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1 Introduction

This thesis is devoted to a phenomenon in hyperbolic balance laws, first described by

Fiedler and Liebscher [FL98], which is similar in spirit to the Turing instability

[Tur52]. The combination of two individually stabilising effects can lead to quite rich

dynamical behaviour, like instabilities, oscillations, or pattern formation.

Our problem is composed of two ingredients. As a first part we have a strictly hy-

perbolic conservation law which has rarefaction waves and shocks with monotone viscous

profiles as elementary solutions. The second part is a source term which, alone, would de-

scribe a simple, stable kinetic behaviour: all trajectories end by converging monotonically

to an equilibrium. The balance law, constructed of these two parts, however, can support

viscous shock profiles with oscillatory tails. They emerge from a Hopf-like bifurcation

point that belongs to a curve of equilibria of the associated travelling-wave system. The

linearised flow at the rest points along this curve possesses a pair of conjugate complex

eigenvalues which crosses the imaginary axis at the Hopf-point.

The nature of the oscillatory shocks as well as their stability properties are the

subjects of this thesis. Our main result, theorem 1.5, establishes convective stability of

oscillatory viscous profiles to weak shocks with extreme speed: if the speed of the wave ex-

ceeds any characteristic speed, then the profile is linearly stable in a suitable exponentially

weighted space. For intermediate speeds, the profiles are absolutely unstable.

Methods of two areas, hyperbolic conservation laws and dynamical systems, are

combined in this work. This makes it necessary to give a brief review of basic facts and

methods of both fields in sections 2 and 5.

1.1 Travelling waves

Searching for viscous shock profiles of the Riemann problem, we consider systems of

hyperbolic balance laws of the form

ut + f(u)x = ε−1g(u) + εδuxx, (1.1)

with u = (u0, u1, . . . , un−1) ∈ Rn, f ∈ C6, g ∈ C5, δ > 0 fixed, and with real time t and

space x. The balance law is assumed to be hyperbolic, i.e. f ′(u) has only real eigenvalues.

The case of conservation laws, g ≡ 0, has been studied extensively. Some funda-

mental methods and results will be reviewed in section 2. Here, we consider stiff source
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terms ε−1g, ε > 0 small. Stiff sources arise frequently in models of chemical reactions and

combustion processes and in relaxation systems.

We are looking for travelling-wave solutions with wave speed s of the form

u = u
(
x− st
ε

)
. (1.2)

To solve (1.1) they must satisfy

−su̇+ A(u)u̇ = g(u) + δü. (1.3)

Here A(u) = f ′(u) denotes the Jacobian of the flux and the dot indicates the differentiation

with respect to the comoving, rescaled coordinate ξ = (x − st)/ε. Note that (1.3) is

independent of ε.

Viscous profiles are travelling waves (1.2) which connect two asymptotic states u±.

They are solutions of (1.3) for which asymptotic states

lim
ξ→±∞

u(ξ) = u± (1.4)

exist. In the limit ε ↘ 0 they give rise to a solution of the Riemann problem of (1.1)

with values u = u± connected by a shock front travelling with shock speed s.

The second-order travelling-wave equation (1.3) can be rewritten as a first-order

system

u̇ = v,

δv̇ = −g(u) + (A(u)− s)v.
(1.5)

Viscous profiles are now heteroclinic orbits connecting equilibria (u = u±, v = 0) of (1.5).

Note that any such equilibrium is also a zero of the source term,

g(u±) = 0. (1.6)

For pure conservation laws, g ≡ 0, this last condition does not restrict the values u±.

We can, in this case, integrate the viscous-profile equation (1.3) once and analyse the

resulting first-order dynamical system as described in section 2.5.

In general, the source term g(u) may depend on some but not all components of u.

For instance a chemical reaction depends on concentrations and temperature, but not on

velocities.

In this work, we assume that the u0-component does not contribute to the reaction
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terms and that the origin is an equilibrium state:

g = g(u1, . . . , un−1) =


g0

g1

...

gn−1

 ,
g(0) = 0.

(1.7)

This gives rise to a line of equilibria

u0 ∈ R, u1 = · · · = un−1 = 0, v = 0, (1.8)

of our viscous-profile system (1.5).

The asymptotic behaviour of viscous profiles u(ξ) for ξ → ±∞ depends on the

linearisation L of (1.5) at u = u±, v = 0. In block-matrix notation corresponding to

coordinates (u, v) we have

L =

 0 id

−δ−1g′ δ−1(A− s)

 . (1.9)

Here A = A(u) and g′ = g′(u) describe the Jacobi matrices of the flux f and reaction

term g at u = u±. To abbreviate (1.9), we wrote s rather than s · id.

In the case g ≡ 0 of pure conservation laws, the linearisation L possesses an n-

dimensional kernel that corresponds to the then arbitrary choice of the equilibrium u ∈
R
n, v = 0. Normal hyperbolicity of this family of equilibria, in the sense of dynamical

systems [HPS77], [Fen77], [Wig94], is ensured for wave speeds s that are not in the

spectrum of the strictly hyperbolic Jacobian A(u):

s 6∈ specA(u) = {σ0, . . . , σn−1}. (1.10)

Indeed, under this condition the only zeros that arise in the real spectrum

specL = {0} ∪ δ−1 spec(A(u)− s) (1.11)

are the trivial ones. Varying the parameter s, bifurcations occur at values s ∈ specA(u).

Travelling waves emerge that correspond to the usual Lax shocks, see section 2.5.

We now investigate the failure of normal hyperbolicity of L along the line of equilibria

u = (u0, 0, . . . , 0), v = 0. Although our method applies in complete generality, we just

present the analysis for systems of the smallest possible dimension, n = 3, for which

purely imaginary eigenvalues of L arise when δ > 0 is fixed small enough.
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1.2 Bifurcation from lines of equilibria

In this section, we investigate the three-dimensional case, n = 3, of the viscous-profile

system (1.5, 1.7). We restrict1 ourselves to the case

A(u0, 0, 0) = A0 + u0 · A1 +O(u2
0),

A0 =


α0

α1

α2

 , A1 = (βij)0≤i,j≤2 symmetric,

g′(0) =


0

γ11 γ12

γ21 γ22

 , γij 6= 0,

(1.12)

with omitted entries being zero. Note that these data can arise from flux functions f which

are gradient vector fields. In corollary 1.4 we present a specific choice of the parameters

where the reaction terms u̇ = g(u) alone, likewise, do not support oscillatory behaviour.

All trajectories of the pure kinetics end by converging monotonically to an equilibrium.

The interaction of flux and reaction, in contrast, is able to produce purely imaginary

eigenvalues of the linearisation L, as described in proposition 1.1 below.

In [FL98] an special example of the above type was investigated and parameter values

were given, such that purely imaginary eigenvalues exist, too. Unfortunately this example

had several drawbacks. The main problem is, that the source of the example in [FL98]

has unstable zeros. Therefore every travelling wave of the form (1.2, 1.4) has left and

right asymptotic states which are unstable with respect to homogeneous perturbations.

So, any viscous profile will be sensitive to perturbations with long wavelength.

Here, in contrast, we shall exactly compute the range of parameters where Hopf

points occur in the more general setup (1.12). We shall identify parameter regions with

stable asymptotic states and investigate the linear stability of the resulting shocks.

Proposition 1.1 Consider the linearisation L = L(u0), see (1.9), along the line u0 ∈
R, u1 = u2 = 0 of equilibria of the viscous-profile system (1.5) in R

3. Assume (1.12)

holds.

For s 6∈ {α0, α1, α2}, small |u0|, and δ ↘ 0 the spectrum of L then decouples into two

parts:

1The main restriction here is the fact that the u0-direction, the equilibrium line, coincides with an
eigendirection of A0. This renders the following calculation a bit easier to acquire. We want to emphasise
again, that our aim is to find oscillations in an example which is as simple as possible.
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(i) an unboundedly growing part spec∞ L = δ−1 spec(A− s) +O(1)

(ii) a bounded part specbd L = spec((A− s)−1g′) +O(δ)

Here A and g are evaluated at u = (u0, 0, 0). For α1 6= α2, γ11 + γ22 6= 0, δ ↘ 0, the

bounded part, specbd L, at u0 = 0 limits for values

s = scrit =
α1γ22 + α2γ11

γ11 + γ22

,

1 <
γ12γ21

γ11γ22

(1.13)

onto simple eigenvalues

µ0 ∈ {0,±iω0},

ω0 =
γ11 + γ22

α1 − α2

√
γ12γ21

γ11γ22

− 1,
(1.14)

with eigenvectors
(
ũ
ṽ

)
given by ṽ = µ0ũ and

ũ =


1

0

0

 for µ0 = 0,

ũ =


0

1

−γ11

γ12
± iγ11

γ12

√
γ12γ21

γ11γ22
− 1

 for µ0 = ±iω0.

(1.15)

The proof will be postponed to section 4.1.

Proposition 1.1 describes a situation which looks like a Hopf bifurcation.2 But,

of course, no parameter is involved. Unusually, there is no foliation of the vector field

near the critical point, transversal to the line of equilibria. (In a parameter dependent

system, we could regard the parameter as an additional variable in an extended phase

space. Then any equilibrium would become a curve with a transversal foliation due to

the parameter.)

Bifurcations from lines of equilibria in absence of parameters have been investigated

in [Lie97], [FLA98a] from a theoretical point of view. For a related application to binary

oscillators in discretised systems of hyperbolic balance laws see [FLA98b]. We recall the

result of [FLA98a].

2For background information about Hopf bifurcation, please see [MM76].
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Consider C5 vector fields

u̇ = F (u) (1.16)

with u = (u0, u1, . . . , uN−1) ∈ RN . We assume that the u0 axis consists of equilibria

0 = F (u0, 0, . . . , 0). (1.17)

At the origin the Jacobi matrix F ′(u0, 0, . . . , 0) has a trivial kernel vector along the

u0-axis. We suppose that, in addition, there exists a pair of simple, complex conjugate,

nonzero eigenvalues µ(u0), µ(u0) crossing the imaginary axis transversely as u0 increases

through the origin u0 = 0:

µ(0) = iω(0), ω(0) > 0,

<eµ′(0) 6= 0.
(1.18)

In the complementary directions F ′(u0, 0, . . . , 0) is assumed to be hyperbolic.

Let Z be the two-dimensional real eigenspace of F ′(0) associated to ±iω(0). By ∆Z

we denote the Laplacian with respect to variations of u in the eigenspace Z. Coordinates

in Z are chosen as coefficients of the real and imaginary parts of the complex eigenvector

associated with iω(0). Note that the linearisation acts as a rotation with respect to these,

not necessarily orthogonal, coordinates. Let P0 be the one-dimensional eigenprojection

onto the trivial kernel along the u0-axis. Finally, we impose a nondegeneracy assumption

which reads

∆ZP0F (0) 6= 0. (1.19)

This assumption can be seen as an exclusion of foliations transversal to the u0-axis near

the origin. If (1.19) is satisfied (and this is decided by second order terms) then no

foliation transversal to the line of equilibria can exist.3

After fixing the orientation along the positive u0-axis, we can consider ∆ZP0F (0) as

a real number. Depending on the sign

η := sign(<eµ′(0)) · sign(∆ZP0F (0)), (1.20)

we call the “bifurcation” point u0 = 0 elliptic, if η = −1, and hyperbolic, for η = +1.

The following result from [FLA98a] concerns the qualitative behaviour of solutions

in a normally hyperbolic4 three-dimensional centre manifold to u = 0.

3See section 3 for more details.

4Please note that we have now introduced three different meanings of the term “hyperbolic” which
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Theorem 1.2 (Fiedler, Liebscher, Alexander [FLA98a]) Let the assumptions

(1.16–1.19) be satisfied for the C5-vector field u̇ = F (u). Then the following holds true

in a neighbourhood U of u = 0 within a three-dimensional centre manifold to u = 0.

In the hyperbolic case, η = +1, all non-equilibrium trajectories leave the neighbourhood

U in positive or negative time direction, or both. The stable and unstable sets of u = 0,

respectively, form cones around the positive/negative u0-axis, with asymptotically ellip-

tic cross section near their tips at u = 0. These cones separate regions with different

convergence behaviour. See figure 1.1a.

In the elliptic case all non-equilibrium trajectories starting in U are heteroclinic between

equilibria u± = (u±0 , 0, . . . , 0) on opposite sides of u0 = 0. If F (u) is real analytic near

u = 0, then the two-dimensional strong stable and strong unstable manifolds, W s(u+) and

W u(u−), of the asymptotic states within the centre manifold intersect at an angle that

possesses an exponentially small upper bound in terms of |u±|. See figure 1.1b.

The results for the hyperbolic case, η = +1, are based on normal-form theory and

a spherical blow-up construction inside the centre manifold. The elliptic case, η = −1,

is based on Neishtadt’s theorem on exponential elimination of rapidly rotating phases

[Nei84]. This will be described in section 3.

1.3 Shock profiles

Our next task is to apply theorem 1.2 to the problem of viscous profiles of systems of

hyperbolic balance laws near Hopf points of the kind observed in proposition 1.1.

Theorem 1.3 Consider the problem (1.4, 1.5) of finding viscous profiles with shock speed

s to the system of viscous hyperbolic balance laws (1.1). Let assumptions (1.7, 1.12, 1.13)

hold, so that a pair of purely imaginary simple eigenvalues occurs at the origin for the

linearisation L, in the limit δ → 0, for a fixed speed s = scrit.

Then there exist nonlinearities A(u) = f ′(u) and g(u), compatible with the above assump-

tions, such that the assumptions and conclusions of theorem 1.2 are valid for the viscous-

profile system (1.5) for small, positive δ at a point (uδ0, 0, . . . , 0), with limδ↘0 u
δ
0 = 0. Both

should not be mixed up. First, the hyperbolicity of a conservation law restricts the eigenvalues of the
derivative of the flux to real numbers. In contrast to this, normal hyperbolicity of manifolds in dynamical
systems describes the existence of transversally intersecting stable and unstable manifolds with uniformly
bounded contraction and expansion rates, see [Wig94]. Finally, the classification of the two bifurcation
types in (1.20) is motivated by the structure of the normal form, see section 3.
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the elliptic and the hyperbolic case occur; see figure 1.1.

Since both conditions define open regions, the results persist for shock speeds s in a small

open interval around scrit, even when f , g remain fixed. The Hopf bifurcation will then

occur at a point (ŭδ0, 0, . . . , 0), with ŭδ0 converging to a point near the origin, for δ ↘ 0.

In particular, the assumptions of theorem 1.2 are satisfied if, and only if,

(i) α1 6= α2,

(ii) 0 6= γ11 + γ22,

(iii) 1 < γ12γ21

γ11γ22
,

(iv) α0 6= scrit = α1γ22+α2γ11

γ11+γ22
,

(v) 0 6= β11γ22 + β22γ11 − β12γ21 − β21γ12,

(vi) 0 6= g′′0(0)[ũ, ũ].

(1.21)

The first four conditions are these of proposition 1.1. Assumption (v) represents the

transversality condition (1.18). The last requirement matches the nondegeneracy condi-

tion (1.19), where ũ is the first part of the Hopf-eigenvector (1.15) and ũ its complex

conjugate.

The type of bifurcation (1.20) is determined by

η = sign(β12γ21 + β21γ12 − β11γ22 − β22γ11) sign(γ11γ22) ·
· sign(α0 − scrit) sign(g′′0(0)[ũ, ũ]).

(1.22)

Specific choices of flux and reaction terms are presented in corollary 1.4; see (1.23).

In the elliptic case, η = −1, we observe (at least) pairs of weak shocks with oscillatory

tails, connecting u− and u+. In the hyperbolic case, η = +1, viscous profiles leave the

neighbourhood U and thus, possibly, represent large shocks. At u0 = 0, their profiles

change discontinuously and the role of the equilibrium on the u0-axis switches from left

to right asymptotic state with oscillatory tail.

We shall focus on the elliptic case, η = −1. The heteroclinic connections, figure

1.2a, which fill an entire neighbourhood of the Hopf point in the centre manifold then

lead to travelling waves of the balance law (1.1, 1.2). In figure 1.2b, such a wave is

shown, and a generic projection of the n-dimensional space of u-values onto the real line

was used. The oscillations imposed by the purely imaginary eigenvalues now look like a

Gibbs phenomenon. But here, they are an intrinsic property of the analytically derived

solution.

To prove theorem 1.3, we first check the transversality condition (1.18) for the purely

imaginary eigenvalues. Then we compute an expansion in terms of δ for the eigenpro-
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jection P0 onto the trivial kernel along the u0−axis. Finally, we check nondegeneracy

condition (1.19) for ∆ZP0F (0), in the limit δ ↘ 0, completing the proof by reduction to

theorem 1.2. This is done in section 4.

Corollary 1.4 Theorems 1.2, 1.3 hold true for η = ±1 with the following specific choices

of a gradient flux term f(u) = ∇Φ(u) and a reaction term g(u) :

Φ(u) = −1
2
u2

0 + u2
1 + 1

2
u2

2 − 1
2
u0u

2
1,

g(u) =


−ηu2

1 − ηu2
2

1
4
u1 + 3

2
u2

−3
2
u1 − 4u2

 . (1.23)

These choices correspond to values α0 = −1, α1 = 2, α2 = 1, β11 = −1, all other βij = 0,

γ11 = 1/4, γ12 = 3/2, γ21 = −3/2, γ22 = −4. In addition, g′′0 is positive (η = −1) or

negative (η = 1) definite. The critical shock speed is scrit = 31
15

.

In the above example the flux function is a gradient. For the conservation-law

part without the source g, the travelling-wave equation (1.3) would be represented by a

gradient flow

δu̇ = ∇
(

Φ(u)− s

2
〈u, u〉 − 〈u,Φ(u−)− su−〉

)
. (1.24)

without any possible oscillatory behaviour. The pure kinetics, u̇ = g(u), too, does not

support oscillations. On the u1, u2 subspace, the flow g′(u) is linear with real and negative

eigenvalues. All trajectories end by converging monotonically to the equilibrium line.

Anyhow, the interaction of the conservation law with the source produces oscillatory

viscous profiles. These profiles can be even stable, in some sense, as we shall see later on.

A very similar phenomenon is known as Turing-instability in reaction-diffusion

equations. Reaction and diffusion, which separately stabilise constant, homogeneous so-

lutions, can form instabilities and spatial patterns [Tur52]. In our case, we have to deal

with the interaction of reaction and transport.
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1.4 Stability, main result

Our next aim is to find stability of the shock profiles (1.2) with respect to perturbations

in the parabolic equation (1.1).

The first requirement that we want to impose is the stability of the right and left

asymptotic states u± with respect to homogeneous perturbations. The points u± have to

be stable equilibria of

ut = ε−1g(u). (1.25)

Otherwise, any shock connecting u− and u+ would be very sensitive to long wave pertur-

bations. Therefore all eigenvalues of g′(0) = g′(u0, 0, . . . , 0) should be contained in the

closed left half plane.

Secondly, we want to insist on the possibility of oscillatory shocks for source terms

that resist oscillations. Especially, g′ should have real eigenvalues.

Collecting all these requirements and (1.13) from proposition 1.1, we impose the

following restrictions of the parameters (1.12) of flux and source terms:

(i) real eigenvalues of g′

(γ11 − γ22)2 + 4γ12γ21 > 0, (1.26)

(ii) two negative eigenvalues of g′ in addition to the trivial one

γ11 + γ22 < 0 and γ11γ22 − γ12γ21 > 0, (1.27)

(iii) Hopf-point

α1 6= α2 and 1 <
γ12γ21

γ11γ22

. (1.28)

We want to simplify this a bit. Because of (ii) and (iii), γ11γ22 has to be negative. Without

loss of generality, we can choose γ11 > 0 > γ22. Then, (ii) implies that γ12γ21 must be

negative, too, and of absolute value grater than |γ11γ22|. Taking (1.26) into account we

arrive at

0 < γ11 < −γ22, −γ11γ22 < −γ12γ21 <
1

4
(γ11 − γ22)2, α1 6= α2. (1.29)

One easily checks, that — up to the choice of the signs of γ11, γ22 — (1.29) is equivalent

to (1.26 – 1.28).5 Note that the example given in corollary 1.4 fulfils this condition.

5The structure of source terms g that satisfy this condition becomes even more apparent with the



Stable, Oscillatory Viscous Profiles in Systems of Stiff Balance Laws 13

Now we can investigate the linear stability of the travelling waves of (1.1, 1.2, 1.4)

observed in theorem 1.3 in the elliptic case.

To achieve this, we have to study the spectrum of the linearisation of the p.d.e.

operator associated to (1.1). The spectrum is a disjoint union of the point spectrum6

and the essential spectrum6. If the entire spectrum is contained in the left half plain,

we speak of spectral stability, which can be extended to linear stability by establishing

suitable estimates of the resolvent. Parts of the essential spectrum in the right half plane

typically correspond to continua of unstable modes. In some cases the growth of these

modes may be dominated by their convection to either −∞ or +∞. Perturbations may

grow but travel away. Pointwise, the perturbations decay to zero. We call this situation

convective stability6 in contrast to absolute instability6, where growing modes exist which

do not travel away.

Convective stability can be investigated through the introduction of exponentially

weighted norms ‖ · ‖ν ,
‖u‖2

ν =
∫ ∞
−∞
|eνxu(x)|2 dx, (1.30)

instead of the usual L2 norm. Choose, for instance, ν > 0. Then, perturbations of

fixed L2 norm near +∞ will be very large in the weighted norm. Near −∞, however,

a perturbation of the same L2 norm will be very small due to a small weight. Modes

that travel towards −∞ are multiplied by eνx which gets smaller as x goes to −∞. In

fact, growing modes might even become decaying. Parts of the essential spectrum that

corresponds to convective modes can be shifted if the spectrum is calculated in a norm with

exponential weights. Absolute instabilities are, in contrast, not affected by supplementary

weights. Therefore, convective stability is defined as spectral stability with respect to a

substitutions
γ11 = g

1
θ
, γ22 = −g θ, γ12 = g h ρ, γ21 = −g h 1

ρ
.

Condition (1.29) now reads

0 < g, 1 < θ, 0 6= ρ, 1 < h <
1
2

(
θ +

1
θ

)
, α1 6= α2.

Both conditions cover the same parameter region. The critical shock speed as well as the Hopf eigenvalues
that were calculated in proposition 1.1 (1.13 – 1.14) now have the form

scrit =
θ2α1 − α2

θ2 − 1
, µ0 = ±iω0 = ∓ig

√
h2 − 1

α1 − α2

θ2 − 1
θ

6See section 5 for definitions.
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appropriate exponentially weighted norm. A precise definition as well as a review about

basic concepts and results of spectral theory of travelling waves will be given in section 5.

Then, in section 6, the following theorem will be proven.

Theorem 1.5 Consider the viscous balance law (1.1) under the conditions (1.7, 1.12,

1.21(iv-vi), 1.29). Then theorem 1.3 applies; suppose the elliptic case holds.7 Then for

small δ, 0 < δ < δ0, there exist viscous profiles (1.2, 1.4) to weak shocks, see figure

1.2. These profiles travel with speed s near scrit, as defined in theorem 1.3, and connect

asymptotic states u± of small distance, |u+ − u−| < ε.

Suppose further, that the considered profiles have extreme speed s that exceeds all charac-

teristic speeds, in particular

scrit > α0, α1, α2 or scrit < α0, α1, α2. (1.31)

We call the corresponding shocks hypersonic.

Then, possibly after further reduction of δ0 and ε, all those travelling waves are convectively

stable. The weight of convective stability, as introduced above, must possess a positive

exponent for scrit > αi and a negative exponent for scrit < αi.

For intermediate wave speeds, within the range of characteristic speeds, the constructed

profiles cannot be stabilised by any exponential weight.8 They are absolutely unstable.

Note that if we fix the signs of γ11 and γ22 as in (1.29) then we obtain the following

equivalences:

s > α1, α2 ⇐⇒ α1 > α2,

s < α1, α2 ⇐⇒ α1 < α2.
(1.32)

For example, under the assumption α1 > α0, α2 theorem 1.5 establishes convective stabil-

ity of all the constructed oscillatory profiles. This result holds regardless of the source g,

as long as g satisfies the assumptions of the Hopf-bifurcation theorem 1.3 to give rise to

any profiles at all.

Note how the oscillatory profiles contradict the common expectations that arise from

the study of hyperbolic conservation laws. Viscous profiles to weak shocks, especially

stable ones, should respect the Lax criterion. The profiles which we have constructed are

7This is indeed possible, see for instance Corollary 1.4

8This is true, even if one takes different weights for positive and negative values x, in the attempt to
fine-tune the concept of exponential weight.
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of non-Lax nature. In particular, they are stable only for hypersonic speed (i.e. a speed

that exceeds all characteristic speeds).

In the limit ε↘ 0 the observed oscillations manifest themselves as overshooting at

the shock layer. If such a phenomenon occurs in numerical simulations then, typically, an

incapable numerical scheme is blamed for it. Numerical viscosities are used to smooth out

unwanted oscillations. However, the oscillations in our example are intrinsic properties of

the solution and should be represented by a numerical scheme.

1.5 The hyperbolic limit

Our problem (1.1) depends on two small parameters, ε, δ. For small values of δ our

analysis holds, see theorems 1.3 and 1.5, and for small ε the constructed travelling waves

becomes steep, see figure 1.2b.

The Hopf bifurcation depends on the bounded part of the spectrum of the linearised

viscous-profile equation, see proposition 1.1. We could even fix ε and set δ = 0. Then,

the pure balance law without viscosity,

ut + f(u)x = ε−1g(u), (1.33)

still permits travelling-wave solutions with oscillatory tails. The bifurcation is indeed

imposed by the interaction of flux and source. The viscosity acts only as a regularisation.
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Figure 1.1: Dynamics near Hopf bifurcation from lines of equilibria.

y

z1

z2

u−
u+

a) heteroclinic orbit of the travelling-wave

o.d.e (1.5) near the Hopf point.

x

u

u+

u−

x

u

u+

u−

b) oscillating viscous profile in the

singular limit ε↘ 0.

Figure 1.2: Viscous profiles emerging from the elliptic case of example (1.23).
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2 Hyperbolic Conservation Laws

Conservation laws

∂

∂t
u+

m∑
i=1

∂

∂xi
Fi(u) = 0, x ∈ Rm, u ∈ Rn, (2.1)

arise in various physical models including fluid dynamics [LL59, Jos90], magneto-hydro-

dynamics [FS95], elasticity [KK80], multiphase flow in oil recovery [SS87, MPS97], cos-

mology [ST95], and many more.

The prototype of a conservation law is the one-dimensional, scalar Burgers equa-

tion
ut + (1

2
u2)x = 0 or, alternatively,

ut + uux = 0, x ∈ R, u ∈ R.
(2.2)

It was introduced in [Bur40] as a model of turbulence.

In this section, we want to summarise the fundamental problems and basic meth-

ods of the theory of hyperbolic conservation laws. We shall focus on the case of one-

dimensional systems, m = 1,

ut + F (u)x = 0, x ∈ R, u ∈ Rn. (2.3)

A typical requirement is the hyperbolicity of the system of conservation laws. All

eigenvalues of F ′ should be real numbers. This guarantees the well-posedness of the

associated initial-value problem.

For a more detailed introduction into the topic, see [Smo94].

2.1 Characteristics and the formation of discontinuities

Assuming the existence of a smooth solution u(x, t) to the Cauchy problem of a one-

dimensional, scalar conservation law

ut + F (u)x = 0, x ∈ R, t ∈ R+, u ∈ R,
u(x, t = 0) = u0(x),

(2.4)

one easily identifies characteristic curves: Along

x = φ(t), where
d

dt
φ(t) = F ′(u(φ(t), t)), (2.5)
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the solution u(x, t) of (2.4) has to be constant. Therefore, the characteristic curves (φ(t), t)

are, in fact, straight lines.

Because of the nonlinearity of the flux F , the slope of the characteristic lines depends

on the initial condition u0. Typically, there are intersections of different characteristics

after finite time, such that any smooth solution breaks down at these intersections. Dis-

continuities, called shocks, arise, see figure 2.2. For the Burgers equation (2.2), globally

defined solutions in the class C1 only exist if the initial function u0 is monotonically

increasing.

In systems of conservation laws, there are several characteristic fields, one for each

eigendirection of F ′. A typical, simplifying assumption is the strict hyperbolicity: all

eigenvalues of F ′ ought to be real, simple, and distinct.

The information about the initial condition is transported along the characteristics.

Conservation laws permit a finite speed of propagation of information.

For scalar equations, the notion of characteristics can be extended to cover intersec-

tions at discontinuities. These generalised characteristic curves prove to be a strikingly

useful tool, if seen from a slightly different point of view as backward characteristics

[Daf77]. From any arbitrarily chosen point (x, t) one can follow the maximal/minimal

backward characteristic to find the domain that influences the value at (x, t). This prop-

erty can be used to obtain a very deep insight into the structure of solutions. For scalar

conservation laws with source, for instance, backward characteristics are an important

ingredient to understand the structure of the attractor [Här99].

2.2 Weak solutions

Due to the nonlinearity, discontinuities can arise after finite time even for smooth initial

data. Hyperbolic conservation laws, in general, can be solved only in a weak sense. The

weak formulation of (2.1) has the form∫
t≥0

(
u
∂

∂t
ψ + F (u)

∂

∂x
ψ

)
dxdt +

∫
t=0

u0ψ dx = 0, ∀ψ ∈ C1
0(R×R,Rn). (2.6)

This equation imposes constraints on discontinuities, the so called Rankine-Hugoniot

jump conditions, as we shall see now. Let u be a weak solution. Consider a point (x0, t0)

on a smooth curve Γ of discontinuity. Assume u to be smooth near (x0, t0) outside Γ with

well-defined limits u± on both Sides of Γ. Let s be the speed of the discontinuity, i.e. s−1

is the slope of Γ at u, see figure 2.1. Integrating u on a small ball around (x, t) and using
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For all test functions ψ with suppψ ⊂ D, the diver-
gence theorem gives:

0 =
∫
D
uψt + F (u)ψx dxdt

=
∫
D−

(uψ)t + (F (u)ψ)x dxdt

+
∫
D+

(uψ)t + (F (u)ψ)x dxdt

=
∮

∂D−
(−u dx+ F (u) dt)ψ

+
∮

∂D+

(−u dx+ F (u) dt)ψ

=
Y∫
X

(
(F (u−)− F (u+)) dt− (u− − u+) dx

)
ψ.

Γ
s = dx/dt

(x0, t0)u−

u+

D−

D+

D

X

Y

Figure 2.1: Jump condition for a shock wave

the divergence theorem gives the jump conditions

F (u+)− F (u−) = s(u+ − u−). (2.7)

Unfortunately, by only considering the weak formulation of the problem we lose

the uniqueness of the solution, see figure 2.3. One must impose additional constraints, so

called entropy conditions, to identify the “physically relevant” solutions. These conditions

are motivated by the second law of thermodynamics in gas-dynamical systems. Along

discontinuities, the entropy increases and information gets lost. Discontinuities account

for the irreversibility of the evolution induced by the conservation law. We shall discuss

entropy conditions in the next section.

A second problem arises. Nonlinear transformations of the hyperbolic conservation

law can change the set of solutions. Smooth solutions, of course, are not affected by trans-

formations. In contrast, the weak formulation and the Rankine-Hugoniot condition

change.

Example 2.1 We consider the following two formulations of the same conservation law,

namely the Burgers equation (2.2):

ut +
(

1

2
u2
)
x

= 0 (2.8)

and

vt +
(

2

3
v3/2

)
x

= 0. (2.9)

They are connected by the transformation v = u2. (We consider only positive solutions.)



20 Stefan Liebscher

The jump conditions (2.7) now read

(2.8) ⇒ s =
1
2
u2

+ − 1
2
u2
−

u+ − u−
=

1

2
(u+ + u−),

(2.9) ⇒ s =
2
3
v

3/2
+ − 2

3
v

3/2
−

v+ − v−
=

2

3

u3
+ − u3

−
u2

+ − u2
−

=
2

3

u2
+ + u+u− + u2

−
u+ + u−

.

(2.10)

This leads to different shock speeds. The Rankine-Hugoniot conditions are not invari-

ant under nonlinear transformations. We obtain different sets of weak solutions.

However, in applications, the physical model typically has the form of an integral

equation and provides the correct weak formulation along with the conservation law.

2.3 Entropy and viscosity

To ensure uniqueness of weak solutions to hyperbolic conservation laws one has to impose

additional constraints. Motivated by the second law of thermodynamics, entropy condi-

tions are a very popular class of properties. In principle, they ensure that information

can only get lost in discontinuities.

Before we give a precise definition of entropy, we investigate an alternative approach

to the problem of uniqueness. It is rooted in the observation that conservation laws

are idealised physical models. Frequently, effects due to dissipation (like viscosity, heat

conduction, and so on) and dispersion are neglected. We shall consider one of these:

viscous effects. Then, one should regard the conservation law (2.3) as a singular limit

ε↘ 0 of a parabolic9 equation

ut + F (u)x = ε(Bux)x. (2.11)

This approach is often called the “viscosity method”. Unfortunately, for general systems

the singular limit is very difficult to handle. One reason is the violation of the scaling

invariance of the conservation law by its parabolic regularisation. In fact, with the scaling

(x̃, t̃) = (ε−1x, ε−1t), the limit ε ↘ 0 can be regarded as the long time behaviour of the

parabolic equation for fixed ε.

9The viscous effects are expected to regularise the problem. In particular we want to obtain an
equation with a well-posed Cauchy problem. The matrix B should have eigenvalues with positive real
parts. Zero eigenvalues may be allowed. Frequently, the case B = id is considered. However, the identity
matrix, typically, does not correctly represent the physical properties of the problem.
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With an artificial regularisation, εt(Bux)x, that respects the scaling properties, re-

sults about convergence of the singular limit were obtained by several authors [Daf74,

Fan92, Tza96].

Nevertheless, viscosity approximations can be used to find appropriate admissibility

criteria for shock waves.

Definition 2.2 For systems of conservation laws (2.3), a discontinuity with speed s, con-

necting u− on the left and u+ on the right, is admissible, if there exists a sequence of

travelling-wave solutions uε(x, t) = u((x − st)/ε) to the parabolic regularisation (2.11),

that converges, for ε↘ 0, to the piecewise constant solution

u(x, t) =

 u− x < st

u+ x > st
. (2.12)

The parabolic regularisation (2.11) also motivates the abstract definitions of the

entropy criteria.

Definition 2.3 An entropy, entropy-flux pair of the system of conservation laws (2.3)

is a pair of continuously differentiable, real-valued functions (U = U(u), G = G(u)) that

satisfies the relation

U ′(u) · F ′(u) = G′(u). (2.13)

As long as the solution of the system of conservation laws (2.3) remains smooth, the

entropy is conserved. Indeed, we obtain an additional conservation law

U(u)t +G(u)x = U ′(u)ut +G′(u)ux = −U ′(u)F ′(u)ux +G′(u)ux = 0, (2.14)

that is satisfied for smooth solutions but not across discontinuities. Across discontinuities

we require the entropy to decrease.10

Definition 2.4 An entropy solution to (2.3), with respect to the entropy, entropy-flux

pair (U,G), is a weak solution that, additionally, satisfies the entropy inequality

U(u)t +G(u)x ≤ 0, (2.15)

in the weak sense, i.e..∫
t≥0

(
U(u)

∂

∂t
ψ +G(u)

∂

∂x
ψ

)
dxdt +

∫
t=0

U(u0)ψ dx ≥ 0, ∀ψ ∈ C1
0(R×R,R+).

(2.16)

10This definition seems to contradict the physical notion of entropy. We can think of −U as an
increasing function. The point here is the monotonicity of U in t.
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Adding a small viscosity term, we obtain for a solution of (2.11):

U(u)t +G(u)x = εU ′(u)(Bux)x = ε(U ′(u)Bux)x − εU ′′(u)[ux, Bux]. (2.17)

If B is the identity matrix and U(u) is a convex function, we can conclude

U(u)t +G(u)x ≤ εU(u)xx. (2.18)

This means that the entropy condition (2.15) with a convex entropy U(u) and the vis-

cosity approximation with an identity viscosity matrix are consistent. So, one mainly is

interested in convex entropies.

Definition 2.5 A weak solution to (2.3) is called entropy-admissible, if it is an entropy

solution to any possible convex entropy U and corresponding entropy flux G.

Unfortunately, the condition (2.13) consists of n first-order equations for the two

scalar unknowns U and G. If n ≥ 3, then this system is overdetermined. In general,

we expect to find nontrivial entropies only in dimensions n ≤ 2. Nevertheless, there are

important examples of larger systems that admit nontrivial entropy functions, for example

systems with gradient or anti-gradient flux.

For scalar, one-dimensional conservation laws one can show that a shock connecting

u− and u+ is entropy-admissible if, and only if,

F (u+)− F (u)

u+ − u
≤ F (u−)− F (u)

u− − u
(2.19)

for every intermediate value u = αu+ + (1− α)u−, 0 < α < 1. The slope of the secant to

the graph of F through the points at u−,u should be greater that the slope of the secant

through the points at u+,u. In fact, the shock speed s will have a value between these

slopes.

If, in addition, the flux F is a convex function, as for instance in the Burgers

equation (2.2), then the entropy condition simply requires that along shocks the solution

only jumps downward, u− > u+.

A third admissibility criterion was introduced by Lax, [Lax57]. It has intuitive

geometrical meaning.

Definition 2.6 Consider a strictly hyperbolic system (2.3). Let λ1(u) < · · · < λn(u)

denote the real, distinct eigenvalues of F ′(u). A shock that connects u− with u+ and

travels with speed s is Lax-admissible if the inequalities

λi−1(u−) < s ≤ λi(u
−) and λi(u

+) ≤ s < λi+1(u+) (2.20)

are satisfied for a suitable index i.
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The Lax condition requires, that the characteristics of the i-th field are absorbed in the

shock at both sides. All other characteristics cross the shock. In particular, no field of

characteristics may be emitted at once from both sides of the shock. Therefore, figure 2.3

shows non-admissible shocks.

For scalar, one-dimensional conservation laws with convex flux, all these admissibil-

ity criteria are equivalent. The entropy-solution is then globally defined and unique.

Already for nonconvex fluxes, the Lax condition produces different (non-unique)

results. However, the criterion can be improved [Ole59, Liu76a].

Two-dimensional systems have been investigated to some extent even in the case of

non-strict hyperbolicity [Liu76b, ČP95, SS87, SPM97]. For larger systems, only solutions

to initial data with small total variation are well understood [Gli65, DiP76, DiP79, BL97].

With the appropriate choice of the viscosity matrixB, equivalence of the viscosity criterion

to the entropy condition for weak shocks was proven [MP85].

2.4 The Riemann problem

Before we further investigate the properties of shock waves, we want to give an overview

about the elementary solution of conservation laws. As already noted before, conservation

laws are invariant under the scaling (x̃, t̃) = (cx, ct). It is natural to look for solutions

that have this symmetry too, i.e. which remain fixed under this scaling. Eminently, the

initial values u0(x) of such solutions must be constant for x < 0 and for x > 0,

u0(x) =

 u− x < 0

u+ x > 0
. (2.21)

This type of Cauchy-problem was investigated by Riemann [Rie92] to describe gas tube

experiments. It is now called the Riemann problem. Its solution is used as a building

block of approximate solutions to general initial data in various existence and uniqueness

proofs [Gli65, GL70, Liu77] and numerical schemes, like Godunov and Glimm schemes

[Krö97].

In the simplest case of a scalar conservation law with convex flux function F , for

instance the Burgers equation, there are two possible types of entropy solutions to the

Riemann problem.
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(i) For u− > u+, a shock wave, see figure 2.4a,

u(x, t) =

 u− x < st

u+ x > st
, s =

F (u−)− F (u+)

u− − u+
. (2.22)

The shock speed s is determined by the jump condition (2.7). There is only one

characteristic field, with characteristic speed F ′(u). On both sides of the shock,

characteristics must get absorbed in the discontinuity. To the left of an admissible

shock with speed s characteristics must be faster, F ′(u−) > s, and to the right they

have to be slower, F ′(u+) < s. The convexity of the flux, i.e. the monotone increase

of F ′, now restricts admissible shocks to the case u− > u+.

(ii) For u− < u+, a rarefaction wave, see figure 2.4b,

u(x, t) =


u− x < s−t

u(x
t
) s− ≤ x

t
≤ s+

u+ x > s+t

, F ′(u(x
t
)) = x

t
, s± = F ′(u±). (2.23)

The above equation is obtained easily by the ansatz u(x, t) = u(x/t) for a scale-

invariant solution. The monotonicity of F ′ guarantees the existence of a unique

solution u(x/t) for u− < u+ and s− < s+.

Shocks and rarefaction waves are called elementary waves.

For non-convex fluxes, the solution of the Riemann problem can be constructed as

a sequence of elementary waves. These waves can be obtained by examining the convex

hull of the graph of the flux F on the interval between the asymptotic states u− and

u+. Subintervals, where the convex hull coincides with the graph of f , correspond to

rarefaction waves. Straight lines indicate shocks, see figure 2.5. Due to the entropy

condition (2.19), the hull has to be taken above the graph of F for u− > u+ and below

for u− < u+.

Systems of n conservation laws (in one space dimensions) cause some additional

difficulties. There are now elementary waves associated to every characteristic field:

(i) Shock waves

s(u− − u+) = F (u−)− F (u+) = F ′(u−)(u− − u+) +O
(
(u− − u+)2

)
. (2.24)

At least for weak shocks, |u− − u+| � 1, the difference of the asymptotic states,

u− − u+, must be close to an eigenvector of F ′. The speed s is then close to the
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corresponding eigenvalue, i.e. the characteristic speed. In fact, for fixed u−, the

shocks can be seen as emerging from bifurcations at speeds s, for which (F ′(u−)−s)
becomes singular.

(ii) Rarefaction fans

F ′(u(x
t
))u′(x

t
) = x

t
u′(x

t
). (2.25)

As long as F ′(u(s = x/t)) has a unique right i-th eigenspace, span ri(u(s)), that

is not orthogonal to the gradient of the eigenvalue λi(u(s)), we obtain for the i-th

family the evolution

u′(s) =
ri(u(s))

〈λ′i(u(s)), ri(u(s))〉
. (2.26)

Given u−, this equation can be solved for s− < s < s+ with initial values s− =

λi(u
−), u(s−) = u−.

For strictly hyperbolic systems, the wave speeds of different characteristic fields are ordered

according to the distinct eigenvalues of F ′. Notably, there are always unique eigenspaces,

span ri(u), that depend continuously on u.

However, the above constructions not necessarily result in well-defined curves that

are parametrised by the speed s. We need an additional assumption:

Definition 2.7 The i-th characteristic field is called genuinely nonlinear, if the gradient

of the i-th eigenvalue is nowhere orthogonal to the right eigenvector,

∀u : 〈λ′i(u), ri(u)〉 6= 0. (GNL)

On the contrary, the field is called linearly degenerate (LD), if the gradient of the eigen-

value and the matching eigenvalue are everywhere orthogonal,

∀u : 〈λ′i(u), ri(u)〉 = 0. (LD)

Genuine nonlinearity is a generalisation of the convexity of the flux in scalar con-

servation laws. If the i-th field is genuinely nonlinear, then the jump condition (2.24)

and the o.d.e. (2.26) define curves in the space Rn of values of u. Points on these curves

can be connected by a single elementary wave. The curves are parametrised by s. Both

curves, Ri(u
−), Si(u

−), that belong to a fixed value u− and family i, intersect at u− with

a quadratic tangency, see figure 2.6. The admissibility of connections on these curves is

controlled by the sign of 〈λ′i, ri〉, for rarefaction fans, and by the entropy condition or the

viscosity criterion, for shocks.
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Linear degeneracy, though it is a very non-generic assumption, is always satisfied for

the second field in the important Euler equations of gas dynamics. It produces so called

contact discontinuities. The wave curve that is imposed by a linearly degenerate field is

a straight line in direction of the eigenspace, span ri. Any two points, u− and u+, on this

line are connected by a shock-like discontinuity that travels at speed s = λi, independent

of u−, u+. For a linearly degenerate field i the rarefaction curve Ri and the shock curve Si

are not parametrised by s anymore and coincide identically. The characteristics on both

sides of a contact discontinuity are parallel to it.

The fundamental idea in now to construct a solution to the Riemann problem by

concatenating elementary waves11 of the various characteristic fields. To accomplish this,

one has to find a path

u− = u[1], u[2], . . . , u[n+1] = u+, (2.27)

where u[i], u[i+1] belong to a common wave curve (shock or rarefaction) to the i-th family

in an admissible direction, see figure 2.6.

For weak initial discontinuities, |u+ − u−| small, this is possible, provided that the

system is strictly hyperbolic and all characteristic fields are either genuinely nonlinear or

linearly degenerate. Indeed, the implicit function theorem provides us with the sequence

(2.27). In this case, from any point in Rn any other point nearby can be reached by a

path of up to n pieces of elementary wave curves. The strict hyperbolicity ensures that

the speeds of the resulting elementary waves are strictly ordered according to their wave

numbers. (Remember that |u+−u−| is small. Therefore the wave speeds can only slightly

differ from the eigenvalues at u−.)

Regrettably, for general initial conditions this is not always possible. From a starting

point u− not all points in Rn may be reachable by a path of pieces of elementary wave

curves. Even if there exists a path, the wave speeds may no longer be ordered. For

example, a rarefaction fan may become broad enough to intersect with an adjacent shock.

The concatenation of the constructed elementary waves may not result in a well defined

solution.

In nonstrictly hyperbolic systems, it is even for weak initial discontinuities some-

times necessary to introduce additional elementary waves, see, for example, [IMP90, SS91,

SPM97].

11A possible generalisation would be the use of composite wave as described before in the case of a
scalar conservation law with non-convex flux.
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2.5 Viscous profiles of shock waves

We conclude this review with some remarks about the viscosity criterion for shock waves,

see definition 2.2.

We look for shock solutions

u(x, t) =

 u− x < st

u+ x > st
(2.28)

that admit a viscous profile. A viscous profile is a solution of the form

u = u(ξ) = u
(
x− st
ε

)
(2.29)

to the parabolic regularisation (2.11). With this ansatz, we obtain an ordinary differential

equation in the free variable ξ:

−s d

dξ
u(ξ) +

d

dξ
F (u(ξ)) =

d2

dξ2
u(ξ). (2.30)

The scaling of ξ renders equation (2.30) independent of ε. Equation (2.30) can be inte-

grated once. We obtain the first-order equation

d

dξ
u(x) = −su(ξ) + F (u(ξ)) + C, (2.31)

with some constant C.

In the limit ε ↘ 0, the profile u(·) converges to the shock solution (2.28) if, and

only if,

lim
ξ→±∞

u(ξ) = u±. (2.32)

Limit sets of a trajectory of a dynamical system are flow-invariant. Here, the limit sets

are isolated points. These points must be equilibria of (2.31). We obtain the conditions

C = su− − F (u−) and

C = su+ − F (u+).
(2.33)

Note that (2.33) must be satisfied simultaneously. We have arrived at the Rankine-

Hugoniot condition (2.7). This shows again the consistency of the weak formulation

(2.6) and the viscosity method.

Consider asymptotic states u± such that the Rankine-Hugoniot condition (2.7)

holds. Then, the shock solution (2.28) admits a viscous profile if, and only if, the dynam-

ical system
d

dξ
u(x) = F (u(ξ))− su(ξ)−

(
F (u−)− su−

)
(2.34)
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contains a heteroclinic orbit that connects u−, for ξ → −∞, with u+, for ξ → +∞. The

unstable manifold of u− and the stable manifold of u+ must intersect.

The question about viscous profiles can be regarded as an global bifurcation problem

that depends on the parameters s, F, u− [Sch92, FS95].

Consider for instance the linearisation of (2.34) at the asymptotic fixed points:

F ′(u±)− s. (2.35)

The Lax admissibility criterion (2.20) requires that u− has an unstable eigenspace of

dimension n − i + 1 and u+ has an stable eigenspace of dimension i. Generically, any

intersection of the n − i + 1 dimensional unstable manifold of u− and the i dimensional

stable manifold of u+ persist under small variations of the parameters s, F, u−. The Lax

criterion is also a structural stability condition.

Fix u−. The linearisation F ′(u−) − s becomes singular, if s is an eigenvalue of F ′.

For strictly hyperbolic systems, a single real eigenvalue λi becomes zero. A bifurcation

of equilibria occurs. Generically12, for s near λi a family of equilibria u+(s) near u−

exists. The bifurcating equilibrium has an unstable dimension that differ by one from the

unstable dimension of the original equilibrium. For any s near the bifurcation point a

connecting heteroclinic orbit exists that correspond to a Lax shocks. Weak Lax shocks

generically admit viscous profiles.

Viscous profiles to strong shocks are very difficult to obtain. Topological methods,

for example the Conley index may help [CS71, CS72, CS73]. In [FS95] a bifurcation

analysis for magnetohydrodynamic shock waves was carried out.

12The i-th field must be genuinely nonlinear near u−.
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The first picture shows the solution to the initial data in the second picture.

There is a locally smooth solution. After finite time, two shocks are formed

by intersecting characteristics. These discontinuities then interact and form a

single shock curve. The u-values are represented by the colour. Characteristics

are observable as lines of constant colour.

Figure 2.2: Shock formation for the Burgers equation (2.2) and smooth initial data
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Here, two weak solutions (2.6) of the Burg-

ers equation (2.2) are shown. The two solu-
tions have the same initial data,

u0(x) =

{
−2 x < 0

1 x > 0

of a Riemann problem, see (2.21). Without
an additional constraint, the solution cannot
be unique.
In fact, the entropy condition (2.19) will re-
ject both of the sketched solutions. Only the
pure rarefaction wave, figure 2.4b, will remain
for the above initial values.

a) a shock wave

b) a rarefaction fan and a shock

Figure 2.3: Non-unique weak solutions to the Burgers equation

a) shock wave b) rarefaction fan

Figure 2.4: Elementary waves for a scalar conservation law
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convex hull of the graph of the flux

u(x/t) =
(
F ′|[u−,um]

)−1
(x/t)

corresponding solution

Figure 2.5: Solution of the Riemann problem for a single, scalar conservation law

a) b)

In the figure a) the Rankine-Hugoniot

curves, Si(u), and the rarefaction curves,
Ri(u), of both characteristic families to a
given value u ∈ R2 are sketched.
The connection from u− along R1(u−) to um

and along S2(um) to u+ in figure b) leads to
the solution shown in figure c).

c)

Figure 2.6: Riemann solution as a concatenation of elementary waves of different fields
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3 Bifurcation From Lines Of Equilibria

Here it is necessary to discuss a bit more the properties of Hopf-bifurcations from lines

of equilibria. Also, we shall give an outline of the proof of theorem 1.2. Please refer to

[FLA98a] for further details.

As in the introduction, we consider C5 vector fields

u̇ = F (u), u ∈ RN , (3.1)

with a line of equilibria that coincides with the u0-axis, see (1.16, 1.17). We further

assume that F ′(0) possesses a pair of Hopf-eigenvalues that satisfy the transversality

condition (1.18).

We want to investigate the dynamics near the Hopf-point. Therefore, we can re-

strict our attention to the three-dimensional centre manifold at the origin.13 This manifold

is normally hyperbolic, all bounded solution near the critical point are contained in the

centre manifold. To avoid unnecessary notation, we assume that F is already the reduced

flow on the centre manifold, in particular N = 3. The basis of R3 should be aligned with

the eigenvectors of F ′(y, 0, 0) along the y-axis of equilibria, at least near the origin.

3.1 Normal form

As a first step, we calculate a normal form of F . We use the coordinates

u = (y, z) ∈ R×C, (3.2)

where the line of equilibria coincides with the y-axis. The coordinate z ∈ C = R
2, which

we shall also write as reiϕ in polar coordinates, parametrises the generalised eigenspace

to the Hopf-eigenvalues ±iω.

The linearisation of the flow at the origin has the form

L = F ′(0) =

 0 0

0 iω

 . (3.3)

It is equivariant with respect to the S1 action of exp(Aϕ) which is a rotation around the

y-axis imposed by the Hopf-eigenvalues. The line of equilibria remains fixed under this

action.

13For details about centre manifolds, please refer to [GH82, Van89].
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The remaining terms can be simplified by a normal-form algorithm. We use normal-

form theory as presented, for example, in [Van89]. Due to the semisimple spectrum of L,

in each normal-form step, the remaining part is given simply by the average

h̃(u) :=
ω

2π

∫ 2π
ω

0
exp(−Lϕ)h(exp(Lϕ)u)dϕ (3.4)

along a period of the rotation around the y-axis. Here h represents n-th order terms before

normal-form transformation, which become h̃, in normal form. The necessarily associated

transformation in u, however, modifies higher order terms in each step. Therefore, h does

not coincide with F in general, except for terms of second order.

The aforementioned normal-form procedure results in a flow

u̇ = F̃ (u) + ϑ(u). (3.5)

The error terms ϑ can be pushed to any finite order O(|u|K), as long as F is smooth

enough.

The flow F̃ , that is given by the truncated normal form, obtains some structural

properties from the averaging procedure (3.4). Mainly, it is equivariant with respect to

the S1-action

F̃ (exp(Lϕ)u) = exp(Lϕ)F̃ (u). (3.6)

In particular, the line of equilibria and the critical point at the origin are preserved:

F̃ (y, z = 0) ≡ 0, F̃ ′(0, 0) = 0. (3.7)

In polar coordinates, z = eiϕ, the truncated normal form F̃ is independent of ϕ:

F̃ (u) = F̃ (y, r2). (3.8)

Together with (3.7), we can now specify the normal form of the original flow (3.1):

ẏ = r2 F̃ y(y, r2) + ϑy(y, reiϕ),

ṙ = ry F̃ r(y, r2) + ϑr(y, reiϕ),

ϕ̇ = F̃ϕ(y, r2) + r−1ϑϕ(y, reiϕ).

(3.9)

Please note that the constant terms of the first two equations vanish because the y-axis

consists of equilibria. The factors of F̃ y,r are imposed by the equivariance relation (3.6).

The error terms ϑy,r,ϕ are of order K and vanish along the line of equilibria:

ϑ = O((|y|+ |r|)K), ϑy(y, 0) = ϑr(y, 0) = r−1ϑϕ(y, 0) = 0. (3.10)
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At the origin, the normal form (3.9) has the same linear part as the original vector

field. Along the line of equilibria, the linear parts also match because we have aligned the

coordinates with the eigenvectors. Therefore, F ′(y, 0) commutes with F ′(0, 0) = L and

the averaging (3.4) leaves the linear part, F ′(y, 0), untouched. We conclude that

F̃ r(0, 0) = ∂y <eµ(0) = <eµ′(0)

F̃ϕ(0, 0) = =mµ(0) = ω.
(3.11)

Finally, we calculate the first averaging step at the origin and obtain the value of

F̃ y(0, 0):

F̃ y(0, 0) = 1
2
∂2
r

(
ω
2π

∫ 2π/ω
0 F y(y, r cos(ωϕ), r sin(ωϕ))dϕ

)∣∣∣
(y=0,r=0)

= 1
4
∆zF

y(0, 0).
(3.12)

The requirement that F̃ y(0, 0) does not vanish exactly matches the nondegeneracy con-

dition (1.19).

We see, that the transversality condition (1.18) and the nondegeneracy condition

(1.19) are generically fulfilled.14 They require, that in the normal form the lowest order

terms that could be nonzero are nonzero indeed.

Consider, again, the case of the usual type of Hopf-bifurcation that is described for

example in [MM76]. Then y is a parameter, i.e. F y ≡ 0. The nondegeneracy condition

(1.19) fails. The phase space is foliated in planes y = constant which are invariant under

the flow F . The same holds true for the vector field F̃ in normal form. A one-dimensional

family of periodic orbits emerges from the bifurcation point.

Even in the general case, any foliation that is transversal to the line of equilibria

would be, after normal-form transformation, equivariant with respect to the rotation

exp(Lϕ). This means that the planes y = constant would be invariant under the truncated

normal form, i.e. F̃ y ≡ 0. Therefore, the nondegeneracy condition (1.19) excludes the

case of the usual Hopf-bifurcation. It requires that any foliation fails already in the

second order approximation.

14The term “generic” means the following. Let X be the set of all vector fields F with a line of equilibria
through the origin and a pair of purely imaginary eigenvalues of F ′ at the origin. Let Y ⊂ X be set
of all vector fields that, additionally, satisfy the conditions (1.18) and (1.19). Then Y is of the second
Baire category with respect to X. Y is the intersection of countably many open and dense subsets of
X. Topologically, Y is thick. In particular, Y is dense in X.
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3.2 Simplified normal form

Under the assumption of transversality (1.18) and nondegeneracy (1.19), F̃ y, F̃ r, F̃ϕ are

nonzero at the origin. We can find a C1 diffeomorphism of the phase space, such that in

a suitably rescaled time the normal form (3.9) is simplified to

ẏ = 1
2
ηr2 + θy(y, r, ϕ),

ṙ = ry + θr(y, r, ϕ),

ϕ̇ = ω,

(3.13)

with new error terms θ = O((|y| + |r|)K) that vanish on the y-axis. See [FLA98a] for a

proof. The parameter η can be scaled to ±1 and has the sign

η = sign F̃ r(0, 0) · sign F̃ y(0, 0)

= sign(<eµ′(0)) · sign(∆ZF
y(0, 0)),

(3.14)

that coincides with our previous definition (1.20).

The truncated normal form in independent of ϕ and can be regarded as a flow on

the (y, r)-plane:

ẏ = 1
2
ηr2,

ṙ = ry.
(3.15)

If we transform this planar vector field with an Euler multiplier r−1, we obtain a linear

system

ẏ = 1
2
ηr,

ṙ = y.
(3.16)

The linear equations have the same trajectories as (3.15), while the direction is reversed

for r < 0. In the reduced system, the origin will be a hyperbolic equilibrium for η = +1

and an elliptic equilibrium for η = −1. This motivates the names for the two types of

the Hopf-bifurcation in theorem 1.2. In figure 3.1, the planar phase portraits of the

truncated normal form are shown. They are superimposed by the rotation ϕ̇ = ω.

3.3 Higher order terms

The control of the error terms in (3.13) is now the main issue in the proof of theorem 1.2.

To accomplish this, a spherical blow-up of the origin can be used. Details are made explicit

in [FLA98a]. A general approach to blow-up constructions can be found in [DR98]. Here,

we only want to remark about exponentially small splittings in the elliptic case, η = −1,

in which we are interested here.



36 Stefan Liebscher

The time-ω map of the planar vector field (3.15) coincides with the Poincaré

map of the truncated normal form (3.13 without the error terms). In figure 3.1b the

heteroclinic orbits connecting u− and u+, for the planar vector field, now must be regarded

as coinciding stable and unstable manifolds of u±, for the Poincaré map.

For a map, the coincidence of stable and unstable manifolds is a highly non-generic

property. Typical error terms will lead to a splitting of the manifolds in the Poincaré

map of the complete system (3.13 with the error terms). The stable and unstable manifold

then look like in figure 3.2. Any non-constant trajectory of the Poincaré map consists

of isolated points on the intersection of the unstable manifold of an unstable equilibrium

u−, shown in red, and the stable manifold of a stable equilibrium u+, shown in green.

The corresponding three-dimensional picture is displayed in figure 1.1b.

This splitting leads to some bizarre peculiarities of the oscillatory viscous profiles

that we have constructed in theorem 1.3. Any heteroclinic orbit in the travelling-wave

equation near the Hopf point gives rise to a viscous profile of the original balance law.

In contrast to the common expectation, for fixed speed s and fixed asymptotic state u−

on one side, there are connections to an entire interval (u+
min, u

+
max) on the other side. The

decision of which asymptotic state is chosen by a particular profile depends on the phase

shift ϕ of the superimposed rotation. In the limit of small ε, the oscillations of the profile

(that provide the information about the phase shift) are hidden in the very thin shock

layer, see figure 1.2b. In an experiment or a numerical calculation, one may be unable to

resolve this shock layer. The mutual independence of the asymptotic states would be a

very unsuspected observation.

Nevertheless, with Neishtadt’s theorem on exponential elimination of rapidly ro-

tating phases, [Nei84], one can establish an upper bound on the size of the above interval

(u+
min, u

+
max). In fact, it is exponentially small in terms of |u−− u+|, provided f, g are real

analytic functions. The described effect may be invisible for profiles of weak shocks. Pro-

files with larger asymptotic states are beyond the local analysis of this paper. However,

they might still exist.
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y

r

Case a) hyperbolic, η = +1.

y

r

u+ u−

Case b) elliptic, η = −1.

Figure 3.1: Normal-form flow (3.15) near a Hopf bifurcation from a line of equilibria.

y

r

u+ u−

W u(u−)
W s(u+)

Figure 3.2: Transverse splitting due to higher order terms in (3.13).



38 Stefan Liebscher

4 Oscillatory Viscous Shocks

In this section, we prove the theorems mentioned in the introduction that establish the

Hopf bifurcation along the line of equilibria. The considerations are similar to those in

[FL98].

4.1 Hopf point

Proof of proposition 1.1: Regular perturbation theory, see for example [Kat66], ap-

plies to the scaled block matrix

δL =

 0 0

−g′ A− s

+ δ

 0 id

0 0

 (4.1)

which becomes a lower triangular matrix for δ = 0. This provides us with the unbounded

part spec∞ L of the spectrum, generated in v-space alone (with u = 0).

Moreover δL possesses a three-dimensional kernel, at δ = 0, given by

g′u = (A− s)v. (4.2)

On this kernel, the eigenvalue problem for L reduces to

µ0u = v = (A− s)−1g′u. (4.3)

We insert the assumption (1.12). Then, the characteristic polynomial of (4.3) at u0 = 0

is given by

p0(µ) = µ

(
µ2 − (γ11 + γ22)s− α1γ22 − α2γ11

(s− α1)(s− α2)
µ+

γ11γ22 − γ12γ21

(s− α1)(s− α2)

)
, (4.4)

which for

s = scrit =
α1γ22 + α2γ11

γ11 + γ22

becomes

pcrit
0 (µ) = µ

(
µ2 +

γ11γ22 − γ12γ21

(scrit − α1)(scrit − α2)

)

= µ

(
µ2 +

(γ11γ22 − γ12γ21)(γ11 + γ22)2

(α2 − α1)γ11(α1 − α2)γ22

)

= µ

(
µ2 +

(γ11 + γ22)2

(α2 − α1)2

(
γ12γ21

γ11γ22

− 1

))
.

(4.5)
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Under the hypothesis 1 < γ12γ21/γ11γ22, we obtain two purely imaginary eigenvalues as

claimed in the proposition. Note that scrit 6= α1, α2, because α1 6= α2 and γ11γ22 6= 0.

The eigenvectors can be obtained by direct calculation. We shall not use the explicit

form of the eigenvectors in the following considerations and skip this part, here.

4.2 Linearisation and transverse eigenvalue crossing

Here we continue our linear analysis of the linearisation

Lδ(u0) =

 0 id

−δ−1g′ δ−1(A− scrit),

 (4.6)

with A = A(u) and g′ = g′(u) evaluated along the line of equilibria u = (u0, 0, 0), see

(1.9) and proposition 1.1. In the limit δ ↘ 0, we address the issue of transverse crossing

of purely imaginary eigenvalues in lemma 4.1. In lemma 4.2, we explicitly compute the

one-dimensional eigenprojection P δ
0 onto the trivial kernel of Lδ(0).

By proposition 1.1, purely imaginary eigenvalues of Lδ(u0) arise from an O(δ) per-

turbation of the matrix

(A(u0, 0, 0)− scrit)−1g′(u0, 0, 0) =
(
A0 − scrit + u0A1 +O(|u2

0|)
)−1

g′(0) (4.7)

with spectrum specbd L. Note that g is assumed to be independent of u0, see (1.7)

Let µ(u0), µ̄(u0) denote the continuation of the pair of simple, purely imaginary

eigenvalues

µ(0) = iω0, µ̄(0) = −iω0, (4.8)

with u0-derivatives µ′(u0), µ̄′(u0).

Lemma 4.1 In the above setting and notation, the derivative of the real part of the Hopf

eigenvalue is given by

<eµ′(0) =
1

2

(γ11 + γ22)2

(α2 − α1)2

β12γ21 + β21γ11 − β11γ22 − β22γ11

γ11γ22

. (4.9)

Proof: Since the unit vector e0 in u0-direction is a trivial kernel vector of g′(0) and since

the the remaining eigenvalues of (A− scrit)−1g′ remain conjugate complex for small |u0|,
we can start with the expression

<eµ(u0) =
1

2
trace

(
(A− scrit)−1g′

)
. (4.10)
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In particular, trace((A0 − scrit)−1g′) = 0. With the u0-expansion

(A− s)−1 =
(
A0 − s+ u0A1 +O(|u0|2)

)−1

= (A0 − s)−1 − u0(A0 − s)−1A1(A0 − s)−1 +O(|u0|2)
(4.11)

we immediately obtain

<eµ′(u0) = −1

2
trace

(
(A0 − scrit)−1A1(A0 − scrit)−1g′

)
. (4.12)

Inserting A0, A1, g′, and scrit, see (1.12, 1.13), yields

(A0 − scrit)−1A1(A0 − scrit)−1g′

=
(γ11 + γ22)2

(α1 − α2)2


∗

1
γ11

− 1
γ22



∗ ∗ ∗
∗ β11 β12

∗ β21 β22



∗

1
γ11

− 1
γ22




0

γ11 γ12

γ21 γ22



=
(γ11 + γ22)2

(α1 − α2)2


∗ ∗ ∗
∗ β11

γ11

β12

γ11

∗ −β21

γ22
−β22

γ22




0

1 γ12

γ11

−γ21

γ22
−1



=
(γ11 + γ22)2

(α1 − α2)2


0 ∗ ∗
∗ β11

γ11
− β12γ21

γ11γ22
∗

∗ ∗ β22

γ22
− β21γ12

γ11γ22

 .
(4.13)

The stars indicate arbitrary values that do not matter in the final result. Omitted entries

are zero. The combination of (4.12) and (4.13) proves the lemma.

By regular perturbation of specbd L, any result <eµ′(0) 6= 0 of lemma 4.1 extends

to small positive δ.

We now turn to an expansion for the eigenprojection P δ
0 onto the one-dimensional

kernel of the 6 × 6-matrix Lδ(u0) at u0 = 0; see (4.6), (1.12). Aligning the notations of

proposition 1.2 and of theorem 1.3, we decompose

u = (u, v) ∈ R
6 = R

3 ×R3. (4.14)

Again, eT0 = (1, 0, 0) denotes the first unit vector in R3 and eT0 = (eT0 , 0) the first unit

vector in R6.

Lemma 4.2 In the above setting and notation, we have

P δ
0 = e0 · eTδ , with

eTδ =
(
1 + ( δ

α0−scrit )
2
)−1/2

(eT0 ,− δ
α0−scrit e

T
0 )

(4.15)
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Proof: Kernel and co-kernel of Lδ(u0) are one-dimensional and correspond to the simple

zero eigenvalue of Lδ(u0). Obviously

kerLδ(u0) = e0, (4.16)

because g′(u0, 0, 0)e0 = 0. At u0 = 0, the co-kernel of Lδ(u0) is given by

0 = eTδ ·

 0 id

−δ−1g′ δ−1(A0 − scrit)

 (4.17)

The structure of A0 and g′, see (1.12), has the following implications: The lower, right

submatrix of

g′ =


0 0 0

0 γ11 γ12

0 γ21 γ22


is regular, due to assumption (1.14). Therefore, the last two components of eδ must be

zero. Then, the second and third components vanish too, because A0 is diagonal. The

two remaining components are proportional:

(eδ)0

(eδ)3

= −δ−1(α0 − scrit) (4.18)

The normalisation of the resulting vector proves the lemma.

4.3 Nondegeneracy

To finish the proof of theorem 1.3 it remains to check the nondegeneracy assumption

∆ZP0F 6= 0, see (1.19). Here F denotes the flow of the viscous-profile system (1.5):

F (u) = F (u, v) =

 v

−δ−1g(u) + δ−1(A(u)− scrit)v

 . (4.19)

In lemma 4.3, we check this assumption in the limit δ ↘ 0. In corollary 4.4, we provide

explicit expressions for the type determining sign η = ±1 defined in (1.20). In particular,

corollary 1.4 shows that both the hyperbolic case η = +1 and the elliptic case η = −1

can be realized by our nonlinear hyperbolic balance laws, even with gradient flux terms.

This completes the proof of theorem 1.3.

To check the nondegeneracy condition (1.19) on ∆ZP0F in the limit δ ↘ 0, we

use the following notation. By transverse eigenvalue crossing at δ = 0, lemma 4.1, we
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obtain purely imaginary eigenvalues ±iωδ at equilibria uδ = (uδ0, 0, . . . , 0) = (uδ, 0) on the

u0-axis, for small δ > 0. Let Zδ denote the corresponding eigenspace. See (4.15) for the

expression of the eigenprojection P δ
0 onto the trivial kernel. Note that uδ, ωδ, P δ

0 , and Zδ

vary differentiably with δ.

Lemma 4.3 In the above setting and notation, we have

∆ZδP
δ
0F (uδ) =

(
1 +

( δ

α0 − scrit

)2
)−1/2

1

α0 − scrit
g′′0(uδ)

[
ũδ, ũδ

]
e0 (4.20)

at the Hopf point uδ = (uδ, 0) with complex eigenvector (ũδ, ṽδ) of iωδ.

Consider, for instance, quadratic forms g′′0(0), which are strictly positive/negative defi-

nite15on (u1, u2)-space, with Γ = ±1 indicating the sign of definiteness. Then

sign ∆ZδP
δ
0F (uδ) = Γ · sign(α0 − scrit), (4.21)

for all small δ > 0.

Proof: By lemma 4.2 we have(
1 +

( δ

α0 − scrit

)2
)1/2

P δ
0 = e0 · eT0 −

δ

α0 − scrit
e0 · (0, eT0 ) (4.22)

The explicit form (4.19) of the nonlinearity F implies

∆ZδP
0
0F (uδ) = e0∆Zδv0 = 0 (4.23)

on any subspace Zδ and for any uδ, simply because the u-component of F is linear. With

P δ
0 instead of P 0

0 , and with the abbreviation sA instead of A − scrit, we obtain the more

general formula(
1 +

(
δ

α0−scrit

)2
)1/2

eT0 ∆ZδP
δ
0F (u)

= −∆Zδ

(0,− δ
α0−scrit e

T
0

) v

δ−1(−g(u) + sA(u)v)


= − 1

α0−scrit ∆Zδ

(
− g0(u) + (sA(u)v)0

)
.

(4.24)

15Here, a cautioning remark is necessary. While the nondegeneracy condition, ∆ZδP
δ
0F (uδ) 6= 0, is

generically fulfilled, the positive/negative definiteness of g′′0 (0) is not a generic property. Typical systems
satisfy the nondegeneracy assumption although g′′0 (0) is indefinite. However, if, fortunately, g′′0 (0) is
positive or negative definite, then the test of the nondegeneracy condition becomes very easy. We do
not even need to compute the Hopf eigenvalues. In particular, our example in corollary 1.4 has a
positive/negative definite g′′0 (0), depending on the parameter η.
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Here (sA(u)v)0 denotes the zero-component of sA(u)v. We treat this term first, using the

notation

ũδ =

 ũδ

ṽδ

 (4.25)

for the complex eigenvector of the purely imaginary Hopf eigenvalue µδ = iωδ at u =

uδ, v = 0. Then,

Zδ = span{<e ũδ,=m ũδ}. (4.26)

We denote the standard Laplacian by ∆β = ∂2
β1

+ ∂2
β2

, evaluated at β = 0. The insertion

ṽδ = µδũδ yields

∆Zδ(
sA(u)v)0

∣∣∣
u=uδ ,v=0

= ∆β

(
sA(uδ + β1<e ũδ + β2=m ũδ) (β1<e ṽδ + β2=m ṽδ)

)
0

= 2
(
(A′(uδ)<e ũδ)<e ṽδ + (A′(uδ)=m ũδ)=m ṽδ

)
0

= 2 <e
(
(A′(uδ)ũδ)ṽδ

)
0

= 2 <e
(
µδ
) (

f ′′(uδ)
[
ũδ, ũδ

])
0

= 2 <e(µδ) f ′′0 (uδ)
[
ũδ, ũδ

]
= 0

(4.27)

all along the Hopf curve u = uδ, v = 0. Here we have used A(u) = f ′(u) for the flux

function and the fact that the Hessian matrix f ′′0 (0) is symmetric.

Therefore, we can conclude from (4.24), (4.27) that

(
1 +

(
δ

α0−scrit

)2
)1/2

eT0 ∆ZδP
δ
0F (uδ)

= 1
α0−scrit ∆Zδg0(u)

∣∣∣
u=uδ

= 1
α0−scrit g

′′
0(uδ)

[
ũδ, ũδ

]
= 1

α0−scrit g
′′
0(0)

[
ũδ, ũδ

]
.

(4.28)

This proves (4.20) and the lemma.

Corollary 4.4 Combining lemmata 4.1 and 4.3, the sign η = ±1 distinguishing elliptic

from hyperbolic Hopf bifurcation along our line of equilibria is, for δ > 0 small enough,

given explicitly by

η = sign(β12γ21 + β21γ12 − β11γ22 − β22γ11) sign(γ11γ22) ·
· sign

(
g′′0(0)

[
ũδ, ũδ

] )
sign(α0 − scrit).

(4.29)
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If g′′0(0) is positive or negative definite, then we can write

η = sign(β12γ21 + β21γ12 − β11γ22 − β22γ11) sign(γ11γ22) ·
·Γ sign(α0 − scrit).

(4.30)

Here derivatives are evaluated at u = 0, and are assumed to be chosen such that η 6= 0.

The parameter Γ = ±1 indicates positive/negative definiteness of g′′0(0) on (u1, u2)-space.

Obviously, both signs of η can be realized.
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5 Spectra Of Travelling Waves

In this section we review and adapt some definitions, concepts and results for our spectral

stability considerations later on. Refer to [Sat76, Cop78, Hen81, AGJ90, SS00] for further

details.16

A crucial point of our investigation is the reformulation of the eigenvalue problem

to the elliptic p.d.e. on the real line as a dynamical system with the spatial coordinate

as the time-like variable. This idea of investigating the spatial dynamics and of applying

results from the theory of dynamical systems goes back to Kirchgässner [Kir82].

We consider the viscous conservation law (1.1). In comoving, rescaled coordinates

ξ = (x− st)/ε and rescaled time τ = t/ε, this equation has the form

uτ = δuξξ + suξ − A(u)uξ + g(u). (5.1)

Travelling waves u(x, t) = u(ξ) become stationary, i.e. time independent, solutions of

(5.1). Their linear stability is determined by the linearisation

ũτ = M ũ = δũξξ + sũξ − A′(u(ξ))[ũ, u′(ξ)]− A(u(ξ))ũξ + g′(u(ξ))ũ (5.2)

of (5.1). We arrive at the associated eigenvalue problem

0 = (M− λ) ũ = δũξξ + sũξ − A′(u(ξ))[ũ, u′(ξ)]− A(u(ξ))ũξ + g′(u(ξ))ũ− λũ. (5.3)

This linear, second order, non-autonomous o.d.e. can be rewritten as the first-order system ũξ

ṽξ

 =

 0 id

δ−1
(
λ+ A′(u(ξ))u′(ξ)− g′(u(ξ))

)
δ−1

(
A(u(ξ))− s

)  ũ

ṽ


= M(ξ, λ)

 ũ

ṽ

 (5.4)

that is associated to the operator

T (λ)

 ũ

ṽ

 =
d

dξ

 ũ

ṽ

−M(·, λ)

 ũ

ṽ

 . (5.5)

The eigenvalue problem for travelling waves can be interpreted as a dynamical sys-

tem in the spatial variable ξ. Of course, the spectrum depends on the considered space.

16Unfortunately, there seems to be no comprehensive review of this approach in the literature.
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In fact, the choice of an appropriate space will be one of the main issues in the fol-

lowing analysis. For the moment, we can think of M− λ respectively T (λ) acting on

L2(R,Cn) and H1(R,Cn)×L2(R,Cn). These operators are densely defined with domains

H2(R,Cn) and H2(R,Cn) × H1(R,Cn), where H l denotes the usual Sobolev space of

L2-functions with l weak derivatives in L2. On the real line, H1 is embedded in the space

of bounded continuous functions [Ada75]. The spectrum can be investigated by using two

basic concepts: Fredholm properties and exponential dichotomies.

5.1 Fredholm properties

The Fredholm properties of the operatorM− λ that act on the space L2(R,Rn) qual-

itatively characterise different points in the spectrum of M.

Definition 5.1 The essential spectrum, specessM, is the set of all complex numbers λ

such that the operatorM−λ is either not Fredholm or of a nonzero Fredholm index.

The point spectrum, specptM, is the set of all λ such that M− λ is Fredholm with

index zero and has a nontrivial kernel. The complement, C \ (specess ∪ specpt), is called

the resolvent set. M− λ is bounded invertible for all λ belonging to this set.

Note that (M−λ) and T (λ) have the same Fredholm properties. In fact, the dimensions

of their nullspaces are equal, as well as the dimensions of the nullspaces of the adjoint

operators.

Example 5.2 Let us consider the linear convection-diffusion equation

ut = Mu = uξξ + auξ + bu (5.6)

on the space L2(R,R) with real constants a, b. Fourier transformation yields

((M̂−λ)û)(k) = (−k2 + iak + b− λ) û(k). (5.7)

Bounded invertibility of M− λ on L2 fails if, and only if, there exists a real value of k

that satisfies

0 = −k2 + iak + b− λ. (5.8)

Therefore

specessM = {−k2 + iak + b | k ∈ R}. (5.9)

(There is no point spectrum. The eigenmodes to any λ ∈ specM are periodic waves, that

have an unbounded L2-norm.) For positive parameters b, the trivial solution of (5.2) is

spectrally unstable.
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The transformation v(ξ) = exp(−aξ/2)u(ξ) eliminates the transport term auξ of (5.6).

We obtain the equation

vt = vξξ + (b− 1
4
a2)v. (5.10)

For b < a2/4 all solutions of (5.10) to bounded initial data decay to zero.

We conclude that for 0 < b < a2/4 the original equation (5.6) is pointwise stable, although

it is spectrally unstable. In particular, all solutions to initial data with compact support

decay pointwise to zero.

5.2 Exponential dichotomies

Any bounded solution of (5.4) corresponds to an eigenfunction of the operatorM. Expo-

nential dichotomies characterise operators for which any bounded solution decays in fact

exponentially fast to zero as ξ goes to ±∞. Details and extended results can be found in

[Cop78, Hen81, PSS97].

To make a precise definition, let M(ξ, λ) ∈ CN×N be a general function of (ξ, λ) ∈
R× C of the form

M(ξ, λ) = M̃(ξ) + λÑ(ξ) (5.11)

which is smooth in ξ ∈ R and analytic in λ ∈ C.

We assume that our problem has asymptotically constant coefficients That means

that there are positive constants K, κ, independent of ξ and λ, and matrices M±, ana-

lytically dependent on λ, such that

‖M(ξ, λ)−M±(λ)‖ ≤ Ke−κ|ξ|, as ξ → ±∞. (5.12)

Lemma 5.3 The eigenvalue problem (5.4) of viscous shock profiles that arise from our

viscous balance law (1.1) has asymptotically constant coefficients.

Proof: The asymptotic matrices M±(λ) are given by M(±∞, λ), i.e. by the matrices

evaluated at u± = u(±∞), see (5.4). The heteroclinic orbit u(ξ) belongs to the intersection

of the stable manifold of u− and the unstable manifold of u+ in the viscous-profile o.d.e

(1.5). Let us consider the convergence to u− for t→ −∞ in the unstable manifold of u−.

The rate of convergence is determined by the eigenvalue of the linearisation (1.9) with the

smallest positive real part. For small |u−| this the Hopf eigenvalue, see proposition 1.1.

Its real part has the value u−<eµ′(0) +O(|u−|2). We take κ = 1
2
u−<eµ′(0) and obtain

exponential convergence of the trajectory u(ξ) to u− for ξ → −∞ with the rate κ. The

linearisation at u(ξ) converges with the same rate. The additional eigenvalue parameter
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λ in (5.4) does not change these arguments. The limit ξ → +∞ can be investigated

analogously.

We now consider the linear operator T (λ) : H1(R,CN)→ L2(R,CN),

T (λ)u =
du

dξ
−M(·, λ)u (5.13)

and the associated o.d.e.

d

dξ
u = M(·, λ)u, u ∈ CN . (5.14)

Definition 5.4 (Exponential dichotomies) Let I = R
+, R−, or R. Fix λ ∈ C. We

say that equation (5.14) has an exponential dichotomy on I if there exist positive constants

K, κs, κu and a family of projections P (ξ, λ), ξ ∈ I, such that the following properties

hold.

(i) Stability. For any fixed ξ∗ ∈ I and u∗ ∈ CN , a solution φs(ξ, ξ∗)u∗ of (5.14) with

initial value φs(ξ∗, ξ∗)u∗ = P (ξ∗)u∗ exists. Furthermore, the following estimate of

exponential decay holds:

∀ξ, ξ∗ ∈ I, ξ ≥ ξ∗ : |φs(ξ, ξ∗)| ≤ K exp(−κs|ξ − ξ∗|). (5.15)

(ii) Instability. For any fixed ξ∗ ∈ I and u∗ ∈ CN , a solution φu(ξ, ξ∗)u∗ of (5.14) with

initial value φu(ξ∗, ξ∗)u∗ = (1−P (ξ∗))u∗ exists. Furthermore, the following estimate

of exponential decay in the reverse direction holds:

∀ξ, ξ∗ ∈ I, ξ ≤ ξ∗ : |φu(ξ, ξ∗)| ≤ K exp(−κu|ξ − ξ∗|). (5.16)

(iii) Invariance. The solution operators, φs and φu, satisfy

∀u∗ ∈ CN , ξ, ξ∗ ∈ I, ξ ≥ ξ∗ : φs(ξ, ξ∗)u∗ ∈ imP (ξ),

∀u∗ ∈ CN , ξ, ξ∗ ∈ I, ξ ≤ ξ∗ : φu(ξ, ξ∗)u∗ ∈ kerP (ξ).
(5.17)

The dimension of kerP (ξ) is independent of ξ. It is called the Morse index, i(λ), of the

dichotomy. When we consider different dichotomies on R+ and R−, we use the notation

i+, i− to distinguish both cases.

Exponential dichotomies are a powerful tool to prove the existence and stability of

travelling waves and other patterns in one spatial coordinate, see for instance [PSS97]. The

dynamical point of view gives geometric insight into the problem and therefore improves

the understanding of intrinsic properties and coherences.

Under our assumption of asymptotically constant coefficients (5.12), the existence

of exponential dichotomies on R± is determined by the asymptotic matrices M±(λ):
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Theorem 5.5 (Coppel [Cop78], ch. 6) For a fixed λ, equation (5.14) has an expo-

nential dichotomy on R− if, and only if, the matrix M−(λ) is hyperbolic. In this case,

the Morse index i− is given by the dimension of the generalised unstable eigenspace of

M−(λ). The same statement holds on R+ with respect to M+(λ).

Furthermore, the equation has an exponential dichotomy on the entire real line R if, and

only if, there exists exponential dichotomies on R
+ and on R

− with projections P±(ξ)

that satisfy kerP−(0) ⊕ imP+(0) = C
N . Especially, the Morse indices must match,

i+(λ) = i−(λ).

The exponents κu, κs of the dichotomy, see definition 5.4, depend only on the eigen-

values of the asymptotic coefficients M±. In particular, κu can be any value less than the

smallest positive real part of the eigenvalues of M−. Analogously, κs is a bound on the

stable rates of M+.

Exponential dichotomies are robust under small perturbation of the operator:

Theorem 5.6 ([Cop78], ch. 4) Suppose that equation (5.14) has an exponential di-

chotomy on I = R
+, R−, or R with constants K > 1, κ > 0 as in definition 5.4. Let N(ξ)

be a bounded, continuous matrix-function, with

ε := sup
ξ∈I
‖N(ξ)‖ <

κ

4K2
. (5.18)

Then the perturbed equation

d

dξ
u =

(
M(·) +N(·)

)
u (5.19)

has an exponential dichotomy on I with constants K̃ = 5K2/2 and κ̃ = κ− 2Kε.

If the perturbation depends continuously on a parameter, the projections of the

dichotomy can be chosen to also depend continuously on that parameter. Even higher

regularity can be achieved.
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5.3 Relations between both concepts

The following fundamental result of Palmer relates the dichotomies of equation (5.14)

and the Fredholm properties of the associated operator T (λ).

Theorem 5.7 (Palmer [Pal84, Pal88]) For a fixed λ, the operator T (λ) is Fred-

holm if, and only if, the equation (5.14) possesses exponential dichotomies on R− and

R
+. If this is the case, then the Fredholm-index is equal to the difference of the asso-

ciated Morse-indices i−(λ)− i+(λ).

Invertibility of T (λ) is satisfied if, and only if, there exists an exponential dichotomy of

the equation (5.14) on the entire real line R.

In connection with theorem 5.5, this relation implies that the essential spectrum is

determined by the asymptotic matrices M±(λ), alone. It remains to compute the point

spectrum. One has to determine the kernel of T (λ), i.e. one has to find nonzero bounded

solutions of the eigenvalue problem. Alternatively, one can investigate the transversality

of kerP−(0) and imP+(0)17, see figure 5.1. Any bounded solution u(·) of the eigenvalue

problem (5.13) must belong to the stable evolution φs on R+ and to the unstable evolution

φu on R−. Therefore u(0) ∈ kerP−(0) ∩ imP+(0). Outside the essential spectrum, the

spaces kerP−(0) and imP+(0) depend analytically on λ. The transversality of their

intersection can be measured by their wedge product that is also called the Evans function

[AGJ90].

Note that, even with theorem 5.7 in mind, the robustness of exponential dichotomies,

theorem 5.6, is a stronger statement than the robustness of Fredholm operators under

small perturbations. The exponential dichotomies on R+ and R− are robust separately,

the corresponding operator need not to be Fredholm. In addition, we have explicit

bounds on the size of the allowed perturbation.

Example 5.8 (5.2, continued) We can now verify our previous calculation of the spec-

trum of (5.6). The associated first-order system has the form uξ

vξ

 =

 0 1

λ− b −a

 u

v

 (5.20)

with constant coefficients. Both asymptotic matrices are, therefore, equal and the essential

17Note that dichotomies on R+ and R− exist for λ outside the essential spectrum.
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spectrum consists of all values λ ∈ C where

M(λ) =

 0 1

λ− b −a

 (5.21)

is non-hyperbolic. We obtain the eigenvalues of M(λ) as

−1
2
a±

√
1
4
a2 − b+ λ. (5.22)

The asymptotic matrices are non-hyperbolic, if they have a purely imaginary eigenvalue

ik, k ∈ R:

±
√

1
4
a2 − b+ λ = ik + 1

2
a, k ∈ R

λ = −k2 + iak + b.
(5.23)

This result coincides with (5.9).

5.4 Exponential weights — convective stability

Roughly knowing how to compute the spectrum of the linearisation, it is now time to give

a first definition of stability.

Definition 5.9 An equilibrium solution of the p.d.e. (5.1) is called spectrally stable (in

L2) if the spectrum of the linearised operator M, see (5.2), is entirely contained in the

open left half plane, i.e. if M− λ is bounded invertible (in L2) for all λ with <eλ ≥ 0.18

On unbounded domains spectral stability might be a too restrive requirement if it

is considered with respect to a translationally invariant norm, e.g. L2. For instance, in

the example 5.2 the trivial solution is spectrally unstable, but all perturbations decay

pointwise to zero.

Parts of the essential spectrum with positive real part typically correspond to con-

tinua of unstable modes. Perturbations that excite these modes grow in time, with respect

to the considered norm. In an unbounded, translationally invariant space growing pertur-

bations may at the same time travel away to plus/minus infinity. Due to their convective

nature, on any bounded subdomain these perturbations could nevertheless decay to zero.

To investigate this kind of behaviour, we introduce exponentially weighted norms,

that break the translational symmetry.

18Typically, the definition of spectral stability has to be adjusted for different problems. Mainly, the
case of spectrum on the imaginary axis has to be investigated carefully depending on the problem.
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Definition 5.10 For any pair ν = (ν−, ν+) ∈ R2 we define the space

Lν = {u ∈ L2
loc | ‖u‖ν <∞} (5.24)

with the norm

‖u‖ν =

0∫
−∞

eν
−ξ|u(ξ)|2dξ +

+∞∫
0

eν
+ξ|u(ξ)|2dξ. (5.25)

Weighted Sobolev spaces can be defined analogously.

H l
ν =

{
u ∈ H l

loc

∣∣∣∣∣
l∑

k=0

∥∥∥∥∥ dk

dξk
u

∥∥∥∥∥
ν

< ∞
}
. (5.26)

Take, for instance, ν− > 0. Then the growth rate of any perturbation that is

convected to the left is reduced due to the negative exponent of the weight for negative

ξ. If a perturbation travels faster than it grows, with respect to the weight, it decays in

the weighted space. So, convective instabilities can be stabilised by the introduction of

appropriate weighted norms.

Definition 5.11 An equilibrium solution of the p.d.e. (5.1) is called convectively stable

if there exists a weight ν = (ν−, ν+) ∈ R2, such that it is spectrally stable with respect

to the weighted space Lν. If there does not exist a stabilising weight, then the solution is

called absolutely unstable.

Here, some remarks are necessary. The above definition suits our purposes, although

more refined (and less restrictive) definitions of various convective stability properties are

possible.

First, using our definition of convective stability we consider the eigenvalue problem

(5.4) with respect to a fixed weight ν for all λ. One could admit λ-dependent weights

ν(λ). However, then one does not obtain spectral stability in any weighted space, as in

definition 5.11. Despite this fact, pointwise stability can still be proven in many cases.

Secondly, it is not always possible to stabilise a pointwise stable wave in an expo-

nentially weighted space. Perturbations may split and travel to ±∞ at the same time

[SS00]. In [SS00], Sandstede and Scheel distinguish between convective, transient,

remnant and absolute instabilities.

The spaces L2, H l and Lν , H
l
ν are connected by the isomorphisms

Jν : Lν −→ L2, H l
ν −→ H l,

(Jνu)(ξ) = eν(ξ)ξu(ξ), ν(ξ) =

 ν− for ξ < 0

ν+ for ξ > 0
.

(5.27)
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On Lν this operator is isometric, on H l
ν the induced norm is equivalent to the usual

Sobolev norm on H l.

The isomorphism Jν allows us to write the linearised operatorM : H2
ν → Lν in the

weighted space again as a modified operator on L2:

Mν : H2 −→ L2,

Mν = JνM J−1
ν = JνM J−ν .

(5.28)

We now must determine the spectrum of Mν in the space L2. As before, we could

again write the eigenvalue problem 0 = (Mν − λ)u as a first-order dynamical system.

Alternatively, we can just impose the exponential weights onto the family T (λ) of the

associated first-order system and use the modified family

Tν(λ) : H1 −→ L2,

Tν(λ) = Jν T (λ)
∣∣∣
Lν
J−1
ν .

(5.29)

Both variants are equivalent due to the fact that

d

dξ
Jν = Jν

(
ν +

d

dξ

)
, (5.30)

see example 5.12.

The family of first-order operators with weights has the form

Tν(λ)u =
d

dξ
u−Mν(·, λ)u =

d

dξ
u−M(·, λ)u− ν(·)u. (5.31)

The weight just adds a scalar multiple of u to the operator. In particular, the asymptotic

matrices M±(λ) and their spectrum are shifted by the amount ν±:

M±
ν (λ) = M±(λ) + ν± · id . (5.32)

Example 5.12 (5.2, continued) With exponential weights we have

Mνu = uξξ − 2νuξ + ν2u+ auξ − aνu+ bu

= uξξ + (a− 2ν)uξ + (b− aν + ν2)u
(5.33)

For simplicity, we only consider the case ν+ = ν− = ν. Then this equation has the same

structure as in the case without weights. We obtain

specessMν = {−k2 + ik(a− 2ν) + (b− aν + ν2) | k ∈ R}. (5.34)
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The spectrum lies in the left half plane, i.e. we obtain convective stability, if we find a

weight ν, such that

0 > b− aν + ν2 = (ν − 1
2
a)2 + b− 1

4
a2 (5.35)

holds. This is possible if, and only if, b < 1
4
a2.

We can also calculate the essential spectrum with the help of the asymptotic matrices.

Writing (Mν − λ)u = 0 as a first-order system, we get uξ

vξ

 =

 0 1

λ− (b− aν + ν2) −(a− 2ν)

 u

v


=

 1 0

ν 1

 ν 1

λ− b ν − a

 1 0

−ν 1

 u

v


=

 1 0

ν 1

Mν(λ)

 1 0

−ν 1

 u

v

 ,
(5.36)

where Mν(λ) is the Matrix M(λ) from the unweighted case shifted by ν. The eigenvalues

of Mν(λ) are

−1
2
a±

√
1
4
a2 − b+ λ+ ν. (5.37)

Purely imaginary eigenvalues ik, k ∈ R, i.e. non-hyperbolic asymptotic matrices, occur

for

±
√

1
4
a2 − b+ λ = ik + 1

2
a− ν

λ = −k2 + ik(a− 2ν) + b− aν + ν2.
(5.38)

We obtain, of course, the same essential spectrum as before in (5.34). The trivial solution

of (5.6) is convective stable if, and only if, b < 1
4
a2.
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ξ=
+∞

ξ=
−∞

ξ = 0u0

�
�
�
�
�
�
�
�
�
���

Es−(ξ) Eu−(ξ)

Es+(ξ)
Eu+(ξ)

φs+(ξ, 0)u0

φu−(ξ, 0)u0

The subspaces Es±(ξ) are the images of the projections P±(ξ), whereas Eu±(ξ) are the
null-spaces of P±(ξ). In Es+(ξ) solutions u(ξ) decay exponentially fast for ξ → +∞,
in Eu−(ξ) they decay for ξ → −∞. In the complementary spaces the solution grows.
Any solution u that is bounded on the entire real line must satisfy u0 = u(0) ∈
Eu−(0) ∩ Es+(0). The kernel of the associated operator is, therefore, given by the
intersection Eu−(0) ∩ Es+(0). The point spectrum is determined by a nontrivial in-
tersection for dichotomies on R− and R+ with coinciding index.

Figure 5.1: Exponential dichotomies on R− and R+.
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6 Linear Stability Of Oscillatory Viscous Shocks

In this section we prove theorem 1.5. For small parameters δ > 0 in the three-dimensional

case (1.12) all heteroclinic orbits in a small neighbourhood of the Hopf point give rise to

convectively stable travelling waves, provided they have extreme speeds. In fact, they are

linearly stable, all small perturbation decay to zero in the linearised equation (5.2) with

respect to a suitably chosen weighted space Lν . This is done in four steps.

First, we investigate the asymptotic matrices M±
ν (λ) = limξ→∞Mν(ξ, λ) of the as-

sociated linearised first-order system (6.2), for λ = 0 and for <eλ � 1. A necessary

condition for stability is the hyperbolicity of these matrices with the same unstable di-

mension i±(λ = 0) = i±(λ|<eλ�1). Otherwise, on any path in the complex plane from

the origin to a point with large real part there would be a value λ̃ with non-hyperbolic

matrix M−
ν (λ̃) or M+

ν (λ̃). This violates the condition of theorem 5.7. The value λ̃ would

be contained in the essential spectrum.

Because our problem origintes from a second order equation we then can conclude,

that for large real parts of λ we always have hyperbolic asymptotic matrices with equal

stable and unstable dimension. Therefore, the above condition can be simplified to the

requirement that at the origin we have the same index i±(0) = n = 3. This implies that

we must find vertical lines −ν± + iR that divide the spectra of M±
ν (0) into sets each of

three eigenvalues.

In the second part, we shall estimate the matrices M±
ν (λ) for intermediate values

λ and prove their hyperbolicity for a suitable parameter region. This will show that the

essential spectrum of the linearisationMν , see (6.1), is entirely bounded to the left of the

imaginary axis.

After that, in the third part, we exclude the possibility of point eigenvalues for

travelling waves with small amplitudes. We regard the linearisation around these travel-

ling waves as a small perturbation of the linearisation around the homogeneous solution

u(x, t) = 0 and use the structural stability of invertible operators, theorem 5.6. This will

prove the convective stability of our oscillatory waves.

Finally, we shall establish linear stability.
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6.1 Essential spectrum

Let us start with the linearisation (5.2) of our hyperbolic viscous balance law (5.1) around

an oscillatory travelling wave u(ξ), see theorem 1.3, in an exponentially weighted space

Lν . In this section, we assume that we have a viscous hyperbolic balance law that admits

a Hopf bifurcation of elliptic type near the origin, for small δ. More precisely, we assume

(1.7, 1.12, 1.21(iv-vi), 1.29) to be satisfied.

According to (5.27, 5.28) the linearisation can be regarded as a modified operator

on L2:

ũτ = Mν ũ

= δũξξ + (s− A′(u)u′ − A(u)− 2δν)ũξ + (g′(u)− sν + νA′(u)u′ + νA(u) + δν2)ũ

(6.1)

We can write the eigenvalue problem problem 0 = (Mν−λ)ũ as a first-order system. The

associated operator is equivalent to

Tν(λ)

 ũ

ṽ

 = d
dξ

 ũ

ṽ

−Mν(·, λ)

 ũ

ṽ


= d

dξ

 ũ

ṽ

− (M(·, λ) + ν(·)
) ũ

ṽ

 ,
M(·, λ) =

 0 id

δ−1
(
λ+ A′(u)u′ − g′(u)

)
δ−1

(
A(u)− s

)  ,
(6.2)

which is just the operator T (λ) for the unweighted case (5.4, 5.5) with the additional term

due to the weight, see (5.29–5.31).

Lemma 6.1 For any weight ν there exists a positive constant C � 1 + (ν±)2 such that

for all λ with large real Part, <eλ > C, the spectra of the asymptotic matrices

M±
ν (λ) = lim

ξ→±∞
Mν(ξ, λ) =

 0 id

δ−1
(
λ− g′(0)

)
δ−1

(
A(u±)− s

)  + ν±, (6.3)

see (6.2), consist of three eigenvalues with positive real part

+

√
λ

δ
+O(1) + ν± (6.4)

and three eigenvalues with negative real part

−
√
λ

δ
+O(1) + ν±. (6.5)
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Here
√

λ
δ

denotes the root with positive real part, <e
√

λ
δ
≥
√
<eλ
δ
≥
√

C
δ

, and the eigen-

values are counted with their algebraic multiplicity.

Proof: The asymptotic matrices M±
ν (λ) can be diagonalised. For <eλ −→ ∞ we have

in blockmatrix notation, omitting the factor · id in all 3× 3 blocks,

M±
ν (λ) =

 0 1

δ−1λ+O(1) O(1)

+ ν±

=
1

2

 1 1

−
√

λ
δ

√
λ
δ

 −√λ
δ

0

0
√

λ
δ

+O(1)

 1 −
√

δ
λ

1
√

δ
λ

+ ν±.

(6.6)

This immediately proves the lemma.

At λ = 0 the asymptotic matrices have the form of the linearisation (1.9) of the

travelling-wave o.d.e.,

M±
ν (0) =

 0 id

δ−1g′(u±) δ−1
(
A(u±)− s

) + ν± = L(u±) + ν±. (6.7)

In proposition 1.1 we have already calculated the spectrum of L. We obtain:

Lemma 6.2 For s 6∈ {α0, α1, α2} and small δ, |u±| the spectrum of M±
ν (0) consists of

three large eigenvalues

ν± + δ−1(αi − s) +O(1) (6.8)

and three small eigenvalues

ν±, ν± + iω + u±0 µ
′(0) +O(δ, |u±|2), ν± − iω + u±0 µ

′(0) +O(δ, |u±|2). (6.9)

Lemma 6.3 A necessary condition for convective stability of a travelling wave solution

to our balance law is the existence of weights ν± such that the spectra of M±
ν (0) consist

of three eigenvalues with positive and three eigenvalues with negative real part. In the

complex plane, vertical lines −ν± + iR must exist that divide the spectrum of L(u±) into

three points on each side, counted with algebraic multiplicity.

Proof: Assume convective stability with a weight ν = (ν−, ν+) satisfying the condition

of definition 5.11. Suppose M±
ν (0) to have i+ν (0) = i−ν (0) 6= 3 eigenvalues with positive

real part. (The indices i+ν , i−ν must be equal due to the stability assumption.) On any

path in the complex right half plane from the origin, λ = 0, to large real parts, <eλ� 1,

the indices i±ν must finally change to a value of i±ν (λ,<eλ � 1) = 3, see lemma 6.1.

Hyperbolicity, say of M+
ν (λ), with a fixed unstable dimension i+ν , is an open property,
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−ν + iR

r r r r
r
r

M−(0)

−ν + iR

r r r r
r
r

M+(0)

a) extreme wave speed s > α0, α1, α2.

−ν + iR

r rr r
r
r

M−(0)

no possible ν

r rr r
r
r

M+(0)

b) intermediate speed α0 > s > α1, α2.

Figure 6.1: Eigenvalues of the asymptotic matrices M±
ν (λ = 0).

in the parameter λ. Therefore, there exists a point λ̃ with <e λ̃ > 0, on any of the

above mentioned paths, where the hyperbolicity of M+
ν (λ̃) fails, i.e. M+

ν (λ̃) has a purely

imaginary eigenvalue. We have λ̃ ∈ specess(M|Lν ), see theorem 5.7. This contradiction

to the stability assumption proves the lemma.

The main restriction is now imposed by the two Hopf eigenvalues, that have the

same real part, u±0 <eµ′(0) +O(δ, |u±|2), and, therefore, cannot be divided by a vertical

line. In addition, the Hopf eigenvalues are on different sides of the trivial eigenvalue at

the asymptotic states u±, see figure 6.1.

If the three large eigenvalues, see lemma 6.2, have the same sign, i.e. s > α0, α1, α2 or

s < α0, α1, α2, then the only possible dividing line −ν±+iR has the three large eigenvalues

on one side and the three small eigenvalues on the other side, for both asymptotic states.

If, on the other hand, one large eigenvalue has a different sign than the remaining two,

then for one of the asymptotic states the Hopf eigenvalues are accompanied by two large

eigenvalues on one side and the third large eigenvalue together with the trivial one on the

other side. No partition of three to three eigenvalues is possible, in this case. We arrive

at the following conclusion.

Corollary 6.4 In the three dimensional case, convective stability of the oscillatory profiles

near the Hopf point implies that the speed of the travelling wave is extreme. Precisely,

one of the cases

(i) scrit > α0, α1, α2
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(ii) scrit < α0, α1, α2

must hold. The two weight exponents ν± must be positive in case (i) and negative in case

(ii), in order for convective stability to hold.

The next task is to show that the above condition is also sufficient to control at least

the essential spectrum of the linearised operator (6.1).

Lemma 6.5 Suppose

σ := s− max
0≤i≤2

αi > 0. (6.10)

Then there exist a weight exponent ν = (ν−, ν+) and constants δ0, ε, with ν− = ν+ > 0,

δ0 > 0, ε > 0, such that the following statement holds.

For all δ with 0 < δ < δ0, for all asymptotic states near the origin, |u±0 | < ε, and for any

λ with <eλ > −ν±σ/4, the asymptotic matrices (6.3) are hyperbolic with three stable and

three unstable eigenvalues.

Notably, the essential spectrum of Mν, see (6.1), is bounded to the left of the imaginary

axis with gap ν±σ/4 for small δ and oscillatory viscous profiles, given by theorem 1.3, in

a small enough neighbourhood of the Hopf point.19

Due to symmetry, the same statement hold for s < α0, α1, α2 and for a negative weight-

exponent.

Proof: In lemma 6.1, we have already fixed the unstable dimension, which cannot change

as long as the matrices remain hyperbolic. Therefore, it is sufficient to prove hyperbolicity.

We shall first formulate equivalent statements to the failure of hyperbolicity for some

19More precisely, we have to take δ small enough, such that the Hopf-point for this positive δ is
located inside the ε-neighbourhood of the origin. Then we can consider heteroclinic orbits around this
Hopf-point with asymptotic states u± inside this ε-ball centred at the origin.
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number λ ∈ C:

M±(λ) + ν± is not hyperbolic

⇐⇒ ∃χ ∈ R
iχ− ν± ∈ specM±(λ)

⇐⇒ ∃χ ∈ R, ũ, ṽ ∈ Cn :

(iχ− ν±)

 ũ

ṽ

 =

 0 id

δ−1
(
λ− g′(0)

)
δ−1

(
A(u±)− s

)  ũ

ṽ


⇐⇒ ∃χ ∈ R, ũ ∈ Cn :

(iχ− ν±)2ũ = δ−1
(
λ− g′(0)

)
ũ+ δ−1

(
A(u±)− s

)
(iχ− ν±)ũ

⇐⇒ ∃χ ∈ R :

λ− δ(ν± − iχ)2 ∈ spec
(
(ν± − iχ)(A(u±)− s) + g′(0)

)
(6.11)

Now, the matrix A(u) = f ′(u) has only real eigenvalues, due to the hyperbolicity of our

conservation law. It has the form A(u±) = A0 + u±0 A1 +O((u±0 )2), where A0 is diagonal

with entries αi, see (1.12). For small |u±|, the matrix A is a small perturbation of A0.

Therefore, we can find an ε > 0 such that for all |u±0 | < ε

spec(A(u±)− s) ⊂ (−∞,−3

4
σ), (6.12)

which implies, for positive ν±,

spec
(
(1 + i

χ

ν±
)(A(u±)− s)

)
⊂ (−∞,−3

4
σ) + iR. (6.13)

Again, for large ν±, the norm of (ν±)−1g′(0) is arbitrarily small with respect to the spectral

gap 3σ/4 of (6.13). There exists a value ν± > 0, independent of χ, such that

spec
(
(ν± − iχ)(A(u±)− s) + g′(0)

)
⊂ (−∞,−1

2
ν±σ) + iR. (6.14)

Let us fix

δ0 :=
σ

4ν±
> 0. (6.15)

This enables us to estimate for all <eλ > −ν±σ/4 and 0 < δ < δ0:

<e(λ− δ(ν± − iχ)2) = <eλ− δ(ν±)2 + δχ2 > <eλ− δ(ν±)2 > −1
2
ν±σ. (6.16)

Combining (6.14) and (6.16) with (6.11) we have proven the lemma.
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6.2 Resolvent set

With the essential spectrum under control, we now investigate the point spectrum.

Consider the linearisation around the trivial solution u(ξ) ≡ 0,

ũτ = M0ũ = δũξξ + sũξ − A0ũξ + g′(0)ũ. (6.17)

The eigenvalue problem 0 = (M0
ν − λ)ũ has an associated family of operators

T 0
ν (λ)

 ũ

ṽ

 =
d

dξ

 ũ

ṽ

−M0
ν (λ)

 ũ

ṽ

 (6.18)

with constant coefficients. The matrix M0
ν is independent of ξ. (The structure is the same

as before in (6.2), if u(ξ) replaced by 0.) In lemma 6.5, we have already proven that M0
ν

is hyperbolic for all λ with <eλ > −ν±σ/4. Therefore, for these λ, the equation (6.18)

has an exponential dichotomy on the entire real line, given by the eigenprojections of M0
ν .

Theorem 5.7 now states that all λ with <eλ > −ν±σ/4 belong to the resolvent set of

M0. In particular all point eigenvalues have real part less than −ν±σ/4.

The robustness of exponential dichotomies, theorem 5.6, and the pre-compactness

of bounded sets in C lead to the following conclusion:

Corollary 6.6 Suppose σ = s − max0≤i≤2 αi > 0. Choose a suitable weight-exponent

ν = (ν−, ν+) according to lemma 6.5. Then for any constant C > 0 there exist positive

constants δ0, ε, possibly smaller than those of lemma 6.5, such that the following statement

holds.

Take any oscillatory viscous profiles, given by theorem 1.3, for parameters δ with 0 <

δ < δ0 and asymptotic states u± = (u±0 , 0, . . . , 0) with |u±0 | < ε. Then all λ with <eλ >

−ν±σ/4 and |λ| < C belong to the resolvent set of the weighted, linearised operator Mν,

given in (6.1).

6.3 Stability

The last part of our proof of stability is standard theory of elliptic and parabolic operators,

see for instance [Hen81].

The linear operator −Mν , see (6.1), is sectorial, because the second order term is

the Laplace operator on the real line with diagonal coefficient matrix and the remaining

terms are of lower order and have bounded coefficients. In particular, there exist positive
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constants a, b (b < π/2) such that the entire sector

{λ ∈ C| − π
2
− b < arg(λ− a) < π

2
+ b} (6.19)

is part of the resolvent set of Mν .

The sector (6.19) includes the entire complex half plane of nonnegative real parts

with the exception of a bounded domain around the origin. Corollary 6.6 covers this

bounded domain. In fact, we can take C > max{a, a cot(b)} in corollary 6.6. This confirms

that all λ with <eλ ≥ 0 belong to the resolvent set of Mν , provided the assumptions

of corollary 6.6 are met. The convective stability of the viscous profiles, theorem 1.5, is

proven.

We can even show that all λ with <eλ ≥ −ν±σ/4 are contained in the resolvent

set of Mν . We must choose C in corollary 6.6 slightly larger than before, e.g. C2 >

(a + ν±σ/4)2 cot(b)2 + (a + ν±σ/4)2. A sectorial operator with a bound on the real part

of its spectrum provides an estimate on the generated semigroup. We obtain

‖ exp(Mν)‖L(L2,L2) ≤ c e−ν
±σ/4, (6.20)

for some constant c. Any solution of (6.1) decays exponentially fast to zero in L2. This

result finally establishes the linear stability of the viscous profiles under the assumptions

of theorem 1.5 in the exponentially weighted space.
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7 Discussion

We have constructed viscous profiles with oscillatory tails in a three-dimensional system

of hyperbolic conservation laws with stiff source terms. They arise near a Hopf-like

bifurcation point along a line of equilibria in the associated travelling-wave equation.

The oscillations arise despite the fact that our problem is composed of two ingre-

dients which, if considered separately, resist oscillations. The conservation-law part is

strictly hyperbolic, the flux can even be a gradient. Without the source, the conserva-

tion law gives rise to monotone viscous profiles of weak shocks. The source, taken alone,

stabilises the dynamics: all trajectories of the pure kinetics end by converging mono-

tonically to equilibria. The unsuspected existence of oscillations due to the combination

of nonoscillatory ingredients is similar to the Turing instability observed in reaction-

diffusion equations.

In numerical approximations of conservation laws with sources, oscillations need

not to be numerical artifacts. They may be intrinsic properties of the solution. The

oscillations manifest themselves as overshooting near the shock front.

The observed waves can be constructed for any wave speed, regardless of the charac-

teristic speeds of the conservation law. In three dimensional systems, they are convectively

stable only for hypersonic shocks, i.e. for profiles with extreme speeds larger or smaller

than all characteristic speeds. For intermediate speeds the waves are absolutely unsta-

ble. These results still hold for general three-dimensional systems as long as the profiles

emerge from a Hopf bifurcation of the kind described in theorem 1.2. The special struc-

ture (1.12) that we used to construct the oscillatory profiles is not needed in the proof of

stability.

The exponential weights which we used to prove convective stability are strong in

relation to the rates at which the profiles converge to their asymptotic states. This has the

following reason. Because we investigate the stability of a particular wave, the considered

norm must separate it from the continuum of profiles that emerge from the Hopf point.

We recall that, for fixed speed, an entire neighbourhood of the bifurcation point within

its centre manifold is filled with heteroclinic orbits. For nearby wave speeds, a Hopf

bifurcation occurs at a slightly shifted critical point. In addition, the travelling-wave

equation is equivariant with respect to translations. Therefore, we obtain at least a four-

parameter family of oscillatory profiles. The exponential weights centred at an oscillatory

travelling wave push any other profile out of the examined space.

For example, consider an oscillatory profile u(ξ). Then the linearisation (5.2) of
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the balance law around u(·) has a zero eigenvalue with the eigenvector uξ(·), due to the

translational symmetry. This eigenvector does not belong to the exponentially weighted

space that we used to prove convective stability, and the trivial eigenvalue has been

eliminated. Perturbations that would lead to a shift of the wave are likewise eliminated

from our stability analysis.

So, what does convective stability mean? Take any small perturbation with bounded

support of a convectively stable oscillatory profile, for example. Then, in the linearised

equation, this perturbation will pointwise decay to zero. On any bounded subinterval it

will decay uniformly.

We can think of an alternative approach to the question of stability. One could con-

sider the entire four-parameter family of oscillatory profiles and the possible convergence

of nearby initial data to this entire family with respect to a suitable metric. Unfortu-

nately, the structure of this family is quite involved, especially near the Hopf point, as

we explained above. Such an investigation is therefore beyond the scope of the present

thesis.

We have proven linear stability in the exponentially weighted space. Nonlinear

stability is a much more difficult problem due to the exponential weights. Perturbations

that are convected to −∞ may increase20 exponentially in the L2 or supremum norm. If

they become large enough, the linearisation of the balance law is no longer a sufficient

approximation of the whole system. Nonlinear effects become dominant. The nonlinearity

could accelerate the growth of the perturbation. The growth need not to be dominated by

the convection to −∞, anymore. The perturbation may even spread out in the opposite

direction and destroy the very wave structure itself. Completely different patterns may

evolve. See, for example, [CC97].

A bridge from the linear stability, as we proved here, to nonlinear stability on

bounded domains is provided by the results of Sandstede and Scheel [SS00]. In-

deed, with suitable separated boundary conditions21, the spectrum of the linearisation at

an oscillatory profile is bounded to the left of the imaginary axis with positive gap. This

is sufficient to ensure even nonlinear stability on any fixed bounded subinterval. Pertur-

bations can grow only slightly and then disappear through the boundary. Actually, on

bounded subintervals, all weighted norms are equivalent to the L2-norm.

20for weights with positive exponents.

21In fact, the boundary conditions must not introduce additional unstable point eigenvalues. Appro-
priate conditions are given in [SS00]
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In numerical simulations, the calculations must be carried out on bounded domains.

The described effects should be nonlinearly stable phenomena. In fact, our example could

become a test-case for numerical schemes that are designed for systems with stiff source

terms. Further work has to be done is this direction.
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