H2 is a
surface of constant negative curvature.

Let us now understand the notion of the geodesic flow on H2, which turns
out to be an Anosov flow. For that reason we need the following definitions:

Definition 2.1.4. geodesic
Let M be a manifold, I ⊂ M . A smooth curve γ : I → M is called a geodesic

if locally it is the shortest path between two points on γ, i.e. γ is a length
minimizing curve.

Definition 2.1.5. geodesic
Let M be a manifold, I ⊂M . A smooth curve γ : I →M is called a geodesic if

its velocity vector field dγ
dt

is parallel.

Remarks 2.1.6.

(a) Let k = 1, . . . ,m and define the Christoffel symbols as follows

Γkij := 1
2
Σ(

∂gjl
∂xi

+ ∂gil
∂xj
− ∂gij

∂xl
)glk, where glk are the entries of the inverse of the

matrix glk.
The geodesic equation d2xk

dt2
+ Σm

i,j=1
dxi
dt

dxj
dt

Γkij = 0, where k = 1, . . . ,m deter-
mines (x1(t), . . . , xm(t)) which reprsents a geodesic γ.

(b) The geodesics in the Eucledean plane are straight lines.

(c) The geodesics in the Lobachevsky′s plane are straight lines and Euclidean
semicircles orthogonal to the x-axis.

Proof. [Arnold],[Burns/Gidea]. Arnold’s proof is based on the first definition
and uses the trick with the isometry group PSL(2,R) = SL(2,R)/{±Id} of
the Lobachevsky’s plane, whose elements are the Möbius-transformations,
i.e. rational mappings of the form:

g : C→ C, z 7→ az + b

cz + d
.

In comparison, Burns and Gidea work with the tools of differential geometry.
Precisely, they calculate the so called geodesic equations via (gij) and the
Christoffel symbols, defined as above and from the two geodesic equations
they deduce the form of the geodesics in H2. We will give the proof in
appendix.

Definition 2.1.7. geodesic flow [Katok]
Let γ be a geodesic of a manifold M, T 1M the unit tangent bundle of the manifold
M and (p, ϑ) ∈ T 1M , p lies on γ. We call

Υ : R× T1M → T1M, (t, (p, ϑ)) 7→ (pt, ϑt),

the geodesic flow.
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Remark. Imagination: The point p moves with the constant unit velocity ϑ on
the geodesic γ.

Next, we will see, why the geodesic flow

Φ : R× T1H2 → T1H2, (t, (p, ϑ)) 7→ (pt, ϑt), ∀t ∈ R

is an Anosov flow. As we remember, we shall see the splitting of the tangent
bundle TP, P := T1H2 at each tuple (p, ϑ).

Definition 2.1.8. horocycle [Hasselblatt/Katok]
Horizontal lines R + ir := {t + ir|t ∈ R} are called horocycles centered at ∞.

Circles tangent to R at x ∈ R are called horocycles centered at x. If γ : R→ H2

is a geodesic then γ(−∞) and γ(∞) ∈ R ∪ {∞} are the limit points of γ as
t→ −∞ and t→ +∞, respectively. If ϑ ∈ TzH2 then the footpoint of ϑ is z.

The following notations are due to [Bedford/Keane/Series]
Note, that through each point p on the geodesic γ in H2 there are two horocy-
cles, ω− (p, ϑ) and ω+ (p, ϑ) being orthogonal to the geodesic γ and sharing the
tangent vector ϑ. We define ω− (p, ϑ) to pass through the end of the geodesic γ(t)
corresponding to t = −∞ and so having the unit tangent vector ϑ as the outward
normal vector. Analogously, ω+ (p, ϑ) passes through the end of the geodesic γ(t)
corresponding to t =∞ and thus having the unit tangent vector ϑ as the inward
normal vector.

With the notion of the horocycles we now define the horocycle flow

Ψ+ : R× T1H2 → T1H2

as the positive horocycle flow which slides the inward normal vectors to each
ω+ (p, ϑ) to the right along ω+ (p, ϑ) at unit speed. In analogy, we define

Ψ− : R× T1H2 → T1H2

as the negative horocycle flow which slides the outward normal vectors to each
ω− (p, ϑ) to the left along ω− (p, ϑ) at unit speed. We have the following relation
between the both above defined flows: Ψ+(t, (p, ϑ)) = −Ψ−(−t, (p,−ϑ)) . At each
(p, ϑ) ∈ T 1H2 we obtain a three dimensional tangent space T(p,ϑ)P with the basis
given by Ψ−(τ, (p, ϑ)),Φ(t, (p, ϑ)),Ψ+(τ, (p, ϑ)).
Thus, we obtain:

Eu
(p,ϑ) := span {Ψ−(τ, (p, ϑ))} ,
Ec

(p,ϑ) := span {Φ(t, (p, ϑ))} ,
Es

(p,ϑ) := span {Ψ+(τ, (p, ϑ))} .

And finally we obtain the splitting of the tangent bundle of the manifold
T1H2:
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T(p,ϑ)P = Eu
(p,ϑ) ⊕ Ec

(p,ϑ) ⊕ Es
(p,ϑ).

In the next picture we set the ω+(p, ϑ) to be ωs(p, ϑ), which stands for its
stability and is called a stable leaf and ω−(p, ϑ) to be ωu(p, ϑ), since it is the

unstable leaf.

Figure 2.1: Geodesic flow in the upper half plane
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Theorem 2.1.9. Every geodesic flow on a surface of a constant negative curva-
ture is an Anosov flow.

The proof can be found in [Burns/Gidea]. Initially, the above theorem was
first formulated and proved by Anosov.

2.1.2 Structural stability

The most interesting property of Anosov flows is that they are structurally stable,
i.e. robust under topological perturbation [Hasselblatt/Katok].

Definition 2.1.10. structural stability of a flow
Let M,N be manifolds Φ : R×M → M , equivalently we write Φt : M → M , be
a Cr-flow. We say that Φt is Cm structurally stable (1 ≤ m ≤ r), if any flow
sufficiently close to Φt in the Cm topology is C0 orbit equivalent to it, i.e ∃ε > 0
such that for any flow Ψt : N → N such that ||Ψ− Φ||Cm < ε there exists a Cm

diffeomorphism h : M → N such that the flow χt = h−1 ◦Ψt ◦ h is a time change
of the flow Φt.

The next theorem can be found in [Hasselblatt/Katok].

Theorem 2.1.11. Every Anosov flow is structurally stable.

This result makes Anosov flows to be so important for the theory of dynamical
systems.

2.2 Anosov diffeomorphisms

Definition 2.2.1. hyperbolic set [Hasselblatt/Katok]
Let M be a compact manifold, U ⊂M f : U →M a C1 diffeomorphism onto its

image , and Λ ⊂ U a compact f-invariant set. The set Λ is called a hyperbolic
set or hyperbolic structure for the map f if the following holds:
∃ a Riemannian metric called a Lyapunov metric in an open neihgbourhood U ofΛ
and λ < 1 < µ such that for any point x ∈ Λ the sequence of differentials

(Df)fnx : TfnxM → Tfn+1
x

M, n ∈ Z

admits a (λ, µ)-splitting, i.e. TΛM = Es ⊕ Eu.

Remarks 2.2.2. 1. Note that the (Df)fnx : TfnxM → Tfn+1
x

M is linear and Es

denotes the stable eigenspace corresponding to the eigenvalue λ < 1 and Eu

denotes the unstable eigenspace corresponding to the eigenvalue µ > 1.

2. As the simplest example for a hyperbolic set for a diffeomorphism one can
consider the hyperbolic fixed points and the hyperbolic periodic points.
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Theorem 2.2.3. [Burns/Gidea] Assume that f : M →M is a Ck-diffeomorphism
of a Ck-smooth manifold M, and Λ is a hyperbolic set for f. There exists ε > 0
such that the local stable and unstable manifolds

W s
ε = {q ∈ Λ ∩B(p, ε)|d(fn(q), fn(p))→ 0},

Wu
ε = {q ∈ Λ ∩B(p, ε)|d(f−n(q), f−n(p))→ 0},

are embedded submanifolds of M (local stable and unstable manifolds of p), where
d is the distance on M induced by the Riemannian metric, and
B(p, ε) = {q ∈ M |d(p, q) < ε}. Moreover, TpW

s
ε (p) = Es

p and TpW
u
ε (p) = Eu

p .
The stable and unstable manifolds are locally unique.

We now establish some basics concerning the Anosov diffeomorphisms, which
were first proposed by Dmitrii Anosov. Let us begin with the definition.

Definition 2.2.4. Anosov diffeomorphism [Manning]
Let M be a compact manifold without boundary, f : M → M , be a Ck-
diffeomorphism, k ≥ 1. f is called an Anosov diffeomorphism, if the following
holds:

(i) ∃ a continuous Df-invariant splitting of the tangent bundle TM = Es ⊕ Eu.

(ii) For any Riemannian metric on M ∃ constants C > 0,λ, 0 < λ < 1, such that

||Dfn(x)|Esx || < Cλn and ||Df−n(x)|Eux || < Cλn,

for any n > 0, x ∈M .

Remarks 2.2.5.

1. The compactness of M is very important, because of the ergodic property of the
Anosov diffeomorphism. As we immidately see from the definition of the Anosov
diffeomorphism we do not have the center-part Ec in the splitting, like in the
definition of the Anosov flow.

2. We can shorten the above definition by saying, that a diffeomorphism f : M →
M , M as above, is an Anosov diffeomorphism if the whole manifold M is a hy-
perbolic set [Hasselblatt/Katok].

2.2.1 Example: Arnold’s cat map

One way to obtain an Anosov diffeomorphism is to start with a hyperbolic au-
tomorphism f of a nilpotent Lie group G, which preserves a lattice Γ. Then the
quotient space G/Γ is compact and we obtain an induced hyperbolic automor-
phism, which is Anosov . The same construction is used for non-toral examples
and is discussed in chapter 3. The following example is for introductional purpose.
Consider the following linear map which was first introduced by Thom.

A0 : R2 → R2,
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(x, y) 7→ (2x+ y, x+ y),

or equivalently A0

(
x
y

)
=

(
2 1
1 1

)(
x
y

)
. As it can be calculated , A0 is a hy-

perbolic automorphism, which means that all eigenvalues of A0 are unequal one.
More precisely, there are exactly two eigenvalues 0 < λs < 1 and λu > 1, see ap-
pendix. It can easily be shown that the matrix A0 preserves the lattice Z2 ⊂ R2,
i.e. A0(Z2) = Z2. The invariance of the lattice Z2 under the map A0 leads to
the following consequence: We obtain an induced map A : T2 → T2,(x, y) 7→
(2x+ y, x+ y)(mod 1),

or equivalently A

(
x
y

)
=

(
2 1
1 1

)(
x
y

)
(mod 1), i.e. a map on the compact

manifold T2 := R2/Z2, called a two-dimensional torus.
R2 is nilpotent Lie group with respect to ”+”. As it was mentioned in chapter

1, R2/Z2 is a nilmanifold.
This is the easiest example of an Anosov diffeomorphism on a nilmanifold in

two dimensions and has been cited many times in the literature. It is named by
”Arnold’s Cat Map” after the famous russian mathematician Vladimir Igorevitch
Arnold who had first described the action of this map on T2 via an image of a
cat head see figure 2.2 in larger size than on the cover, which is shared under this
map and after some number of iterations appears again (Poincare Recurrence
Theorem).

2.2.2 Structural stability of Anosov diffeomorphism

Definition 2.2.6. structural stability of a diffeomorphism[Hasselblatt/Katok]
Let M,N be manifolds f : M → M , be a Cr-diffeomorphism. We say that f is
Cm structurally stable (1 ≤ m ≤ r), if there exists a neighbourhood U of f in the
Cm topology such that every map g : N → N , g ∈ U is topological conjugate to
f, i.e there exists a homeomorphism H : M → N such that f = H−1 ◦ g ◦H.

Similar to Anosov flows it turns out that the following theorem is true for
Anosov diffeomorphisms [Hasselblatt/Katok].

Theorem 2.2.7. Every Anosov diffeomorphism is structurally stable.
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Figure 2.2: Arnold’s cat map, an example of a hyperbolic toral automorphism,
note that p is a hyperbolic fixed point
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Chapter 3

Examples of non-toral Anosov
diffeomorphisms

The question of the existence of compact non-toral Anosov diffeomorphisms was
first raised by D.V. Anosov in the Moscower Congress in 1966 [Smale], as it was
already mentioned in the introduction. At this time the only known examples
were constructed on the torus Tn. But in 1967, as Steven Smale has shown,
there are Anosov diffeomorphisms on the nilmanifolds, which can be interpreted
as the immediate answer to Anosov’s question in 1966. So let us consider the two
constructions of Anosov diffeomorphisms on a nilmanifold by Steve Smale [see
[Smale]].

3.0.3 Example [Smale]: Anosov diffeomorphism on a nil-
manifold of dimension six

General setting [Smale]: Let G be a simply connected Lie group with Lie algebra
g and Γ a uniform discrete subgroup ( i.e the coset space G/Γ is compact). We
know from the theorem 1.5.1 that the Lie group G must be nilpotent, if G should
admit the existence of a hyperbolic Lie group automorphism f0 : G → G. The
nilpotency of a Lie group G implies the nilpotency of the Lie algebra g.
Steve Smale took precisely the cartesian product of the three dimensional nilpo-
tent Heisenberg Lie algebra heis(3,R), which is 2-step nilpotent, as it has been
calculated in chapter 1. If furthermore the discrete subgroup Γ / G is invariant
under f ′0, i.e. f ′0(Γ0) = Γ0, f0 induces a hyperbolic automorphism

f ′ : g/Γ0 → g/Γ0, nΓ0 7→ f ′0(n)Γ0.

f0 is called a g-induced automorphism of g/Γ0. This is the complete description
of the general setting and we will see why it implies the existence of the hyper-
bolic nilmanifold automorphism f : G/Γ→ G/Γ.
The main idea in this construction is, that it is sufficient to work in the Lie alge-
bra, as it was mentioned in chapter 1. The reason for the permission is roughly

28



speaking the nilpotency and the connectedness of the Lie group G, because it
turns out that for the nilpotent simply connected Lie groups the exponential
mapping is surjective.
More presicesly, we can express the main idea of the described construction
through the following diagram:

g
f ′0−→ g

↓exp ↓exp
G f0−→ G

f ′0(Γ0) = Γ0 ⇒ f ′ : g/Γ0 → g/Γ0

f0(Γ) = Γ⇒ f : G/Γ→ G/Γ

Let us give the proofs of the above claims in the general setting.
Claim 1

i If a discrete subalgebra Γ0 ⊂ g is invariant under a hyperbolic Lie algebra
automorphism f ′0, i.e. f ′0(Γ0) = Γ0, f ′0 induces a hyperbolic automorphism

f ′ : g/Γ0 → g/Γ0, n+ Γ0 7→ f ′0(n) + Γ0.

ii If a discrete subgroup Γ ⊂ G is invariant under a hyperbolic Lie group auto-
morphism f0, i.e. f0(Γ) = Γ, f0 induces a hyperbolic nilmanifold automor-
phism

f : G/Γ→ G/Γ, x ∗ Γ 7→ f0(x) ∗ Γ.

Proof. i Let n ∈ g. Then the statement follows immidiately by the property of
f ′0 to be an automorphism: f ′0(n+Γ0) = f ′0(n)+f ′0(Γ0) and by the invariance
of Γ0 with respect to f ′0, it follows f ′0(n + Γ0) = f ′0(n) + Γ0, which is the
definition of f ′. Thus, f ′ is the induced map, as has been claimed.

ii Let x ∈ G. In analogy to (i), consider

f0(x ∗ Γ) = f0(x) ∗ f0(Γ) f0 automorphism
= f0(x) ∗ Γ f0(Γ) = Γ
=: f(x ∗ Γ).

Claim 2 Let (G,*) be a simply connected nilpotent Lie group then the expo-
nential map exp : g→ G is surjective.

Proof.
Step 1 [existence of open neighbouhoods]
∃V open(e) ⊂ g, U open(e) ⊂ G such that

exp : V open(e)→ U open(e)
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is a diffeomorphism.
Step 2 Consider the image of the whole Lie algebra H := exp(g) ⊂ G.
Step 3 We use the Baker-Campbell-Hausdorff formula, in order to show that we
find to each point x ∈ H an open neighbourhood, i.e. H is open [see step 4].
Furtermore, H is a subgroup of G, i.e closed under the group operation *.
Step 4 [Campbell-Hausdorff formula] [Onishchik].
Step 5 [connectedness] Consider

G =
⋃
g∈G

gH.

Since H is open, it follows that either case 1 g1H = g2H or case 2 g1H∩ g2H = ∅
is true. Since H is connected due to connectedness of G the case 2 is forbidden.
Thus, there exists precisely only one H such that H = G. By this result it follows
that exp(g) = G and especially the surjectivity of exp.

1. Simply connected Lie group means that the fundamental group of G is trivial,
i.e. there are no holes in G or analogously if every closed path can be shrunk
to a point [Bump].

2. f0 : G → G is hyperbolic automorphisms ⇐⇒ f ′0 : g → g is hyperbolic, i.e.
there exist no eigenvalues of f ′0 which are roots of unity.

There exists a very well known theorem by Anthony Manning [Manning], see
next chapter :

Theorem 3.0.8. If d : G/Γ→ G/Γ is an Anosov diffeomorphism of a nilmanifold
then it is topologically conjugate to a hyperbolic nilmanifold automorphism f :
G/Γ → G/Γ, i.e there exists a homeomorphism h : G/Γ → G/Γ, such that d =
h−1 ◦ f ◦ h.

Thus, it will be sufficient to look for a hyperbolic nilpotent Lie group auto-
morphism f0 : G → G such that f0(Γ) = Γ.

Let us examine the two non-toral examples of hyperbolic automorphisms. As
he points out the second one was given by Borel as well as the explicit num-
ber theory approach. First, we shall give the plan of the construction following
[Smale].
Plan due to [Smale]
Step 1 Start with a nilpotent Lie algebra g := g1 × g2, g1 = g2 = heis(3,R).
Step 2 Define the hyperbolic automorphisms f ′0 : g→ g, h′0 : g→ g.
Step 3 Define the lattice Γ0 ⊂ g.
Step 4 Show Γ0 is a lattice, i.e discrete uniform subgroup in g.
Step 5 Show f ′0(Γ0) = Γ0, which will lead us to the induced hyperbolic automor-
phism f ′0 : g/Γ0 → g/Γ0 [see Claim 1].
Step 6 Define Γ := exp(Γ0) ⊂ G. Show that Γ is a lattice,i.e a discrete uniform
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subgroup in the Lie group HEIS(3,R)×HEIS(3,R).
Step 7 Show f0(exp(Γ0)) = exp(Γ0). Due to the results stated in claim 1, we know
that f0 induces a hyperbolic nilmanifold automorphism f : G/Γ→ G/Γ.

To Step 1 Recall that the Heisenberg Lie groups G1 := HEIS(3,R) = G2

are simply connected, (non abelian) 2-step nilpotent Lie groups with the corre-
sponding simply connected, 2-step nilpotent Lie algebra g1 = heis(3,R) = g2.
As in chapter 1: The Heisenberg algebras g1,g1 are represented by the matrices:

(?) A :=

0 a b
0 0 c
0 0 0

 , a, b, c ∈ R. and g = g1 × g2 is represented by

(
A 0
0 B

)
,

A,B are matrices of the form (?), see [Smale].
Furthermore, recall from chapter 1 the corresponding basis to the Lie algebra

g1 X1, Y1, Z1 and to g2 X2, Y2, Z2 with the following Lie bracket relations for
i ∈ {1, 2} :

[•, •] Xi Yi Zi
Xi 0 Zi 0
Yi −Zi 0 0
Zi 0 0 0

To Step 2 Define the hyperbolic automorphisms f ′0, h
′
0 on g = g1 × g2. Thus,

the dimension of g is six. Let λ = 2 +
√

3 > 1. Obviously,
λ−1 = 1

2+
√

3
= 2−

√
3 < 1 and λ−1 > 0, λλ−1 = 1.

Example 1 Example 2 Example 2
(modified order)

f ′0 : g→ g h′0 : g→ g h′0 : g→ g

X1 7→ λX1 X1 7→ λX1 X1 7→ λX1

Y1 7→ λ2Y1 Y1 7→ λ−3Y1 Z2 7→ λ2Z2

Z1 7→ λ3Z1 Z1 7→ λ−2Z1 Y2 7→ λ3Y2

X2 7→ λ−1X2 X2 7→ λ−1X2 X2 7→ λ−1X2

Y2 7→ λ−2Y2 Y2 7→ λ3Y2 Z1 7→ λ−2Z1

Z2 7→ λ−3Z2 Z2 7→ λ2Z2 Y1 7→ λ−3Y1

Note that we are going to discuss only the Example 1. Example 2 follows
with the same arguments as the Example 1. In the Example 1, we see that
g1 = gu, u stands as usual for the unstable part (expanding), because of the
factor λk > 1, k ∈ {1, 2, 3} and g1 = gs, s stands for the stable part (contracting),
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since 0 < λ−k < 1. It follows that f ′0 is hyperbolic and G = Gu × Gs. In the
Example 2 however, g1 6= gu and g1 6= gs,G 6= Gu × Gs.

To Step 3 Define σ : K → K,
√

3 7→ −
√

3, K := Q[
√

3]. Furthermore, define
Γ0 ⊂ g as a set of 6× 6-matrices of the form0 a b 0 0 0

0 0 c 0 0 0
0 0 0 0 0 0
0 0 0 0 σ(a) σ(b)
0 0 0 0 0 σ(c)
0 0 0 0 0 0

,
a := k1 +

√
3l1, b := k2 +

√
3l2, c := k3 +

√
3l3, kj ∈ Z, j ∈ {1, 2, 3}.

To Step 4 We have to show that Γ0 as defined above is indeed a lattice, i.e. a
discrete uniform subgroup in g.

i Γ0 is a discrete subgroup.

Proof. Let A,B ∈ Γ0. Define

A :=

0 a b 0 0 0
0 0 c 0 0 0
0 0 0 0 0 0
0 0 0 0 σ(a) σ(b)
0 0 0 0 0 σ(c)
0 0 0 0 0 0

 and B :=

0 ã b̃ 0 0 0
0 0 c̃ 0 0 0
0 0 0 0 0 0

0 0 0 0 σ(ã) σ(b̃)
0 0 0 0 0 σ(c̃)
0 0 0 0 0 0


Without loss of generality let

a−ã=: v 6= 0, v := k +
√

3l,
(k, l) 6= (0, 0), b−b̃= 0, c−c̃= 0.

It follows that σ(v) 6= 0, σ(w) = 0 and σ(z) = 0.
Consider: ||A−B||.
We want to show that ||A−B|| > c, c > 0 fixed, c ∈ R.
We have

||A−B|| = Σ6
i,j=1|rij − sij|

= |a− ã|+ |b− b̃|+ |c− c̃|+ |σ(a)− σ(ã)|+ |σ(b)− σ(b̃)|+ |σ(c)− σ(c̃)|
= |a− ã|+ |σ(a− ã)|+ |b− b̃|+ |σ(b− b̃)|+ |c− c̃|+ |σ(c− c̃)|
= |v|+ |σ(v)|

Now consider:

|v|+ |σ(v)| ≥ 2
√
|v||σ(v)| = 2

√
|k +

√
3l||k −

√
3l| = 2

√
|k2 − 3l2| > 2 ∗ 1.

Thus, ||A−B|| = |v|+ |σ(v)| > 2, i.e. Γ0 is a discrete subgroup in g.

ii Γ0, as defined above, is a uniform subgroup, i.e. g/Γ0 is compact.

Proof. To show ii it is sufficient to prove the boundedness of of the funamental
domain of Γ0. Consider the basis of Γ0.
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BΓ0 =

{(
X [0]
[0] X

)
,
(
Y [0]
[0] Y

) (
Z [0]
[0] Z

) (√
3X [0]

[0] −
√
3X

) (√
3Y [0]

[0] −
√
3Y

) (√
3Z [0]

[0] −
√
3Z

)}
,

where [0] denotes a 3× 3- zero matrix and X, Y, Z are the basis elements of
heis(3,R) as being defined in chapter 1.

Without loss of generality, let A =

(
nX [0]
[0] nX

)
+

(
m
√

3X [0]

[0] −m
√

3X

)
,

where n,m ∈ Z. We define a := n+m
√

3, b := n−m
√

3 and (1) n := ba+b
2
c

and (2) m := b a−b
2
√

3
c. Consider: |a− n−m

√
3|+ |b− n+m

√
3|

We have to show that there exists a constant c such that

|a− n−m
√

3|+ |b− n+m
√

3| < c,

which would imply the required boundedness.
By (1) we obtain: a− n−m

√
3 ≈ a− a+b

2
−
√

3 a−b
2
√

3
= 0

Analogously, by (2) we obtain: b− n+m
√

3 ≈ a− a+b
2

+
√

3 a−b
2
√

3
= 0

⇒ ∃c such that |a− n−m
√

3|+ |b− n+m
√

3| < c.

To Step 5 We show that Γ0 is invariant under the Lie algebra automorphism
f ′0, i.e.f ′0(Γ0) = Γ0.

Proof.
”⊆”: Let A ∈ Γ0, as defined before with the entries defined as follows:

a := k1 +
√

3l1,
b := k2 +

√
3l2,

c := k3 +
√

3l3,
σ(a) := k1 +

√
3l1,

σ(b) := k2 −
√

3l2,
σ(c) := k3 −

√
3l3,

kj ∈ Z, j ∈ {1, 2, 3}

Consider

f ′0(A) =

0 λa λ3b 0 0 0

0 0 λ2c 0 0 0
0 0 0 0 0 0

0 0 0 0 λ−1σ(a) λ−3σ(b)

0 0 0 0 0 λ−2σ(c)
0 0 0 0 0 0

.

We calculate the form of the entry a12 of the matrix f ′0(A), the form of the other
entries can be calculated analogously.
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It is :

a12 = λa = (2 +
√

3)(k1 +
√

3l1)

= 2k1 + 3l1 +
√

3(k1 + 2l1)

= p1 +
√

3q1

= â ∈ Z⊕
√

3Z

By analogous reasoning it follows that a13 = λ3b = b̂ ∈ Z⊕
√

3Z
and a23 = λ2c = ĉ ∈ Z⊕

√
3Z .

In the right corner of the matrix f ′0(A) we calculate:

a45 = λ−1σ(a) = (2−
√

3)(k1 −
√

3l1)

= 2k1 + 3l1 −
√

3(k1 + 2l1)

= p1 −
√

3q1

= σ(â) ∈ Z⊕
√

3Z

The form of the remaining entries can be obtained in the similar way, which
we do not calculate in the extended way, instead we just mention that:
a56 = λ−2σ(c) = σ(ĉ) ∈ Z⊕

√
3Z and a46 = λ3σ(b) = σ(b̂) ∈ Z⊕

√
3Z

⇒ f ′0(A) =

0 â b̂ 0 0 0
0 0 ĉ 0 0 0
0 0 0 0 0 0

0 0 0 0 σ(â) σ(b̂)
0 0 0 0 0 σ(ĉ)
0 0 0 0 0 0

 ∈ Γ0.

”⊇”: Consider

B =

0 x y 0 0 0
0 0 z 0 0 0
0 0 0 0 0 0
0 0 0 0 σ(x) σ(y)
0 0 0 0 0 σ(z)
0 0 0 0 0 0

 ∈ Γ0.

Now, consider the entries of B := (bij)i,j=1,...,6.

b12 = λλ−1x = λ((2−
√

3)(v1 +
√

3w1))

= λ(2v1 − 3w1 +
√

3(2w1 − v1)

= λ(ṽ1 +
√

3w̃1)

= λx̃

Analogously, b13 = λ3λ−3y = λ3ỹ and b23 = λ2λ−2z = λ2z̃ .
Now for the other entries, we have:
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b45 = λ−1λσ(x) = λ−1(2 +
√

3)(v1 −
√

3w1)

= λ−1(2v1 − 3w1 −
√

3(2w1 − v1)

= λ−1(ṽ1 −
√

3w̃1)

= λ−1σ(x̃)

Analogously, b56 = λ−2σ(z) = λ−2σ(z̃) and b46 = λ−3σ(z) = λ−3σ(ỹ).

⇒ B =

0 λx̃ λ2z̃ 0 0 0

0 0 λ3ỹ 0 0 0
0 0 0 0 0 0

0 0 0 0 λ−1σ(x̃) λ−3σ(ỹ)

0 0 0 0 0 λ−2σ(z̃)
0 0 0 0 0 0

 ∈ f ′0(Γ0).

Since ”⊂” and ”⊃” hold, it follows that f ′0(Γ0) = Γ0, as was claimed.

Step 6 Define Γ as the image of Γ0 under the exponential map exp : g → G,
i.e.Γ := exp(Γ0) . Show that Γ is a uniform discrete subgroup of G.

Proof. i discretness of Γ. Since the exponential mapping is bilipshitz the in-
equalities shown in step 4 (discretness of Γ0) hold.

ii Uniformicity. We can apply theorem 1.3.3.[Malcev] (a) stated in chapter
1. Due to the above theorem we have to show that Γ := exp(Γ0) is a finitely
generated nilpotent group containing no elements of finite order.

Step 7 Show f0(Γ) = Γ.

Proof. Let A ∈ Γ0 as in step 5. Consider exp(A).
exp(A) = id +A+ A2

2!
+ A3

3!
+ . . . . But A3 is a zero matrix, i.e all entries are zero.

Thus, exp(A) = id+ A+ A2

2!
and more precisely

exp(A) =

1 a b+ac
2!

0 0 0
0 1 c 0 0 0
0 0 1 0 0 0

0 0 0 1 σ(a) σ( b+ac
2!

)
0 0 0 0 1 σ(c)
0 0 0 0 0 1

.
Consider f0(exp(A)) = exp(f ′0(A)). Since f ′0(Γ0) = Γ0 (step 5) it follows exp(f ′0(Γ0)) =
exp(Γ0). By f0(exp(Γ0)) = exp(f ′0(Γ0)) (see thr diagram at the beginning) we ob-
tain f0(exp(Γ0)) = exp(Γ0), as was claimed.
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Steve Smale not only showed with the above examples that there exist non-
toral diffeomorphisms, but also formulated the following problem: What com-
pact M (M denotes a manifold) admits Anosov diffeomorphisms? This problem
remains unsolved until now. V.V. Gorbatsevich points out that there is the fol-
lowing conjecture [Gorbatsevitch]:

Conjecture 3.0.9. If a compact manifold M admits Anosov diffeomorphism,
then M is homeomorphic to a nilmanifold or an infra-nilmanifold .

Remark. 1. Indeed, all examples of Anosov diffeomorphisms are algebraic, i.e.
on nil- or infranil-manifolds. That is mainly the reason why the above con-
jecture appears. To disprove the above conjecture a counterexample would
be sufficient, i.e. one could try to construct a manifold which is not homeo-
morphic to a nilmanifold. One possible method could be the Dehn chirurgy
known from topology, as it was recently communicated to me by V.V. Gor-
batsevitch in Moscow.

In the year 1967 [Shub], Michael Shub constructed and calculated, with
the help of Jacob Palis, examples of Anosov diffeomorphisms on the infranil-
manifolds, as we will see they do not work. In his recent paper [2006], which is
not published yet, he formulates the following open problem, which is equivalent
to the above conjecture: ”Problem 12: Are all Anosov diffeomorphisms
infra-nil?”

3.0.4 Example [Shub]: Anosov diffeomorphism on a six
dimensional infranil-manifold

This example was published in 1967 [Shub], i.e. in the same year as M.Shub’s
advisor Steve Smale has constructed the above examples of Anosov diffeomor-
phisms on the six-dimensional nilmanifold. The general idea is in the most parts
the same, i.e. the construction is reduced to the definition of the hyperbolic auto-
morphism on the nilpotent Lie group N , which preserves the appropriate lattice
Γ in the nilpotent Lie group N . The main difference consists in the definition
of the lattice, which in some sense is more complicated and forces the manifold
N /Γ to be an infranil-manifold. Notice that this manifold, as M. Shub points
out, is not a nilmanifold. Unfortunately, it took me some time until I found a
mistake in Michael Shub’s example, which will be discussed in the plan of the
example. After personally communicating to the author of the example, he admit
that it is true that there is indeed a mistake, which has been also found by Jan
Willem Nienhuys. The latter told me that he was ignored, so that the mistake
has never been corrected in the literature and remained hidden. That is why
it is not corrected yet, but maybe in the near future, which seems to be very
important.
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Example 3.0.10.
We will first give the plan of the example as it is formulated in [Shub] and then
turn to discuss why the example is not true, as stated above.

Step 1 We shall give the definitions of the following objects as we can find it
in the original paper [Shub]:

1. As in the previous example the nilpotent Lie group will be six dimensional,
namely the cartesian product of the three dimensional Heisenberg group:
N := HEIS(3,R)×HEIS(3,R).

2. C = {id, B} ⊂ AUT (N ), C is compact, where
B : N → N , (a, b, c, d, e, f) 7→ (−a,−b, c,−d,−e, f), B2 = id.
Note, (a, b, c, d, e, f) is the abriviate notation for the 6 × 6-lower triangular
matrix with ones on the diagonal and a, b, c, d, e, f ∈ R are real entries under
the diagonal. More precisely, the notation stands for the following form of
the matrix:

(a, b, c, d, e, f) :=

1 0 0 0 0 0
a 1 0 0 0 0
c b 1 0 0 0
0 0 0 1 0 0
0 0 0 d 1 0
0 0 0 f e 1

 .

Thus, the multiplication can be defined in the following way:

(a, b, c, d, e, f)(a1, b1, c1, d1, e1, f1) :=
(a+ a1, b+ b1, c+ ba1 + c1, d+ d1, e+ e1, f + ed1 + f1).
Compare with the usual matrix multiplication:

1 0 0 0 0 0
a 1 0 0 0 0
c b 1 0 0 0
0 0 0 1 0 0
0 0 0 d 1 0
0 0 0 f e 1

 1 0 0 0 0 0
a1 1 0 0 0 0
c1 b1 1 0 0 0
0 0 0 1 0 0
0 0 0 d1 1 0
0 0 0 f1 e1 1

 =

 1 0 0 0 0 0
a + a1 1 0 0 0 0

c + ba1 + c1 b + b1 1 0 0 0
0 0 0 1 0 0
0 0 0 d + d1 1 0
0 0 0 f + ed1 + f1 e + e1 1

 .

3. Let σ be the non-trivial Galois automorphism as in the previous example.
Define the uniform discrete subgroup Γ of N , compare with the definition
given by Smale:

Γ := {(α, β, γ, σ(α), σ(β), σ(γ))|α, β, γ ∈ Z⊕
√

3Z}.

Note, in [Shub] there is a misprint, namely there is the following definition of
Γ: Γ := {(α, β, γ, σ(α), σ(β), γ)|α, β, γ ∈ Z⊕

√
3Z}. But this is not a lattice,

since the discreteness of Γ is violated.

4. Let Bq := (0, 0, q, 0, 0, σ(q))B, i.e.
Bq(a, b, c, d, e, f) = (−a,−b, c+ q,−d,−e, σ(q) + f) due to the matrix multi-
plication defined above, where q ∈ Q[

√
3], q /∈ Z ⊕

√
3Z, 2q ∈ Z ⊕

√
3Z, α ∈

Z⊕
√

3Z and λq = α+ q. Let Γq be the uniform discrete subgroup of N o C
generated by Γ and Bq. Then Γq = Γ ∪BqΓ.
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5. Define a hyperbolic automorphism: Let λ := 2+
√

3 as in the previous exam-
ple. Define A : N → N , (a, b, c, d, e, f) 7→ (σ(λ)a, λ2b, λc, λd, σ(λ)2e, σ(λ)f),
a hyperbolic Lie group automorphism of N .

Step 2 Show AΓqA
−1 = Γ1, equivalently A(Γq) = Γq. A induces the map

A : N /Γq → N /Γq.
Step 3 Prove N /Γq is not a nilmanifold but an infranil-manifold. For this we
need to show that Γq is torsion free, see chapter 1, infra-nilmanifolds.

To step 1:
1. The nilpotency of N was shown in chapter 1.
2. Michael Shub introduced this notation for the multiplication, probably in or-
der to save space. Notice, on what places the entries are placed, which is very
important for the multiplication as defined above.
3. The definition of Γ is the same like in Smale’s example, so we can deduce that
Γ is a uniform discrete subgroup in N . Γ is needed for the definition of Γq.
4. Note, Bq is not a homomorphism. This we can see by the folllowing analogue
definition of Bq: Let v, w ∈ R6 with the multiplication definition motivated by
the matrix multiplication as above

µ(v, w)i :=

{ vi + wi for i = 1, 2, 4, 5
v3 + w1v2 + w3 for i = 3
v6 + w4v5 + w6 for i = 3

.

Then we can express the above map Bq as follows:

Bq : R6 → R6, v 7→

−1 0 0 0 0 0
0 −1 0 0 0 0
0 0 1 0 0 0
0 0 0 −1 0 0
0 0 0 0 −1 0
0 0 0 0 0 1

v +

 0
0
q
0
0

σ(q)


Bq is not a homomorphism, since

Bq(µ(v, w)) =

 −(v1 + w1)
−(v2 + w2)

v3 + w1v2 + w3 + q
−(v4 + w4)
−(v5 + w5)

v6 + w4v5 + w6 + σ(q)

 6=
 −(v1 + w1)

−(v1 + w1)
v3 + q + w1v2 + w3 + q

−(v4 + w4)
−(v5 + w5)

v6 + σ(q) + w4v5 + w6 + σ(q)

 = µ(Bqv,Bqw).

Bq is not a homomorphism. But Bq ∈ Aff(N ), since (0, 0, q, 0, 0, σ(q)) ∈ N
and B ∈ C, such that the action of T := ((0, 0, q, 0, 0, σ(q)), B) ∈ N o C on
N is given via the map Bq such that we can conclude that Bq ∈ Aff(N ).
Bq : N → N is a map which together with Γ should generate Γq. It should be
Γq ⊂ N o C := {(A,B)|A ∈ N , B ∈ C}. Indeed, Γq = Γ ∪BqΓ

The above example I found to be cited many times in the subsequent litera-
ture, see for examle [Franks] [Nitecki] [Porteous], without correcting it.
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Chapter 4

Manifolds admitting Anosov
diffeomorphisms:
A Survey

Let us give a short survey on known results concerning manifolds admitting
Anosov diffeomorphisms.

The earliest result was due to Nathan Jacobson in 1955 in [Jacobson].
We first state the theorem which is needed to prove the theorem 4.0.11.:

Theorem 4.0.11. generalized Engel theorem If W is a weakly closed set of nilpo-
tent linear transformations in a finite-dimensional vector space, then the envelop-
ing associative algebra W∗ of W is nilpotent.

Theorem 4.0.12. Let l be a Lie algebra which possess an automorphism σ none
of whose characteistic roots are roots of unity (i.e. σ is hyperbolic). Then l is
nilpotent.

Proof. Assume the base field is algebraically closed. Then l = Σlζ , lζ is the
eigenspace corresponding to the eigenvalue ζ of σ. Since no ζ is a root of unity
the elements ζ(ζ ′)k, k = 1, 2, . . . are unequal, thus not all of these are roots. Let
Ad(lζ) denote the set of adjoint mappings determined by the elements of lζ . This
implies that for x ∈ lζ , a ∈ lζ′ x(Ada) ≡ [xa] is 0 or in lζ(ζ′)k . Choose k such
that ζ(ζ ′)k = 1 → x(Ada)k = 0, which implies the nilpotency of of Ada for every
a ∈ lzeta′ , since ζ ′ was arbitrary. It follows that every element of W =

⋃
Ad(lζ)

is nilpotent. Conclusion [generalized Engel theorem] W∗, i.e. the enveloping
associative algebra of W is nilpotent, and hence Ad(l) is nilpotent. Thus, the Lie
algebra l itself should be nilpotent.

The result in the theorem 4.0.6 implies the nilpotency of a Lie group L corre-
sponding to a Lie group l with a hyperbolic Lie algebra automorphism. Anosov
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diffeomorphisms are diffeomorphisms which are hyperbolic in each point of a
compact manifold, so this fact forces the Lie group to be nilpotent.

As it was mentioned in chapter 3 in 1966 Anosov raised the question whether
there exist non-toral examples of Anosov diffeomorphisms. In 1967, S. Smale con-
structed an example of Anosov diffeomorphism on the six dimensional nilmanifold
and M. Shub an infranil-example of Anosov diffeomorphism.

In 1971, Hugh L.Porteous gave a classification of flat manifolds supporting
Anosov diffeomorphisms for the dimension less than six, which uses the following
theorem:

Theorem 4.0.13. If M is a flat manifold whose linear holonomy group F is
cyclic and T : F → GL(n,Z) is the natural representation, and if N = T (g)
where g is a generator of F , then M supports an Anosov diffeomorphism iff N has
none of the following numbers as simple eigenvalues:1,−1, i,−i, ω, ω2,−ω,−ω2.

We can summarize Porteous’ results in the following table:

dimension im/possible flat manifold
1 S1 does not support an Anosov diffeomorphism

since the condition of the theorem 4.0.12 is not satisfied
2 flat torus T2, in particular the Klein bottle does not support

an Anosov diffeomorphism
3 T3

4 F = Z2 The qoutionts of T 4 by the actions of affine transformations
1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

+


1
2

0
0
0

 and


1 0 1 0
0 1 1 0
0 0 −1 0
0 0 0 −1

+


1
2

0
0
0


5 T5, T5/Z2

The following proposition includes an important restriction on flat manifolds
which allow Anosov diffeomorphisms [Porteous].

Proposition 4.0.14. No flat manifold with first Betti number one supports an
Anosov diffeomorphism.

We recall the definition of the k-th Betti number [Burns/Gidea].

Definition 4.0.15. Let M be a manifold. The vector space

Hk(M) := closed k-forms on M/exact k-forms on M

is called the k-th de Rham cohomology group. The dimension βk of the vector
space Hk(M) is called the k-th Betti number (provided it is finite).
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Due to the example 6.8.5 in [Burns/Gidea] we obtain the following for the
cohomology groups of the n-dimensional sphere (n ≥ 1):

Hk(Sn) =

{ R if k = 0,
0 if 0 < k < n,
R if k = n.

.

Thus the first Betti number of the n-dimensional sphere is one, so there are no
Anosov diffeomorphisms on Sn, due to the above proposition.

In 1974, Anthony Manning extended the result known for tori [ proved by
Franks] to nilmanifolds and infranilmanifolds, namely he proved the following
theorem.

Theorem 4.0.16. If f : N → N is an Anosov diffeomorphism of an infranil-
manifold then it is topologically conjugate to a hyperbolic infranilmanifold auto-
morphism g : N → N , i.e. there exists a homeomorphism h : N → N such that
f = h−1 ◦ g ◦ h.

Remark. 1. Precisely, the following diagram commutes:

N f−→ N
↓h ↓h
N g−→ N

2. A.Manning’s result allows to search for hyperbolic automorphism on infranil-
manifolds which is equivalent to finding infranil Anosov diffeomorphisms,
which is simpler.

3. It turns out that the above theorem remains unproved, see [Dekimpe], be-
cause Manning’s proof concerning the infra-nilmanifold case is based on a
false result by Auslander.
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Chapter 5

Appendix

5.1 To chapter 1

We will demonstrate how to obtain a Lie algebra to a corresponding Lie group
on the following example:

O(N,R) = {A ∈Mat(N ×N ;R)|AAT = ATA = Id}.

Let A(t) be a one-parameter subgroup of O(N,R) parametrised by t, then dif-
ferentiating AAT = Id with respect to t in t = 0 we obtain A′(0) + A′(0)T = 0
which leads to A′(0) = −A′(0)T . Thus, the corresponding tangent algebra is:

o(N,R) = {A ∈Mat(N ×N ;R)|AT = −A}.

5.2 To chapter 2

5.2.1 Geodesics of the Lobachevsky’s plane

We will give the formal proof for the geodesics of the Lobachevsky’s plane with
the tools of differential geometry. As it was mentioned before, the reader can find
the proof in [Burns/Gidea].

Proof. Step 1 Calculate the Christoffel symbols

Γkij :=
1

2
Σl = 12(

∂gjl
∂xi

+
∂gil
∂xj
− ∂gij
∂xl

)glk (5.1)

where (glk) is the inverse of the matrix (glk).
Step 2 Calculate the gedesic equations using the geodesic equation formula

d2xk
dt2

+ Σm
i,j=1

dxi
dt

dxj
dt

Γkij = 0 (5.2)
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with the results obtained in step 1.
Step 3 Consider two cases and deduce the form of the geodesics.

To step 1 We know that the matrix (glk) =

( 1
y2

0

0 1
y2

)
, so (glk) =

(
y2 0
0 y2

)
is

the inverse of (glk). We use the formula (4.1) in order to compute the Christoffel
symbols. We have:

Γ1
11 =

1

2
Σ2
l=1(

∂g1l

∂x1

+
∂g1l

∂x1

− ∂g11

∂xl
)gl1

=
1

2
[(
∂g11

∂x1

+
∂g11

∂x1

− ∂g11

∂x1

)g11 + (
∂g12

∂x1

+
∂g12

∂x1

− ∂g11

∂x2

)g21] = 0

Γ1
12 =

1

2
Σ2
l=1(

∂g2l

∂x1

+
∂g1l

∂x2

− ∂g12

∂xl
)gl1

=
1

2
[(
∂g21

∂x1

+ (
∂g11

∂x2

− ∂g12

∂x1

)g11 + (
∂g22

∂x1

+
∂g12

∂x2

− ∂g12

∂x2

)g21 = −1

y

Γ1
21 =

1

2
Σ2
l=1(

∂g1l

∂x2

+
∂g2l

∂x1

− ∂g21

∂xl
)gl1

=
1

2
[(
∂g11

∂x2

+ (
∂g21

∂x1

− ∂g21

∂x1

)g11 +
∂g12

∂x2

+
∂g22

∂x1

− ∂g21

∂x2

)g21] = −1

y

Γ1
22 =

1

2
Σ2
l=1(

∂g2l

∂x2

+
∂g2l

∂x2

− ∂g22

∂xl
)gl1

=
1

2
[(
∂g21

∂x2

+ (
∂g21

∂x2

− ∂g22

∂x1

)g11 +
∂g22

∂x2

+
∂g22

∂x2

− ∂g22

∂x2

)g21] = 0

Γ2
11 =

1

2
Σ2
l=1(

∂g1l

∂x1

+
∂g1l

∂x1

− ∂g11

∂xl
)gl2

=
1

2
[(
∂g11

∂x1

+ (
∂g11

∂x1

− ∂g11

∂x1

)g12 +
∂g12

∂x1

+
∂g12

∂x1

− ∂g11

∂x2

)g22] =
1

y

Γ2
12 =

1

2
Σ2
l=1(

∂g2l

∂x1

+
∂g1l

∂x2

− ∂g12

∂xl
)gl2

=
1

2
[(
∂g21

∂x1

+ (
∂g11

∂x2

− ∂g12

∂x1

)gl2 +
∂g22

∂x1

+
∂g12

∂x2

− ∂g12

∂x2

)g22] = 0

Γ2
21 =

1

2
Σ2
l=1(

∂g1l

∂x2

+
∂g2l

∂x1

− ∂g21

∂xl
)gl2

=
1

2
[(
∂g11

∂x2

+ (
∂g21

∂x1

− ∂g21

∂x1

)g12 + (
∂g12

∂x2

+
∂g22

∂x1

− ∂g21

∂xl
)g22] = 0
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Γ2
22 =

1

2
Σ2
l=1(

∂g2l

∂x2

+
∂g2l

∂x2

− ∂g22

∂xl
)gl2

=
1

2
(
∂g21

∂x2

+
∂g21

∂x2

− ∂g22

∂x1

)g12 + (
∂g22

∂x2

+
∂g22

∂x2

− ∂g22

∂x2

)g22] = −1

y
.

To step 2 Using (4.2) we obtain :

d2x

dt2
+
dx

dt

dy

dt
Γ1

12 +
dy

dt

dx

dt
Γ1

21 =
d2x

dt2
− 2

y

dx

dt

dy

dt
= 0 (5.3)

d2y

dt2
+
(dy
dt

)2

Γ2
22 +

(dx
dt

)2

Γ2
11 =

d2y

dt2
− 1

y

(dy
dt

)2

+
1

y

(dx
dt

)2

= 0 (5.4)

To step 3 Consider the following two cases.
Case 1 dx

dt
= 0 ∀t, it follows that (4.3) is satisfied, i.e. vertical lines x=const. are

geodesics.
Case 2 There exists a t such that dx

dt
6= 0. Locally, we can solve for x as a function

of y. Substitute

u =
dx

dy
(5.5)

then
dx

dt
= u

dy

dt
. (5.6)

Then it follows by the chain rule

d2x

dt2
=
du

dy

(dy
dt

)2

+ u
d2y

dt2
(5.7)

2

y

dx

dt

dy

dt
=
d2x

dt2
=
du

dy

(dy
dt

)2

+ u
d2y

dt2
insert (4.3)

=
du

dy

(dy
dt

)2

+ u
(1

y

(dy
dt

)2

− 1

y

(dx
dt

)2)
insert (4.4)

2u

y

(dy
dt

)2

=
du

dy

(dy
dt

)2

+ u
(1

y

(dy
dt

)2

− u2

y

(dy
dt

)2)
insert (4.5), (4.6)

2u

y
=
du

dy
+ u
(1

y
− u2

y

)
du

dy
=
u3 + u

y

Seperation of variables leads to

du

u3 + u
=

dy

y
(5.8)
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Thus, we have to solve ∫
du

u3 + u
=

∫
dy

y
(5.9)

Integrating the left side of (4.9) by partial fraction leads to∫
du

u3 + u
=

∫ (1

u
− u

u2 + 1

)
du

= log(u)− 1

2
log(u2 + 1)

= log

(
u

(u2 + 1)
1
2

)
and the right side of (4.9) leads to∫

dy

y
= log(cy)

for some c ∈ R. Thus,

log

(
u

(u2 + 1)
1
2

)
= log(cy)

u

(u2 + 1)
1
2

= cy

u = cy(u2 + 1)
1
2

u2 = (cy)2(u2 + 1)

u2(1− (cy)2) = (cy)2

u = ± cy√
1− (cy)2

⇒ dx

dy
= u(y) = ± cy√

1− (cy)2

⇒
∫
dx

dy
= x = ±

∫
cy√

1− (cy)2
dy

= ±

√(
1

c

)2

− y2 + d,

for some d ∈ R. This geodesic has a form of a semi-circle of equation

(x− d)2 + y2 =

(
1

c

)2

,

which is centered on the x-axis.
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5.2.2 Arnold’s cat map

Consider once again the linear map, [Hasselblatt/Katok], [Burns/Gidea], [Nitecki]

A : T2 → T2,

(x, y) 7→ (2x+ y, x+ y)(mod 1),

or equivalently A

(
x
y

)
=

(
2 1
1 1

)(
x
y

)
(mod 1), i.e. a map on the compact

manifold T2 := R2/Z2, which is a nilmanifold.
cat map, who had first described the action of this map on T2 via an image of

a cat head, which is shared under this map and after some number of iterations
appears again. However, the above map itself was first introduced by Thom.
group, i.e. nilpotent, and Z2 is a discrete subgroup of R2, see chapter 1.

Let us see, why this map is an example for an Anosov diffeomorphism.

Step 1 Calculate the eigenvalues of the matrix A. The characteristic polynomial is:
p(λ) = λ2− trace(A)λ+det(A) = λ2−3λ+1. Thus, solving λ2−3λ+1 = 0

we get the following eigenvalues: λs = 3−
√

5
2

< 1, λu = 3+
√

5
2

> 1, i.e. A is a
hyperbolic matrix.

Step 2 Calculate the eigenspaces Es, corresponding to the eigenvalue λs, and Eu,
corresponding to the eigenvalue λu, i.e. solve the following equations known
from the linear algebra course:

(A− λs ∗ Id)

(
x
y

)
= 0 (5.10)

(A− λu ∗ Id)

(
x
y

)
= 0 (5.11)
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Calculation for (2.1): Conclusion:(
4−3+

√
5

2
1

1 2−3+
√

5
2

)(
x
y

)
=

(
0
0

)
The eigenvectors to the eigenvalue λs

 

(
1+
√

5
2

1

1 −1+
√

5
2

)(
x
y

)
=

(
0
0

)
lie on the line 1+

√
5

2
∗ x+ y = 0

 

(
1+
√

5
2

1
0 1

)(
x
y

)
=

(
0
0

)
⇐⇒ y = −1−

√
5

2
∗ x

Calculation for (2.2): Conclusion:(
4−3−

√
5

2
1

1 2−3−
√

5
2

)(
x
y

)
=

(
0
0

)
The eigenvectors to the eigenvalue λu

 

(
1−
√

5
2

1

1 −1−
√

5
2

)(
x
y

)
=

(
0
0

)
lie on the line 1−

√
5

2
∗ x+ y = 0

 

(
1−
√

5
2

1
0 1

)(
x
y

)
=

(
0
0

)
⇐⇒ y = −1+

√
5

2
∗ x

We conclude, the corresponding eigenvectors are :

s =

(
1

1−
√

5
2

)
and u =

(
1

−1+
√

5
2

)
.

Thus Es
p = {ts|t ∈ R} and Eu

p = {tu|t ∈ R}
Step 3 We conclude with the aid of step 2 that in each non-fixed point p ∈ T2there

exists a splitting of the tangent bundle of the two-dimensional torus T2, i.e
TpT2 = Es

p ⊕ Eu
p , which is invariant under D(A)p : TpT2 → TpT2.

Step 4 D(A)p : Es
p → Es

p is contracting and D(A)p : Eu
p → Eu

p is expanding due to

the result in step 1: λs = 3−
√

5
2

< 1, λu = 3+
√

5
2

> 1.
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und keine anderen als die im Literaturverzeichnis angegebenen Quellen, Darstel-
lungen und Hilfsmittel benutzt habe. Ich erkläre hiermit weiterhin, dass die
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