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Abstract 

 Modern biology provides many networks describing regulations between many 

species of molecules.  It is widely believed that the dynamics of molecular activities 

based on such regulatory networks are the origin of biological functions.  However, we 

currently have a limited understanding of the relationship between the structure of a 

regulatory network and its dynamics.  In this study we develop a new theory to provide 

an important aspect of dynamics from information of regulatory linkages alone.  We 

show that the “feedback vertex set” (FVS) of a regulatory network is a set of 

"determining nodes" of the dynamics.  The theory is powerful to study real biological 

systems in practice.  It assures that i) any long-term dynamical behavior of the whole 

system, such as steady states, periodic oscillations or quasi-periodic oscillations, can be 

identified by measurements of a subset of molecules in the network, and that ii) the 

subset is determined from the regulatory linkage alone.  For example, dynamical 

attractors possibly generated by a signal transduction network with 113 molecules can 

be identified by measurement of the activity of only 5 molecules, if the information on 

the network structure is correct.  Our theory therefore provides a rational criterion to 

select key molecules to control a system.  We also demonstrate that controlling the 

dynamics of the FVS is sufficient to switch the dynamics of the whole system from one 

attractor to others, distinct from the original.   

 

Keywords: Regulatory networks; complex systems; feedback vertex set; determining 

nodes; informative nodes 
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1. Introduction 

 By the success of modern biology, we have many examples of large networks 

which describe regulations between a large number of species of molecules, such as 

genes, proteins or ions (e.g. Davidson et al., 2002; Oda et al., 2005).  It is widely 

believed that the dynamics of molecular activities based on such regulatory networks 

are the origin of biological functions.  For example, circadian rhythms observed in 

many species are produced by periodic oscillation of gene activities.  The differences 

in characteristics of cells are produced by differences in gene expression patterns 

generated in the developmental process.  Diversities of differentiated cells are 

considered to be caused by the diversity of steady states of gene expressions (Davidson 

et al., 2002).  One of the major objectives in modern biology is to understand 

biological functions in terms of the dynamics of the activity of bio-molecules, based on 

experimentally determined regulatory networks.   

 However, a variety of obstacles still impede attempts to study the dynamics of 

biological systems based on the knowledge of regulatory networks systematically.  

One of the difficulties is the observation of dynamic processes.  It is still difficult to 

observe the dynamics of the activity of bio-molecules with sufficient time resolution.  

Most of the data obtained by present experimental methods are snapshots of molecular 

activities rather than time tracks.  The second problem is the reliability of the 

regulatory network itself.  At present the regulatory networks are possibly incomplete 

in many studies of biological systems because of the complexity and working cost of 

experimental procedures to identify regulatory edges.  The problem is fundamental 

because we can never exclude the possibility that unknown species of molecules or 

unknown regulations may take an important role in the focal phenomena.   
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 The third and largest problem is that the information on the regulatory network 

alone is not sufficient to determine the resulting dynamics.  The regulatory edges only 

provide qualitative information on dependencies between activities of bio-molecules in 

the system.  They lack essential quantitative details like the regulatory functions, 

parameter values of reaction rates, and initial states.  "In silico" numerical simulations 

therefore rely on many unverified assumptions as to the regulatory functions and their 

dozens or hundreds of unknown parameters.  In general, numerical parameter 

identification does not seem to be a viable option. 

 Figure 1a is an example of an extremely simple regulatory network, which is 

sometimes called a "binary switch" because it is expected to generate two stable 

stationary states of gene expressions.  We analyzed this system based on an ordinary 

differential equations (ODE) system of the form (1), which will be explained in detail 

later.  We assumed two different types of regulatory functions to occur in the 

regulatory network.  Figure 1b and 1d describe these two possible choices.  The 

resulting dynamical behavior depends on the choices of regulatory functions.  For the 

regulatory functions shown in Figure 1b, we observed bi-stability of gene expressions, 

which meets with the expectation of a "binary switch".  However, if we use the 

functions in Figure 1d, which is another possible interpretation of Figure 1a, we rather 

observe three stable stationary points.  This is just one example showing that the 

dynamics of molecular activity may depend on the form of the regulatory function.  In 

general it is therefore not possible to infer the dynamics just from information on 

regulatory networks like Figure 1a.   

 There are some studies that discuss the general relation between regulatory 

networks and the dynamics of bio-molecules.  Shen-Orr et al. (2002) introduced the 
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idea of a network motif, which is a small sub-structure, and they showed that some 

network motifs occur in actual biological networks with significantly higher probability 

than expected from randomly generated networks.   

 To overcome or circumvent some of these problems, we developed a 

mathematical theory to analyze the dynamical properties of complex biological systems 

based on information of the regulatory linkages alone (Mochizuki, 2008; Mochizuki and 

Saito, 2010; Fiedler et al., 2013).  The theory ensures that:  

 i) all non-transient dynamical behavior of the whole system can be identified 

faithfully by the measurement of only a subset of variables in the system, and  

 ii) the subset is determined from the regulatory linkage alone as a "feedback 

vertex set" (FVS) of the network graph, as will be explained below.   

 In the companion paper (Fiedler et al., 2013), we provide mathematical proofs 

of our theory.  In the present paper we mainly explore some applications of our theory 

to analyze regulatory networks in biology.  We discuss three prominent regulatory 

networks from the biology literature for cell-differentiation, signal transduction, and 

circadian rhythms.  In the first two examples, we determine very small feedback vertex 

sets from rather large regulatory networks.  Comparing with experimental data on real 

molecular activities, we discuss the possible inadequacy of the proposed networks to 

generate the observed biological phenomena.  This implies that unknown edges for 

unknown molecules may exist which are responsible for the observed phenomena.   

 To explore the control aspect of our theory, we demonstrate that a system can 

be controlled by just prescribing the dynamics on the feedback vertex set.  Using a 

gene regulatory network of circadian rhythms, we numerically demonstrate how to 

control a system by a minimal and sufficient number of key variables related to the 
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feedback vertex set.   

 We will show that our theory is powerful to understand dynamics of biological 

systems in practice, based on experimentally determined networks.  By our theory, we 

conclude that some aspects of the dynamical properties of the system can be derived 

from information on the regulatory linkages, only, without using other information.  In 

particular, we can discuss and check the consistency between the regulatory network 

and the observed dynamics of its molecular activities, without knowing further 

quantitative information to specify the unobserved or hidden parts of the dynamics.   

 

2. Mathematical formalization 

 First, let us explain an ODE setting for the dynamics of molecular activity 

popularly used in mathematical biology, although we will generalize the formula later.  

Let  kx t   denote the activity of bio-molecules k  at time t .  Then the rate of 

change k k

d
x x

dt
  can be expressed in the following form:  

 

    
kk k I k kx f d x x ,  1, ,k N  .     (1) 

 

Here kf  is any positive non-linear function showing the enhancement of activity of 

molecule k , which we may call regulatory function, and kd  is a positive and 

increasing function for the decay of activity (Glass and Kauffman, 1973; Mochizuki, 

2005).  The set  1, ,kI N  is a subset of molecules which regulate the molecule 
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k .  In other words, kI  is the input set of k .  The bold face notation 
kIx  

abbreviates the vector of the components jx  with kj I .   

 The decay term kd  is always present, because the activities of the molecules 

actually measure the concentrations of materials, including mRNAs, active states of 

proteins or other small molecules.  In addition to the decay, the suppression of activity 

by self-regulation is assumed to be expressed by kd .  We do not include k  itself in 

the input set kI  when the effect of kx  on kx  is either self-repression or decay.  In 

other words, kI  includes k , i.e. kk I , if and only if self-activation of molecule k  

exceeds self-repression and decay.  The collection of input sets kI , 1, ,k N , 

specifies all regulatory relations explicitly.   

 More generally we consider the following broader class of ODE model of 

regulatory networks:  

 

  ,
kk k k Ix F x x ,  1, ,k N .    (2) 

 

Here  ,
kk k IF x x  are any non-linear functions.  Modeling self-repression or decay we 

assume  1 , 0
kk k IF x x  for all k .  Here 1  denotes the first partial derivative with 

respect to the first occurrence of the argument kx .  As for the second argument set 

kIx , the treatment of the variable kx  is similar to the previous form (1).  We allow 

kk I  if and only if the total derivative of kF  with respect to kx  is not always 
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negative.  In this way we eliminate the monotonicity assumption for the term kd  in 

the formula (1).  We do not have to assume that decay or self-repression terms are 

separated from other terms as a functions of a single variable kx .  In other words, 

decay or self-repression may not only be a function of kx , but may also depend on 

other variables in 
kIx .  For a mathematically complete explanation of this form, see 

also the companion paper (Fiedler et al., 2013).   

 The ODE system (1) or (2) encodes the information of the regulatory network, 

i.e. information on dependencies between activities of bio-molecules in the system.  Of 

course, the precise dynamical behavior depends on quantitative and qualitative details, 

like the precise form of the regulatory functions kf , the parameter values of reaction 

rates, or the initial states as shown in Figure 1.  In the following we consider the 

dynamics of the system (1) or (2) based on the information of the regulatory network 

kI , only, without using any such further information.   

 To summarize, there is a graph theory aspect and a dynamical systems aspect to 

regulatory networks of the form (1) or (2).  The regulatory graph   of the network 

simply consists of all "species" or "reactants" kx , as vertices, and of all directed edges 

j k  such that j  is an element of the input set kI  of k .  The dynamical systems 

aspect, on the other hand, asks for the time-dependent behavior  kx t  of the 

concentrations kx  of the participating bio-molecule species or reactants.  It is our 

purpose to explore the interplay of this dynamics with the regulatory graph structure.   
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3. Feedback vertex sets as determining nodes 

 Here we explain and combine two concepts from two different mathematical 

fields.  The first concept are “feedback vertex sets” (FVS) from graph theory.  A FVS 

is a subset of vertices in a directed graph, such that the removal of the set leaves the 

graph without directed cycles.  The second concept are “determining nodes” from 

dynamical systems.  In our setting (1), (2), we call a subset of variables  1, ,J N  

"determining nodes" if and only if the convergence of variables in J , for any two 

trajectories implies the convergence of all variables of these trajectories.  More 

precisely let  tx  and  tx  be two solutions of (1) or (2).  Then we require 

    0t t x x  to hold in the limit for large time t   , i.e. for all components 

 1, ,k N , if the two solutions satisfy     0J Jt t x x , i.e. for all components k  

in the subset  1, ,J N .  In other words, if the dynamics of the determining nodes 

J  are given for large times t , then the dynamics of the whole system are determined 

uniquely, for large times.   

 The concept of "determining nodes" was first proposed in the context of the 

Navier-Stokes equations of hydrodynamics (Foias and Temam, 1984; Foias and Titi, 

1991).  The previous discussions in Navier-Stokes context focused on the existence of 

a finite number of spatial locations ("nodes"), the dynamics on which is sufficient to 

determine the potentially infinite-dimensional dynamics of the total system.  The 

relationship between determining nodes and the argument set of an ODE, i.e. regulatory 

networks, has not been discussed.  In the companion paper (Fiedler et al., 2013), we 

combined the above two concepts for the first time.  We proved mathematically that 
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any feedback vertex set of a regulatory network is a set of determining nodes of the 

dynamics on the network.  Conversely, if a vertex set is determining, for all choices of 

nonlinearities compatible with the network structure, then it is a feedback vertex set.  

 Let us illustrate the concept of feedback vertex sets using some examples of 

small networks as shown in Figure 2.  We show a choice of a feedback vertex set with 

gray-marked vertices.  Figure 2a is the directed 3-cycle.  Removal of any one vertex 

cuts the 3-cycle and leaves a graph without any directed cycle.  Thus any one vertex 

among the three is a minimal feedback vertex set.  If the network with three vertices 

has reversible, bidirectional regulatory edges (Figure 2b), we need to remove two 

vertices to obtain a cycle-free graph.  Thus any two vertices among the three provide a 

minimal feedback vertex sets of Figure 2b.  Although the network shown in Figure 2d 

looks complex, the minimal feedback vertex is small.  As all directed cycles traverse 

the vertex at the center, the set including only the central vertex is the minimal feedback 

vertex set.  Figure 2e is another case where the minimal feedback vertex set includes 

only one single vertex.  In the following we frequently use the term "feedback vertex 

set" to indicate the choice of a "minimal feedback vertex set".  There may be multiple 

ways to select a minimal feedback vertex set.  The importance of feedback vertex sets 

in dynamics was first mentioned by Akutsu et al. (1998) for the steady states of Boolean 

network systems.  Tamura et al. (2010) have also used the concept of feedback vertex 

set, in a Boolean setting, to analyze metabolic networks.  

 The details of the mathematical proof are given in the companion paper 

(Fiedler et al., 2013).  Here, we provide a brief intuitive explanation of our theory.  

First, let us consider a single regulation in a network.  Of course, if the dynamics of the 

input vertices are given, the long-term dynamics of the downward vertex is determined 
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uniquely.  If we do not know the regulatory function leading to the lower vertex, the 

dynamics is not determined constructively, but is still determined uniquely.  Then, let 

us consider a system of a regulatory network including several vertices and edges as in 

Figure 3.  Here we ignore the vertices that do not receive any regulatory input, because 

the dynamics of such "top" vertices converges to the trivial unique stationary point, and 

does not contribute to the diversity of attractors generated by the autonomous dynamics 

of the system.  Repeating our previous argument inductively, downward through the 

network, the dynamics of the whole system can be determined uniquely if the dynamics 

of an appropriate subset of vertices is given.  Of course, the dynamics of the total 

system can be determined uniquely only when that subset is chosen appropriately; all of 

the remaining vertices should be downward of the vertices in that subset.  Third, let us 

consider a problem: how can we minimize that subset, on which the dynamics are 

given? Our answer is the minimal feedback vertex set I .  Indeed, if I  is a feedback 

vertex set of a graph with vertex set  1,2, , N  , then all remaining vertices in 

\K I   can be ordered from I  on downward, by the definition of the feedback 

vertex set I .  This implies that the dynamics of all vertices in the system can be 

determined uniquely by induction from the dynamics on the feedback vertex set I .  

We repeat, once again, that we have recursively ignored all vertices without direct input 

in this argument.  

 The proof gives an assurance that we can detect all possible dynamical large 

time behavior of a system just by measuring the trajectories on the FVS of the 

regulatory network.  The FVS is a concept of graph theory, and is determined only 

from a given graph of the regulatory network, of course.  In many biological systems 

which show a complex diversity of behaviors, regulatory networks are determined, but 
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other information is not readily available.  Our theory makes it possible to discuss the 

consistency between the regulatory network and the observed dynamics of the 

molecular activities, without any additional information.  In the following three 

sections, we show examples of applications of the concepts to biological networks.  

We analyze regulatory networks for cell differentiation, signal transduction, and 

circadian rhythms.   

 

4. Cell differentiation in development of ascidiacea 

4-1. Analysis of network 

 We consider a gene regulatory network determined by Imai et al. (2006), which 

is responsible for cell-differentiation in the development of the ascidiacea Ciona 

intestinalis from the 16-cell stage to the tail-bud stage.  In the focal period, the 

difference in gene activities between cells progresses with time, and 13 different gene 

expression patterns are observed at the final, tail-bud stage, depending on the position of 

cells in the body.  The tail-bud stage continues for a relatively longer period than the 

previous developmental stages and the regional gene expression patterns are kept for 

that longer period.  The system is expected to be flexible enough to produce many 

steady states of gene activities, which correspond to the differentiated cell types.   

 In the study (Imai et al., 2006) 80 genes were identified to control 

embryogenesis of Ciona.  The regulatory interactions between these genes were 

examined by perturbation analysis, where the activity of one gene is manipulated and 

the effects are examined.  Although a few of the disruptions were not successful for 

experimental reasons, the systematic analysis drew a complex intermingled network of 

regulatory interactions between the 80 genes as shown in Figure 4a.  In Appendix A we 
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also provide the regulatory interactions of the ascidiacea gene network in text form.   

 The regulatory edges in the network by Imai et al. (2006) are categorized into 

two classes, activation and repression.  We do not need to distinguish them here except 

for self regulatory edges.  There are 16 genes with self-regulatory edges, all of which 

are self-repressions.  We remove these self-repressive edges from the network because 

any self-repression can be subsumed into the decay term, i.e. a negative partial 

derivative of the regulatory function kF  with respect to the first argument kx .   

 As a preparation we removed the vertices that do not receive any regulations or 

do not regulate any vertices.  These top or bottom genes converge to fixed inputs or 

provide outputs of the system which do not contribute to the diversity of attractors.  

The removal procedure was repeated as long as the network had vertices with no input 

or no output.  Note that this reduction preserves all directed cycles, and hence 

preserves any minimal feedback vertex set.  We obtained the reduced network of 

Figure 4b with only 7 vertices.  The network clearly possesses a minimal feedback 

vertex set which consists of only a single feedback vertex, FoxD-a/b.  All long-term 

dynamics on the global attractor possibly generated by this gene regulatory network can 

therefore be identified by measurement of the activity of the single gene FoxD-a/b, if 

the network information is correct.   

 If gene expressions observed in differentiated cells at the tail-bud stage are 

stable equilibria of this system, their diversity should be identified by the activity of 

FoxD-a/b.  Let us consider the equation system    1

k kk k I k k Ix h d f  x x  for all 

vertices k , that is satisfied at the equilibria of the ODE (1) as follows:  
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After a simple reduction procedure, we obtain the following equivalent system:  
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





,

        (4) 

 

where the right hand sides of all equations are explicit functions of Foxx .  The first 

equation of (4) depends only on Foxx , i.e. possible equilibria of FoxD-a/b are given as 

solutions of that single equation for Foxx .  For each solution of Foxx , the remaining 

variables kx  are determined uniquely from Foxx  using the remaining equations in (4).  

Thus diversity of equilibria of the system is indeed determined by the solutions of the 

first equation in (4).   

 We can verify the result by examining whether diversity of cell differentiation 

can be identified by the activity of FoxD-a/b only.  Actually Imai et al. (2006) 
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provided data of gene expressions in differentiated cells.  In Table 1 we summarized 

gene expressions in 13 different cells at the tail bud stage from (Imai et al., 2006).  

Unfortunately, it is usual in present developmental biology that gene expressions are 

interpreted in a discrete and binary manner, i.e. active (1) or inactive (0).  Of course, it 

is impossible to identify the diversity of 13 different gene expressions by only two 

points of one binary variable, even without looking Table 1 in detail.   

 There are two possible ways to interpret the result.  The first possibility is that 

the diversity of differentiated cells may be reflected in continuous values of activity of 

FoxD-a/b.  In this case, we can ask experimental biologists to measure the activity of 

FoxD-a/b by a more precise method, and we may be able to identify the diversity of cell 

states by different activity levels of FoxD-a/b.  The second possibility is that the 

present understanding of the gene regulatory network of ascidiacea is not sufficient to 

explain the diversity of gene expressions at the tail bud stage.  In other words, there 

may be unknown regulatory linkages which are important to generate the observed 

diversity of cell differentiation of ascidiacea.   

 

4-2. Diversity of dynamical behaviors 

 Here we demonstrate the meaning of determining nodes directly by an in silico 

numerical simulation based on the gene regulatory network for ascidiacea development.  

We explained that the regulatory functions are unknown, although the regulatory 

relations between genes are determined experimentally.  We consider purely 

hypothetical regulatory functions of the product form:  

 

  
kk k I kx f x x      (5) 
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  
k

k j k j

j I

f g x



  , 

 

where  j k jg x
 is chosen randomly with probability 0.5 from the following two 

functions: 

 

  

 

 

 

 

 

0.1   0 0.2   

0.3   0.2 0.4

0.5   0.4 0.6

0.7   0.6 0.8

0.9   0.8         

s

j k

x

x

g x x

x

x



 


 


  
  




     (6a)
 

 or 

   1c

j kg x  .       (6b) 

 

We calculate the dynamics of the resulting gene activity of this system numerically 

using form (5), (6) and starting from randomly chosen initial values.  The system may 

have multiple steady states depending on the choice of regulatory functions.  However, 

the diversity of steady states may not be captured by measurement of some genes.  The 

dynamics of some genes may show convergence to a single steady state while others 

show multiple solutions depending on the initial values.   

 We repeated the procedure: construction of regulatory functions by choosing 

(6a) or (6b) for each regulatory edge randomly, calculation of dynamics by changing 

initial states randomly, and search for steady states of the systems.  We examined 1000 

sets of random choices of regulatory functions, and 1000 different initial states for each 

set of functions.  We omitted the cases where the whole system converged to a single 
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stationary point, i.e. the case that the system did not support steady state multiplicity.  

From this exhaustive numerical simulation we calculated the diversity of steady states 

captured by the observation of each gene in the network.  The obtained results are 

summarized in Figure 5.   

 We can see that only the FoxD-a/b gene reflects steady state diversity of the 

whole system with 100% reliability.  The observations of any other genes encounter a 

positive risk to miss the diversity of the total system.  We confirm again that FoxD-a/b 

is the minimal feedback vertex set of this network.  Note the difference in the 

reliability among the other vertices, which are not in the minimal feedback set.  The 

Twist-like-1 gene rather strongly reflects the diversity of total system.  On the other 

hand, the observation of the Otx gene runs a much higher risk to misrepresent the 

diversity of the total system.  Our analysis indicates the Twist-like-1 gene as a second 

best candidate to detect the total diversity of steady states.   

 We also tried different  j k jg x
 given in the following form: 

 

  
 

 

0.5   0

1.0         

j k

j k j

j k

x T
g x

T x







  
 



 ,   (6') 

 

where j kT   is a threshold of a step function, which is chosen randomly between 0 and 

1 for each regulatory edge.  We obtained qualitatively similar results with (6') 

replacing (6).   

 

5. Signal transduction network 
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 A variety of cell responses are induced by the surrounding environment or the 

signals from outside the cells.  The signaling pathway downstream of the epidermal 

growth factor (EGF) receptor has been studied in mammalian cells.  It has been shown 

to regulate a large diversity of cell responses including proliferation, migration, 

oncogenesis, and apoptosis.  The process by which the growth factor signals induce 

cell reactions can be described roughly as follows.  By the ligand-binding to the EGF 

receptor, the tyrosine-kinase activity of the receptor is induced.  The activated EGF 

receptors phosphorylate and activate the target proteins.  The activation of proteins 

causes activation of other species of molecules and the activation signal is transferred 

through a series of species of molecules, sequentially.  The signal is finally transferred 

into the nucleus, regulates gene expressions and causes changes in macroscopic cell 

behavior.  The process is called “signal transduction” and the pathway of transfer has 

been studied well.  The whole pathway constitutes a complex system including famous 

and important sub-pathways such as the MAP kinase cascade, the PIP pathway, and the 

Ca
2+

 signaling cascade.  Rather diverse reactions of the cell are produced by this signal 

transduction system.  In other words, the signal transduction network is a system for 

the determination of the macroscopic behavior of mammalian cells after receiving the 

signal molecule stimulus from outside.  Many studies of signal transduction focus on 

the crucial question how a single system produces multiple output responses depending 

on the stimulus inputs from outside the cells.   

 We analyze a regulatory network of signal transduction summarized by (Oda et 

al. 2005).  The authors collected information on pathways of signal transduction from 

published papers, which are determined by various experimental methods.  They 

summarized the information of regulation between molecules, and constructed a 
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complex regulatory network of 113 species of molecules including kinases, phosphatase, 

or ions like Ca
2+

, and many regulatory edges between them.  There is no 

self-regulatory edge in this network.   

 As a preprocessing we removed vertices without input or output as described in 

our above analysis for ascidiacea network.  The resulting reduced network is still 

complex and possesses 61 vertices (Figure 6).  We adopt a method of computer-aided 

search to determine a feedback vertex set of minimal size.  Our search algorithm is 

simple, using only the definition of a feedback vertex set directly.  We repeated the 

following examinations one by one exhaustively starting from smaller sizes of candidate 

sets to larger: (1) select a subset of vertices, (2) examine whether the network after the 

removal of the subset is cycle-free or not.  We found 36 ways to select the feedback 

vertex set with a minimum of five vertices.  Table 2 shows the possible choices of 

vertices to form a minimal feedback vertex set.  The vertices in these sets are 

categorized into five groups, which are shown in different colors in Figure 6.   

 The equilibria of the system should be expressed as solutions of a system of 

equations including only a feedback vertex set.  For example, if we select the feedback 

vertex set as I  {ErbB11, SOS, c-Src, cyt Ca
2+

, PI45-P2}, the equilibria of the system 

are solutions of an equation system written in the form: 

 

 

 

 

 

 

ErbB11 ErbB11 ErbB11 SOS c-Src PI4,5-P2

SOS SOS ErbB11 SOS c-Src cyt Ca2+ PI4,5-P2

c-Src HB-EGF ErbB11 c-Src cyt Ca2+

cyt Ca2+ cyt Ca2+ cyt Ca2+ PI4,5-P2

PI4,5-P2 PI4,5-P2 ErbB11 SOS

, , ,

, , , ,

, ,

,

, ,

x H x x x x

x H x x x x x

x H x x x

x H x x

x H x x









  c-Src cyt Ca2+ PI4,5-P2, ,x x x

.   (7) 
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The derivation of the precise form of the reduced equilibrium system (7) follows the 

same idea as the derivation of the reduced equilibrium system (4) in the ascidiacea 

network of section 4.  In fact, the first equation of (4) would simply take the form 

 Fox Fox Foxx H x , in the present notation.  Analogously, let I  denote any minimal 

feedback vertex set of the signal transduction network and let i I  denote any 

feedback vertex.  Then i ix H , where the function iH  only depends on feedback 

vertex variables jx  for a subset  j J i I  .  What is this subset  J J i  of 

dependencies  i i Jx H x , in the reduced system of equilibrium equations?   

 We define the elements  j J i  by the following path property.  We require 

there exists a directed path   from j  to i  which does not traverse any other 

feedback vertices of I  before reaching i .  Let  J J i I   denote the set of such 

feedback vertices j .  For example  i J i , because otherwise the set  \I i  would 

be a feedback vertex set more "minimal" than I : any directed cycle through i  would 

also have to pass through another feedback vertex of  \I i .   

 Now we show how  i i Jx H x  can be written as a function of only the 

feedback vertex variables jx , j J , where the paths   start.  Let U  denote the 

union of all such paths   for all  j J i .  Then the regulatory network allows us to 

successively determine all equilibrium values kx on vertices \k U J , by successive 

evaluation of their regulatory functions, ultimately as functions of Jx .  In a final step 
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this determines  i i Jx H x , as claimed.  For the particular choice of I  {ErbB11, 

SOS, c-Src, cyt Ca
2+

, PI45-P2} above, this proves claim (7).   

 The dependencies of the reduced equilibrium system 
  i i J i

x H x  on the 

feedback vertices i I  can be summarized in a reduced network.  As vertices we 

choose a feedback vertex set I .  We draw a directed edge from vertex j  to vertex i  

if and only if  j J i .  In this sense, and only for steady states, we can reduce the 

network to smaller one including only the particular choices of feedback vertex sets as 

shown in Figure 7.  In these figures, the edges indicate dependence between variables 

in the steady state systems analogous to (4).  We emphasize that these reduced 

networks for steady states each have the same potential to generate the same diversity of 

steady states as the original network.  However, they are not appropriate for 

considering other classes of dynamical behaviors, like periodic oscillations or 

quasi-periodic oscillations.  We call them "steady state networks".  As a first example 

we note how  i J i  implies that every vertex set of the steady state network 

possesses a self-loop.  See (4) and all examples in Figure 7.   

 The topology of the steady state network depends on the choice of a minimal 

FVS.  We show these topologies of networks in Figure 7, and the correspondence 

between the choices of FVS and topologies in Table 3.  Among them the network 1 is 

the simplest, with a minimal number of edges in its FVS.  We may say that the FVS of 

ID number 1 in Table 2 gives the simplest reduced network, counting resulting edges.  

The vertices in one of these FVS are marked by circles in Figure 6.   

 The regulatory network of signal transduction is expected to show a broad 

variety of dynamic responses in the global attractor depending on the stimulus signals 
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from outside the cell.  Measuring the time tracks of five feedback vertices 

experimentally in different environments, after receiving the stimulus signals, will 

faithfully represent the diversity of the dynamical response of the whole system.  If we 

discover, on the other hand, that the time tracks of five feedback vertices are not 

sufficient to explain all of the observed behaviors, then we will be forced to conclude 

that the original network again missed some important edges or molecules. 

 

6. Control of mammalian circadian rhythms.  

 In this example, we explore a control aspect of our theory.  We demonstrate 

that the dynamics of the whole system can be controlled by prescribing the dynamics of 

only a feedback vertex set.  Mammalian circadian rhythms in mice have been studied 

well, experimentally.  Four major genes are involved in the system: Per1, Per2, Cry1 

and Cry2.  The regulations between genes and the interactions between these proteins 

have been examined in detail.  The system in a normal animal exhibits periodically 

oscillating gene activities.  Many mathematical models for the system have been 

proposed and studied.  Of course mathematical models include assumptions on 

experimentally unverified facts, in particular in the specific formulae for the precise 

regulatory functions kf .  In some studies models were analyzed mathematically or 

numerically and conditions for periodic oscillations were determined.   

 For our numerical experiments we use a mathematical model proposed by 

Mirsky et al. (2009), which includes 21 variables and hundreds of parameters.  The 

ordinary differential equations and our choice of parameter values are detailed in 

Appendix B.  The regulatory network is shown in Figure 8a.  Our choice of a 

minimal feedback vertex set with size 7 is I  {PER1, PER2, CRY1, CRY2, RORc, 
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CLK, BMAL1}, which is different from our companion paper (Fiedler et al., 2013).  

We found that the dynamics of the model possesses several invariant sets including two 

stable periodic oscillations (P1 and P2), one unstable periodic oscillation (UP), and one 

unstable stationary point (USS) under a choice of parameter values, which are different 

from the original values used in Mirsky et al. (2009).  Figure 8c shows the trajectories 

of these asymptotic behaviors in two dimensional phase space, Per1 mRNA and Per2 

mRNA.   

 We performed four numerical experiments, controlling "from P1 to P2", "from 

P2 to P1", "from P1 to UP" and "from P1 to USS" (Figure 9).  We examined whether 

the system is controlled by prescribing the time tracks of the 7 informative variables 

 I tx  on the feedback vertex set I .  As a preparation we calculated the time tracks 

of each informative variable kx , k I , on the four invariant sets, P1, P2, UP and USS, 

by direct numerical simulation, i.e.  P1

kx t ,  P2

kx t ,  UP

kx t  and  USS

kx t  (0 t T  ).   

 The control protocol of our numerical in silico experiment called "from P1 to 

P2" is the following: the time tracks of the 7 informative variables are prescribed to 

follow their values  P2

I tx , as on P2.  The dynamics of the remaining 14 variables 

 kx t , k I , are calculated by the remaining 14 ODEs of the system, and the initial 

state of these remaining variables is chosen to coincide with a point on the P1 trajectory.  

We used different points on the P1 orbit as initial states.  The results did not depend on 

the particular choice of the initial state as much as we examined.  We observed how 

the dynamical trajectory of the remaining variables starting from P1 left that stable 

periodic orbit, immediately, and quickly converged to the competing P2 orbit.  The 
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total system finally shows periodic oscillation on the P2 orbit.   

 Similarly we examined the opposite control protocol “from P2 to P1”, where 

the tracks of the 7 informative variables in the feedback vertex set are now prescribed to 

follow their values  P1

I tx  on P1, and the dynamics of the remaining 14 variables are 

calculated by the remaining ODEs with an initial state on P2.  In the experiment we 

observed that the remaining system immediately left P2, this time, and quickly 

converged to P1 following the prescribed informative dynamics  P1

I tx .   

 Next we examined the control protocol "from P1 to UP", where the tracks of 

the 7 informative variables in the feedback vertex set I  are prescribed to follow their 

values  UP

I tx  on the unstable periodic orbit UP, and the dynamics of the remaining 14 

variables are calculated by the remaining ODEs with an initial state on P1.  It is 

interesting that the total system turned out to converge to UP even though periodic 

oscillation UP was unstable, originally.   

 Analogously we examined the numerical control protocol “from P1 to USS”: 

the 7 informative variables  I tx  in the feedback vertex set are fixed at their constant 

values USS

Ix  of the unstable stationary point USS, and the remaining 14 variables are 

calculated by the remaining ODEs with an initial state on the stable periodic orbit P1.  

Even though USS was unstable, originally, we again found that the remaining variables 

left the stable periodic orbit P1, immediately.  The total system then converged to the 

unstable stationary point USS
x  and remained there, by the continued clamping control 

of all 7 informative vertices.   

 We conclude that control of the feedback vertex set is indeed sufficient to 



-25- 

control the total system towards a previously existing target state, even when the target 

state is unstable, originally.  This is a direct consequence of our theorem on 

determining nodes via the following interpretation: "control of the feedback vertex set 

implies control of the whole system".  In the companion paper (Fiedler et al., 2013) 

this interpretation is proved in a setting where the remaining ODEs are viewed as a 

nonautonomous regulatory network with an empty (remaining) feedback vertex set.  

The original feedback vertex set I  then serves as a nonautonomous input.   

 We next examined whether the system can be controlled equally well by a 

non-full set of vertices.  We control only 6 vertices 'I  among the 7 of the full 

feedback vertex set I  and tried to control the system “from P1 to P2”.  We prescribed 

the time tracks  P2

'I tx , 'I  {PER1, PER2, CRY1, CRY2, RORc, BMAL1}, i.e. 

skipping CLK.  The dynamics of the remaining 15 variables, including the skipped 

informative node CLK, are calculated by ODEs with an initial state on P1.  The result 

is shown in Figure 10: the trajectory converged to an unknown spurious periodic 

oscillation, and not to P2.  Similarly we performed numerical experiments “from P2 to 

P1”, “from P1 to UP” and “from P1 to USS”.  The control of the system succeeded in 

"from P2 to P1" only, and failed in the cases “from P1 to UP” and "from P1 to USS".  

This demonstrates that controlling a non-informative set of feedback vertices set may 

not be sufficient to control the system.  We caution our reader that the above results do 

depend on the choice of prescribed variables.  If we control the time tracks  "I tx  of 

suitable choice of 6 variables among 7 informative variables "I  {PER2, CRY1, CRY2, 

RORc, CLK, BMAL1}, we can control the dynamics of the whole system.   

 Our in silico numerical control experiments demonstrate that the full feedback 
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vertex set is a sufficient set to control the whole regulatory network.  Our result 

provides a rational criterion to select variables if we consider controlling complex 

systems which involve many variables.  Our criterion does not depend on the 

particular choices of regulatory functions, and is based on the dependency structure of 

the regulatory network as a directed graph, only.  The feedback vertex set criterion is 

quite powerful for biological systems, because biological systems are usually very 

complex and, in many cases, the regulatory edges are the only available information.   

 

7. Other approaches 

 In this section we contrast our approach with two alternative recent view points 

which we find particularly interesting and illuminating.  From the large literature on 

the subject of gene regulation and regulatory networks we focus on descriptions by 

continuous, quantitative variables.  We ignore mere Boolean approaches.  As more 

and more quantitative data are becoming available, the regulatory dependencies will be 

most appropriately represented in a regulatory network setting as described above.   

 The first alternative view point is that of linear, or linearization-based, standard 

control theory as adapted to regulatory networks by Liu, Slotine, and Barabasi (Liu et 

al., 2011; 2013).  The other alternative which we discuss below is a recent adaptation 

of the celebrated 1971 Takens embedding theorem (Takens, 2010) to regulatory network 

by Joly (Joly, 2012).   

 The linearized setting of Liu et al. (2011; 2013) is the setting of standard linear 

control theory in the form  

 

 
A B

C

 



x x u

y x
.      (8) 
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Here   Nt x x  describes the state vector of the system,   Kt u u  are the 

input (alias control, actuator) variables and   Mt y y  are the accessible 

observables (alias sensors, measurements) on which a successful control strategy  tu  

is to be based.  The matrices A , B , C  are assumed constant.  The regulatory 

graph   is defined such that the matrix  kjA a  of the uncontrolled network 

Ax x  becomes the adjacency matrix of  .  More precisely,   possesses an edge 

from vertex j  to vertex k  if and only if 0kja  .  Our decay condition 0kd   or 

 1 , 0
kk k IF x x  requires 0kka   for vertices k  without self-loops – a restriction not 

imposed by (Liu et al., 2011, 2013).   

 The nonlinear setting of Joly (2012) takes the general form  

 

  
kk k Ix G x .      (9) 

 

Self-loops k k  are allowed but not required.  Self-decay is not required either.  

The strong results of Joly detailed below, however, do not hold for all nonlinearities G .  

Rather, they hold for some generic subset of nonlinearities G  which is not explicitly 

known.  In particular it is not known, but could be tested numerically or even 

experimentally, whether any specific nonlinearities of Michaelis-Menten or switching 

type fall into the class addressed by this mathematical result.    

 The observation objective of standard linear control theory in the setting (8) is 

the instantaneous observation and reconstruction of the complete system state 
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  Nt x  from the observation vector   Mt y  and its time derivatives  ty ,…, 

   1N
t


y .  The standard sufficient condition for observability is the full rank N  

condition for the NM N  matrix with N  blocks C , CA ,…, 1NCA  , each of size 

M N .  Liu et al. (2013) suggest a graphical approach (GA) and a maximal matching 

(MM) approach to achieve this.  The maximal matching approach starts from a 

maximal set of edges j k  such that no pair of them shares the same start node j  

or end node k .  The MM approach requires all terminal nodes of the maximal paths in 

the maximal edge set to be sensors.  (We have reversed arrows in Liu et al. (2013) for 

consistency with our present paper.)  The more parsimonious GA variant selects only 

one sensor per terminal strong linkage class of the network.  Here any two vertices j , 

k  are called strongly linked if they are connected by a directed path in the graph  , in 

either direction.  A maximal strongly linked set is called class.  A strong linkage class 

is called terminal if there do not exist any paths leaving it.  In Liu et al. (2013) 

numerical evidence based on random networks was given to indicate that, in absence of 

"symmetries", the GA is sufficient to establish observability via the full rank condition 

of C , CA ,…, 1NCA  .  The precise meaning of "symmetries" was not specified.   

 Joly (2012) has obtained a precise mathematical version of a similar result in 

the nonlinear setting (9).  Although his language is somewhat different, his results are 

based on the same choice of sensors as in the GA of Liu et al. (2013).  Unlike the 

Takens embedding theorem (Takens, 2010), however, his results do not reconstruct all 

phase space Nx .  In fact, his sensors are proven to faithfully detect only 

asymptotically stationary and periodic orbits  tx  from finite time tracks  I tx , 

0 t T  , on the sensor set I .  This drawback might be overcome in future work, in 
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our opinion.  The genericity limitation mentioned above is more serious.  In principle 

it might exclude linear problems, wholesale.  Like (Liu et al., 2013), on the other hand, 

it promises strongly reduced sensor sets at least in systems with few output classes, alias 

terminal strong linkage classes.   

 The control objective of standard linear control theory in the setting (8) 

requires to solve any task of the following form: given any initial state   00 x x  and 

any target state   TT x x  at a target time 0T  , steer  tx  from 0x  to Tx  

according to A B x x u , for 0 t T  , by a suitable choice of the control function 

  Kt u .  The standard sufficient condition for controllability is the full rank N  

Kalman condition for the N KN  matrix with N  blocks B , AB ,…, 1NA B  of 

size N K .  The notion of structural controllability requires the system to be 

controllable, in this sense, for most choices of A  compatible with the graph structure.  

The N K  control matrix B  is assumed to consist of K  unit column vectors 

1i
e ,…, 

Ki
e  with prescribed input  ku t  at vertex ki  of the network.  As an input set 

 1, , KI i i  the unmatched vertices of the maximal matching (MM) approach are 

suggested in Liu et al. (2011).  (In Liu et al. (2013) the direction of arrows coincides 

with our present paper.)  By definition these are all vertices which do not appear as the 

end vertex k  of any oriented edge j k  in the maximal matching.  With this 

notion, some 37 networks from a large variety of applications are scanned for the 

resulting required number K I  of controlled inputs.  An interesting heuristics 

compares the results numerically and favorably to randomized directed graphs with the 
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same average number of in/out-degrees per vertex.  An analogous generic result in the 

nonlinear setting is not available, at present.   

 Our nonlinear approach via feedback vertex sets is quite complementary to the 

above recent results in several respects.  First, we do not impose any non-explicit 

genericity constraints on our regulatory network (1), (2).  Instead we only impose a 

self-decay condition which can be circumvented by introducing self-loops k k , see 

Fiedler et al. (2013).   

 Second, we use the same feedback vertex set FVS for, both, observation and 

control.  Our control philosophy, however, is quite different from standard control 

theory.  In fact it is much closer to the idea of "reprogramming" regulatory networks as 

discussed by (Müller and Schuppert, 2011) and the reply of the authors of (Liu et al., 

2011).  We do not seek to steer the network state  tx  from any initial state 0x  to 

any target state Tx  in time 0 t T  .  Instead we seek to steer  tx  from any initial 

state 0x  to any stable or unstable target trajectory  * Nt x , t , of the original 

regulatory network (1), (2), such that  

 

    * 0t t x x      (10) 

 

for large times.  We achieve this by clamping the input vertices    *:
I

I It t x x  

to their previously observed trajectory on the feedback vertex set I , only.  Then the 

remaining dynamics  tx  of the whole network must follow, as we proved in (Fiedler 

et al., 2013).   
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 Third, our control is noninvasive as we reach the target trajectory  *t tx .  

This follows from the fact that we only seek to follow true, existing solutions 

 * N x  in the regulatory network (1), (2).  But, we have demonstrated our ability 

to choose freely among those, at least for stable and unstable stationary or periodic 

targets  * x , in the numerical example on circadian rhythms of section 6.   

 Forth, and perhaps most importantly, our control is model-free.  Indeed we 

may just measure the required data  *

I x  on the same sensor set I  which figures as 

input in our control version, at least when the target trajectory *
x  is stable.  The 

success (10) of our control is then guaranteed by the structure (1), (2) of the network 

alone, independently of any specific choices of nonlinearities.  Only for an in silico 

demonstration of the method did we have to choose a specific model, with specific 

nonlinearities and specific parameter values, in section 6.  But, the success by 

clamping    *:
I

I It t x x  on the full FVS I  was guaranteed a priori, 

independently of any such numerical quibble.   

 Fifth and finally, observation of the feedback vertex set I  is necessary to 

faithfully reconstruct all trajectories  * x ,    in the global attractor, from 

observations  *

I x  on any vertex subset I  alone, if this is to be achieved for all 

nonlinearities kF  in (2) which are compatible with the network structure.  This is the 

contents of the converse parts to our determinacy result in (Fiedler et al., 2013), as 

stated in section 3.  We recall that any feedback vertex set I  is determining.  

Conversely, any vertex set I  which is determining for all choices of the nonlinearities 

kf  in (1) or 
kF  in (2) is necessarily a feedback vertex set.  This converse aspect is 
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somewhat analogous, in the nonlinear case, to the notation of structural controllability 

advocated in (Liu et al., 2013) for the linear setting.   

 In summary, our nonlinear method is complementary to the linear approaches 

to observation and control by (Liu et al., 2011; 2013) and to the observational nonlinear 

genericity approach of Joly (2012).  In particular we do not seek to steer the network 

dynamics   Nt x  from any initial state 0x  to any target state Tx .  Instead we 

seek to steer the network dynamics  tx  to any pre-selected target trajectory  * x  

of the regulatory network without any modeling knowledge on the system other than the 

regulatory network graph  .   

 

8. Discussion 

 We presented three biological applications of a mathematical theory which 

distills an important aspect of the global dynamics from information on regulatory 

linkages alone.  For complex regulatory networks we identified small feedback vertex 

sets (FVS), by measurements of which any recurrent dynamical behavior of whole 

system is assured to be identified.  This includes steady states, periodic oscillations or 

quasi-periodic oscillations.  In some examples, we discussed the possible inability of 

the networks to explain the diversity of the observed dynamics of the actual biology 

involved.  Our theory also provides a rational criterion to select key molecules to 

control a system: the dynamics of whole system is sufficiently controlled by prescribing 

the dynamics on a FVS.   

 For mathematical proofs see the companion paper (Fiedler et al., 2013).  We 

combine two mathematical concepts from different mathematical fields: "determining 
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nodes", i.e. a sufficient subset of variables which faithfully describe the long-term 

dynamics of the whole system, are determined as a "feedback vertex set" (FVS) of a 

regulatory network, in the sense of graph theory.  Our theory does not require any 

quantitative information on the functions kF  of the regulatory ODE system (2).  We 

only distinguish the case that the first partial derivative of kF  with respect to kx  is not 

strictly negative.  This implies that the analysis of experimental data according to our 

theory returns experimental biology, directly.  Any inability of the regulatory network 

to explain experimentally observed dynamics, directly indicates flawed experimental 

data, or incompleteness of the regulatory network in experimentally relevant parts.   

 In the previous paper (Mochizuki and Saito, 2010), we introduced the concept 

of “informative nodes” determined from regulatory linkages.  We showed that all 

possible steady states of the whole system are identified by observing the stationary 

activity levels of the informative nodes, only.  Now, and in the companion paper 

(Fiedler et al., 2013), we have improved three different aspects of that theory.   

 First, the theory applies to much wider classes of dynamical behaviors of 

ordinary differential equation (ODE) systems.  We showed that the informative nodes 

faithfully trace, not only the steady states but also, the "full dynamics" of the network, 

including periodic oscillations, quasi-periodic oscillations, or bounded chaos.   

 The second improvement concerns the definition of "informative nodes".  In 

the previous paper (Mochizuki and Saito, 2010), the key "informative nodes" vertices 

were not yet clearly connected to the directed graph structure of a regulatory network.  

We continue to use the term "informative nodes", for their dynamic relevance.  The 

term is equivalent, however, to the term "feedback vertex set" which is originally a 

concept in graph theory.  The "feedback vertex set" is directly defined from the 
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structure of a directed graph: a subset of vertices whose removal leaves the directed 

graph without directed cycles.  We also introduced the term "determining nodes", 

which is a concept in dynamical systems.  It is a subset of variables in a system such 

that the dynamical trajectories on that subset determine the long-term dynamics of all 

remaining variables.  In the companion paper (Fiedler et al., 2013), we proved 

mathematically that a "feedback vertex set" of a regulatory network, alias a set of 

"informative nodes", is also a set of "determining nodes" for the full dynamics on the 

network.   

 The third improvement is the class of mathematical formulae of ODE systems.  

In the previous paper, we assumed linear functions for the decay of molecular activities.  

Here and in the companion (Fiedler et al., 2013), the decay of activities is expressed by 

any decreasing function kF  of the concentration of the molecules.  In addition, we do 

not need to assume any separation of the decay term, which was used in the previous 

paper.  Rather, the decay of activity and self-repression are now coherently expressed 

as a negative first partial derivative of the nonlinearity  ,
kk k IF x x  with respect to kx .  

In other words, we do not distinguish between decay and self-repression in our 

dynamical point of view.  This implies a significant practical improvement for the 

analysis of complex networks because we can ignore any loops of self-repression.  

This results in a substantial reduction of the size of the FVS.  More importantly, it 

implies that our theory is applicable to any ODE systems, in principle, and is applicable, 

but not limited, to biological regulatory networks.   

 Our new concepts are useful to analyze regulatory networks in modern biology, 

in particular, because the information of dependence is abundant in biology, whereas 

further quantitative information remains elusive in many, if not most, systems.  Some 
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biological systems are expected to present diverse dynamical behaviors depending on 

initial states or environmental factors.  We can aim to measure the dynamics on a 

(small) feedback vertex set of the system, which should reflect the diversity of 

dynamics of the total system.  If we find that the diversity observed on the feedback 

vertex set is insufficient to explain the expected diversity of the total system, it directly 

indicates some inconsistencies or some incompleteness of the available information.  

For example, there may be unknown regulatory cycles which require additional 

feedback vertices.   

 We presented three examples of our analysis of biological networks: a gene 

regulatory network for cell differentiation of ascidiacea, a signal transduction network, 

and a network for mammalian circadian rhythms.  The dynamics of the gene regulatory 

network of ascidiacea is expected to produce many steady states corresponds to 

differentiated cell types.  Actually the network has only one determining node.  The 

present regulatory network in Imai et al. (2006) seems to be possibly incomplete, and 

may require unaccounted regulatory edges that would produce feedback loops which are 

not cut by FoxD-a/b.   

 The possible direct verification for our prediction is a knockdown experiment 

of FoxD-a/b gene.  The regulatory network of ascidiacea will have an empty set of 

FVS by the removal of FoxD-a/b.  The dynamics based on a network with empty FVS 

will converge to a unique equilibrium and will not show any diversity.  If the present 

network of ascideacea is correct, the embryo with FoxD-a/b knockdown will not show 

any diversity of cell types.   

 In silico simulations with artificial regulatory functions for the ascidiacea 

network exhibited marked differences in the reliability to reflect diversity of steady 
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states, among nodes outside the feedback vertex set {FoxD-a/b}.  The differences may 

reflect characteristics of the regulatory network.  On the regulatory graph, more 

reliable genes seemed to be on shorter cycles through the feedback vertex, while less 

reliable genes seemed to be located on longer cycles.  The relation between the 

structure of a network and the reliability of its vertices to faithfully predict the diversity 

of its dynamical behavior certainly deserves further study.   

 The system of signal transduction is expected to exhibit diverse dynamical 

responses depending on the initial state and corresponding to the stimulus signals from 

outside the cell.  Many studies of signal transduction therefore focus on the question 

how a single system produces multiple outputs depending on the input stimulus from 

outside.  Actually this interpretation of signal transduction networks is still 

hypothetical and is not yet confirmed by experiments.  We need time-series data of the 

activities of key molecules to faithfully represent the dynamics of the full system.  For 

this purpose we have to select molecules to track, because it is still difficult to 

simultaneously measure the activities of many molecules with a time-resolution 

sufficient for discussing their dynamics.  Our theory again provides rational criteria to 

select those key molecules.   

 Our experiments demonstrate that the informative, or feedback vertex set is a 

sufficient set to control the whole regulatory network.  Our result provides a criterion 

to select variables if we consider controlling complex systems which involve many 

variables.  It is quite powerful for biological systems, because biological systems are 

usually very complex and available information is limited in many cases.  Recent life 

sciences are trying to control biological system for medical purposes.  The problems of 

circadian rhythms in human, for example, cause physiological or mental diseases, 
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including sleep difficulty or mental depression.  Such problems may be solved if we 

successively control the activities of some carefully selected genes.  Of course it will 

remain impossible to control all molecules in a circadian rhythm system.  Thus we 

have to select minimal but sufficient sets of accessible molecules to control the system.  

Our theory may contribute to this ambitious goal, providing a rational criterion to 

identify key controlling molecules based on the graph information of their regulatory 

edges, alone.   

 We showed that our theory is useful to understand the dynamics of complex 

biological systems in several directions: to determine molecules whose activity should 

be measured, to understand the function of the system from time series of measurements 

of activities of some key molecules, and to identify unknown molecules or unknown 

regulatory linkages.  By applying our theory to networks we can directly determine 

informative molecules, whose activity should be measured to understand the dynamics 

of the full system.  By combining data of molecular activities, our theory would be a 

quite powerful tool in molecular biology to derive predictions on the existence of 

unknown molecules or of unknown regulatory linkages.  We hope that our theory will 

contribute to molecular biology as a strong tool to derive such predictions, to support 

the rational selective acquisition of still missing biological data, and to further elucidate 

the complex and fascinating biological mechanisms of life.    
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Appendix A 

 

 Regulatory linkages of ascidiacea are summarized in the following: 

ADMP -> {Achaete-Scute a-like2, CAGF9, Dll-C, FGF8/17/18, Irx-C, msxb, 

NK4, ZF (C2H2)-24} 

AP-2-like2 -> {Emc} 

Dll-B -> {Emx, FoxC, FoxH-a, GATA-b, MYTF, Six12, Six36, 

SOCS1/2/3/CIS, ZF (C2H2)-24} 

DMRT1 -> {FoxC, meis, Six12, Six36} 

ets/pointed2 -> {Brachyury, chordin, DMRT1, DUSP1.2.4.5, ELK, EphrinA-c, 

Fli/ERG1, Fos, FoxC, Mist, Mnx, msxb, MYTF, nodal, Otx, SMYD1, 

TWIST-like-1a/b, TWIST-like-2, ZF (C3H)} 

FGF9/16/20 -> {Brachyury, chordin, COE, Delta-like, DMRT1, DUSP1.2.4.5, 

ELK, Emc, EphrinA-c, FGF8/17/18, Fli/ERG1, Fos, FoxB, FoxC, Hex, 

Jun, LAG1-like 5, Mist, Mnx, msxb, MyoD, MYTF, Neurogenin, nodal, 

noggin, NoTrlc, Otx, Pax3/7, Pax6, TTF1, TWIST-like-1a/b, 

TWIST-like-2, ZF (C3H), ZicL} 

FoxA-a -> {Brachyury, chordin, Delta-like, DMRT1, DUSP1.2.4.5, Emx, Eph1, 

FoxB, FoxC, Fz4, GATA-a, GATA-b, Lhx3, Mnx, msxb, MYTF, nodal, 

NoTrlc, Otx, Pax3/7, Pax6, sFRP1/5, sFRP3/4-b, SoxB1, TTF1, 

TWIST-like-1a/b, TWIST-like-2, ZF (C2H2)-33, ZicL} 

FoxB -> {Cdx, FGF8/17/18, Mnx, Pax6} 

FoxC -> {ZF (C2H2)-2} 

FoxD-a/b -> {Brachyury, chordin, COE, Delta-like, Dll-B, DMRT1, 
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FGF8/17/18, FGF9/16/20, FoxB, Mnx, MYTF, Neurogenin, nodal, 

NoTrlc, Pax6, TWIST-like-1a/b, Wnt5, ZF (C2H2)-33, ZicL} 

Mesp -> {FoxF, NK4, NoTrlc, Tolloid} 

msxb -> {Achaete-Scute a-like2, CAGF9, Dll-C, SoxB2, ZF (C2H2)-24} 

MyoD -> {Mox, Otp, SMYD1} 

Neurogenin -> {COE, Delta-like, FGF8/17/18, MYTF} 

nodal -> {chordin, COE, Delta-like, E(spl)/hairy-b, Emc, FGF8/17/18, FoxC, 

Lmx, msxb, MYTF, Neurogenin, NoTrlc, Pax3/7, Pax6, Snail, 

SOCS1/2/3/CIS} 

NoTrlc -> {TWIST-like-1a/b} 

Otx -> {Fli/ERG1, Fos, FoxC, FoxD-a/b, GATA-a, Hex, Jun, LAG1-like 5, 

meis, Mist, MYTF, Six12, Six36, TWIST-like-1a/b, TWIST-like-2} 

Snail -> {Mnx, MYTF} 

SoxC -> {Cdx, Delta-like, DMRT1, FGF8/17/18, FoxC, GATA-b, MYTF, 

Neurogenin, nodal, Pax6, Snail} 

Tbx6b/c/d -> {Mnx, MyoD, Otp, SMYD1, Snail} 

TWIST-like-1a/b -> {Fli/ERG1, Fos, FoxD-a/b, Hex, Hlx, Hox4, LAG1-like 5, 

Mist, TWIST-like-2} 

ZicL -> {Brachyury, Cdx, chordin, COE, Delta-like, Fos, Lhx3, Lmx, meis, 

Mnx, MyoD, MYTF, Neurogenin, Otp, Pax6, Six12, Six36, SMYD1, 

Snail, Tbx6a, Tbx6b/c/d, TWIST-like-1a/b, Wnt5, ZF (C2H2)-33} 
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Appendix B 

 

Model equations for mammalian circadian rhythm.   

The mathematical model which we used in Section 6 is written as a system of ODEs 

including 21 variables, Per1, Per2, Cry1, Cry2, Rev-erb, Clk, Bmal1, Rorc, PER1, 

PER2, CRY1, CRY2, REV-ERB, CLK, BMAL1, RORc, PER1/CRY1, PER2/CRY1, 

PER1/CRY2, PER2/CRY2 and CLK/BMAL1.   
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Our choice of parameter values are as follows: 

 

0, 1Perv =0.000001, 
1, 1Perv =3.0, 0, 2Perv =0.09, 

1, 2Perv =3.29, 
0, 1Cryv =0.26, 

1, 1Cryv =2.44, 

2, 1Cryv =2.89, 0, 2Cryv =1.29, 
1, 2Cryv =2.72, 2, 2Cryv =0.1, 

1,Re -v erbv  =11.06, 
0,Clkv =3.98, 

1,Clkv

=3.36, 0, 1Bmalv =1.98, 1, 1Bmalv =4.12, 0,Rorcv =0.06, 1,Rorcv =3.55, 2,Rorcv =0.46,  

 

1, 1Perna =2.0, 1, 1Perni =2.0, 2, 1Perni =1.0, 3, 1Perni =2.0, 4, 1Perni =4.0, 1, 2Perna =10.0, 1, 2Perni

=1.0, 2, 2Perni =1.0, 3, 2Perni =9.0, 4, 2Perni =8.0, 1, 1Cryna =4.91, 2, 1Cryna =3.01, 1, 1Cryni =1.0, 

2, 1Cryni =1.0, 3, 1Cryni =6.0, 4, 1Cryni =4.0, 5, 1Cryni =2.24, 1, 2Cryna =4.39, 2, 2Cryna =4.43, 

1, 2Cryni =1.0, 2, 2Cryni =1.0, 3, 2Cryni =4.0, 4, 2Cryni =8.0, 5, 2Cryni =1.75, 1,Re -v erbna  =4.40, 

1,Re -v erbni  =0.15, 2,Re -v erbni  =0.3, 3,Re -v erbni  =7.0, 4,Re -v erbni  =7.0, 1,Clkna =3.50, 1,Clkni

=1.96, 1, 1Bmalna =4.13, 1, 1Bmalni =0.02, 1,Rorcna =1.57, 2,Rorcna =0.56, 1,Rorcni =1.0, 2,Rorcni

=1.0, 3,Rorcni =7.0, 4,Rorcni =7.0, 5,Rorcni =4.33,  
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1, 1PerKA =1.98, 
1, 1PerKI =1.07, 

2, 1PerKI =3.96, 
3, 1PerKI =1.68, 

4, 1PerKI =3.11, 
1, 2PerKA

=1.90, 
1, 2PerKI =4.51, 

2, 2PerKI =2.98, 
3, 2PerKI =2.24, 

4, 2PerKI =3.31, 
1, 1CryKA =1.46, 

2, 1CryKA =3.76, 
1, 1CryKI =0.03, 

2, 1CryKI =0.77, 
3, 1CryKI =3.59, 

4, 1CryKI =3.44, 
5, 1CryKI

=2.82, 
1, 2CryKA =0.69, 

2, 2CryKA =2.96, 
1, 2CryKI =4.63, 

2, 2CryKI =2.95, 
3, 2CryKI =3.57, 

4, 2CryKI =2.75, 
5, 2CryKI =3.97, 1,Re -v erbKA  =3.15, 

1,Re -v erbKI  =3.56, 2,Re -v erbKI  =3.62, 

3,Re -v erbKI  =4.71, 4,Re -v erbKI  =1.23, 
1,ClkKA =1.59, 

1,ClkKI =0.83, 
1, 1BmalKA =2.59, 

1, 1BmalKI =2.47, 
1,RorcKA =4.30, 

2,RorcKA =4.89, 
1,RorcKI =3.49, 

2,RorcKI =2.34, 3,RorcKI

=2.71, 
4,RorcKI =2.09, 5,RorcKI =3.36,  

 

, 1m Perk =2.18, , 2m Perk =0.20, , 1m Cryk =0.22, , 2m Cryk =0.41, ,Re -m v ervk  =0.60, ,m Clkk =3.19, 

, 1m Bmalk =1.42, ,m Rorck =1.50, ,PER1pk =2.58, ,PER2pk =3.0, ,CRY1pk =0.312, ,CRY2pk =5.9, 

,REV-ERBαpk =0.31, ,CLKpk =1.52, ,BMAL1pk =2.28, ,RORcpk =3.33, 1Pert =3.05, 2Pert =2.38, 

1Cryt =3.94, 2Cryt =1.69, Re -v erbt  =1.60, Clkt =3.04, 1Bmalt =4.00, Rorct =1.39, PER1,CRY1a

=3.57, PER1,CRY2a =3.12, PER2,CRY1a =3.81, PER2,CRY2a =4.0, CLK,BMAL1a =1.98, PER1/CRY1d

=1.32, PER1/CRY2d =1.85, PER2/CRY1d =1.37, PER2/CRY2d =2.42, CLK/BMAL1d =0.97. 

 

We calculated the dynamics of the model by Euler time steps t =0.001. 
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Table and Table Caption 

 

Table 1 

 FoxD-a/b NoTrlc Otx Twist-like-1 ZicL 

palp 0 0 1 0 0 

a8.21-a8.22-derived-epidermis 0 0 1 0 0 

a-line-lateral-epidermis 0 0 1 0 0 

a-line-ventral-epidermis 0 0 0 0 0 

b8.18-b8.20-derived-epidermis  0 0 0 0 0 

b-line-lateral-epidermis 0 0 0 0 0 

b7.14-b7.16-derived-epidermis 0 0 0 0 0 

CNS 1 0 0 0 0 

muscle 0 0 0 0 0 

B8.5-B7.7-mesenchyme 0 0 0 1 0 

TLC 0 0 0 1 0 

TVC 0 1 0 0 0 

endoderm 0 0 0 0 0 

 

 Summary of expression of 5 genes in 13 differentiated cells at tailbud stage of 

Ascidiacea.  The expressions of 5 genes among 7 shown in Figure 4b are obtained 

from Imai et al. (2006).  Top row indicates names of genes, and leftmost column 

indicates identified differentiated cells or organs.  The Boolean entries 0 and 1 

indicates inactive and active state of genes, respectively.   

 

Table 2 

① ② ③ ④ ⑤ 
# 

combinations  

ErbB11 
SOS 

ERK1/2 

HB-EGF 

c-Src 

ADAMS  

cyt Ca2+ 

CaM 

CaMKII 

PI4,5-P2 2*3*3=18 
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ErbB11 SOS 

HB-EGF 

c-Src 

ADAMS 

cyt Ca2+ 

PI4-P 

DAG 

PKC 

PLD 

phosphatidyl acid 

PI5K  

3*6=18 

 

 List of minimal feedback vertex sets of molecules in the signal transduction 

network.  There are 36 possible choices of minimal feedback vertex set.   

 

Table 3 

① ② ③ ④ ⑤ ID reduced network 

ErbB11 
SOS 

ERK1/2 
c-Src cyt Ca2+ PI4,5-P2 1 

ErbB11 
SOS 

ERK1/2 

HB-EGF 

ADAMS 
cyt Ca2+ PI4,5-P2 2 

ErbB11 
SOS 

ERK1/2 
c-Src 

CaM 

CaMKII 
PI4,5-P2 3 

ErbB11 
SOS 

ERK1/2 

HB-EGF 

ADAMS 

CaM 

CaMKII 
PI4,5-P2 4 

ErbB11 SOS c-Src cyt Ca2+ 
DAG 

PKC  
5 

ErbB11 SOS 
HB-EGF 

ADAMS 
cyt Ca2+ 

PI4-P 

DAG 

PKC 

PLD 

phosphatidyl acid 

PI5K  

6 

ErbB11 SOS c-Src cyt Ca2+ 

PI4-P 

PLD 

phosphatidyl acid 

PI5K  

6 
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 Choices of minimal feedback vertex sets and corresponding structure of steady 

state networks.  See Figure 7 for the ID and structure of steady state networks.    
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Figure Legends 

 

Figure 1  An example of a two-vertex regulatory network and possible 

dynamical behaviors depending on regulatory functions.  (a) Schematic representation 

of a regulatory network with two vertices.  The directed edges show inhibitory 

regulatory interactions between nodes.  (b, d) Examples of regulatory functions in 

which the genes are controlled by two different transcription factors.  (b): 

  
1

1 exp 20 0.5A Bf x


     ,   
1

1 exp 20 0.5B Af x


     ,  k k kd x x ,  

(d):      
1 1

1 exp 20 0.5 1 exp 20 0.5A A Bf x x
 

            , 

     
1 1

1 exp 20 0.5 1 exp 20 0.5B B Af x x
 

            ,  k k kd x x .   

(c) and (e) shows dynamical trajectories and null-clines on two-dimensional state space 

using regulatory functions (b) and (d), respectively.  Red and blue curves are 

null-clines of dynamics of Ax  and Bx , respectively.  Open and solid circle is unstable 

and stable stationary point, respectively.  Broken curves are trajectories from different 

initial state.   

 

Figure 2  Examples of regulatory networks with few vertices.  The directed 

edges show regulatory interactions between nodes.  The gray vertices are one choice of 

a minimal feedback vertex set, in each of the cases (a) – (e).   

 

Figure 3  Intuitive explanation of the theory.  If the dynamics of the gray 

vertices are given, the dynamics of the remaining vertices are determined uniquely.  

The set of vertices on which the dynamics are given can be further reduced to the 
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minimal feedback vertex set which consist of only the single vertex marked by a red 

circle.  See text for detailed explanation.   

 

Figure 4  Gene regulatory network of ascidiacea development.  (a) We draw 

the network based on Imai et al. (2006).  The original network includes 16 genes with 

self-repression.  We removed these repressive self-loops because self-repression can be 

subsumed under degradation in our formulation (2) of the network.  (b) Reduced 

network obtained by successive removal of nodes without input or without output.  

The reduced network possesses a minimal feedback vertex set with a single vertex, 

FoxD-a/b.   

 

Figure 5  Diversity of steady states as captured by observation of single genes, 

for the ascidiacea network and randomly chosen hypothetical regulatory functions kf .  

The results of nodal, NoTrlc, FoxD-a/b, FGF9/15/20, Otx, Twist-like-1 and ZicL are 

shown in separate graphics.  For each graphics the vertical axis indicates the 

percentage of actual multiple steady states correctly identified by observation of the 

respective gene, only.  The horizontal axis enumerates the random choices of 

regulatory functions, ordered from lower to higher scores for each gene.   

 

Figure 6  Signal transduction network downstream of the EGF receptor, based 

on Oda et al. (2005).  We successively removed nodes without input or without output 

from the original.  The network is still complex and intermingled, including many 

cycles.  We marked a choice of a 5-element minimal FVS.   
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Figure 7  Simplified steady state networks of signal transduction based on 

various choices of a 5-element FVS.  There are 6 possible topologies of simplified 

networks depending on the choice of the FVS.  The correspondence of ID numbers 

between the topology and the choice of a FVS is listed in Table 3.  The difference of 

edges of each network of ID 2 – 5 from that of ID 1 is shown in red bold arrows.   

 

Figure 8  Dynamical system of mammalian circadian rhythms.  (a) A 

regulatory network with 21 variables, redrawn after Mirsky et al. (2009).  Our choice 

of a minimal feedback vertex set I  with seven elements is marked by circles.  (b) 

Trajectories of two stable periodic orbits, period1 (P1) and period2 (P2), one unstable 

periodic orbit, (UP), and one unstable stationary state (USS), represented by time tracks 

of the variable Per2.  Vertical axis: Per2, horizontal axis: time t.  Dotted and broken 

curve: P1, dotted curve: P2, broken curve: UP, solid line: USS.  (c) Trajectories of the 

same solutions in the phase plane of the two variables Per1 and Per2.  These two 

variables are not in the feedback vertex set.   

 

Figure 9  Numerical trajectories of successful open loop controls of circadian 

rhythms via the full feedback vertex set I .  The horizontal and vertical axes are Per1 

and Per2, respectively, which are not in the chosen feedback vertex set I .  Zooms 

into P2, UP, and USS are shown as top-right inserts.  The resulting trajectory of the 

control experiment is always the solid red curve.  (a) "From P1 to P2".  The stable 

cycles P1 and P2 are shown by gray solid curves.  (b) "From P2 to P1".  Gray solid: 

P1 and P2.  (c) "From P1 to UP".  Gray solid: P1 and UP.  (d) "From P1 to USS".  

Gray solid: P1, open dot: USS.   
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Figure 10 Numerical trajectories of failed open loop controls of circadian 

rhythms by the reduced vertex set 'I  {PER1, PER2, CRY1, CRY2, RORc, BMAL1}

 \ CLKI .  Trajectories of the failed control experiment are always solid red.  (a) 

"From P1 to P2".  Gray solid: stable cycles P1 and P2.  Bottom-center: zoom into P2.  

Top-right insert: trajectory for the same range of Per1 and Per2 as in Figures 8c and 9.  

Top-left insert: Poincaré section of (Per1, Per2) at CLK=0.65.  The insert indicates the 

presence of an invariant 2-torus with quasi periodic dynamics.  (b) "From P1 to USS".  

Gray solid: P1, open dot: USS.  Top-right insert: zoom into UP.   
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