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Abstract

The study of traveling waves in a lattice differential equation (LDE)
leads naturally to a forward-backward-delay equation. Structures which
are present in the LDE typically are inherited by the traveling wave
equation. In this article we are interested in a situation, where the
traveling wave equation is reversible and possesses a symmetric (not
necessarily small) homoclinic solution. Moreover, we consider the case
that the asymptotic steady state possesses exactly two purely imaginary
eigenvalues ±iω, ω �= 0. As a consequence, a family of small periodic
solutions exists near the steady state.

It is the aim of this work to analyse the interaction of the homoclinic
solution with these periodic solutions by exploiting the underlying re-
versibility of the equation. As one of the main results we find all ho-
moclinic orbits to the center manifold, which stay close to the primary
homoclinic solution and which approach a periodic orbit or the steady
state in forward and backward time.

1 Introduction

We are interested in one-dimensional lattice differential equations of the form

∂tu
i(t) = F (ui−M(t), . . . , ui(t), . . . , ui+M(t)), (1)

where F : R(2M+1)N → RN is a smooth map. Hence, the dynamic of the i-th
particle only depends on its M nearest neighbors. Looking for traveling wave
solutions ui(t) = ψ(i− ct), c �= 0, leads to the traveling wave equation

−cψ′(ξ) = F (ψ(ξ −M), . . . , ψ(ξ), . . . , ψ(ξ +M)), (2)

where we have set ξ = i − ct. The right hand side of (2) defines a map
from C0([−M,M ],RN ) to RN ; hence equation (2) is a nontrivial functional
differential equation of mixed type. General properties of these type of equa-
tions have first been investigated in [26] and afterward studied by many others
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[19, 20, 21, 27, 6, 7, 8, 9]. A special feature of these equations is the fact that
they do not generate a flow. This is in sharp contrast to delay differential
equations, where the existence of a semiflow is well known, see [18].

The task of finding homoclinic or heteroclinic solutions of (2), which then
corresponds to the existence of pulses or fronts in the original equation (1), is
therefore a difficult task. However, there has been some recent progress. Let us
mention the important work of Friesecke and Wattis [5], where the existence of
solitary waves of one-dimensional lattices with Hamiltonian structure has been
proved using variational methods. Mallet-Paret investigated the existence of
traveling waves in a quite general class of lattice differential equations [22].
Iooss et al. restricted their attention to the Fermi-Pasta-Ulam lattice and the
Klein-Gordon equation (3), see [11, 12]. They could prove the existence of
small localized solutions using a center manifold reduction. In particular, they
could analyse the essential dynamics of the traveling wave equation (2) near a
steady state.

An essential feature of many traveling wave equations (2) associated to a cer-
tain lattice differential equations (1) is a time-reversibility, which leads to a
special property of the traveling equation. More precisely, this means that
whenever ψ(ξ) is a solution of (2) also Rψ(−ξ) is a solution. Here, R ∈ L(RN)
is a bounded linear map with the property R2 = id. However, since the initial
value problem with respect to equation (2) is not well-posed, we usually prefer
to define reversibility differently (see (12) and (14)). As we show in section
3, the traveling wave equation associated to the Fermi-Pasta-Ulam lattice has
this property. There are other important examples, i.e. the traveling wave
equation of the Klein-Gordon equation, [1, 11],

u̇n = wn

ẇn = un+1 − 2un + un−1 + V ′(un), n ∈ Z,
(3)

also has this property, see section 3.

So far, a lot of local bifurcations near steady states have been analysed in
lattice differential equations, see [11, 12]. But what can be said about more
general bifurcation scenarios, which are not restricted to a small neighborhood
of a steady state and therefore cannot be investigated by a center manifold
reduction? And how can we faithfully exploit the underlying reversibility of
the traveling wave equation (2)?

A first step has been performed in [8], where a bifurcation of a not necessarily
small homoclinic orbit to a nonhyperbolic equilibrium in a general functional
differential equation has been investigated. However, no symmetry considera-
tions have been taken into account there. The aim of the present work is to
show that the approach of casting equation (2) in a specific abstract setting,
which has been initiated in [7, 8, 9, 27], is strong enough to analyse homoclinic
bifurcations in reversible systems similar to the ODE-case. Moreover, we are
interested in the case of a reversible forward-backward delay equation (2) (the
term ”reversible” in this context will be specified below), which does not nec-
essarily possess any additional structure. However, since a lot of well-known
lattice differential equations, like the Klein-Gordon lattice, do have a Hamil-
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tonian structure, we will also point out some consequences which are imposed
by such a structure.
In order to motivate our results, let us first restrict our attention to an ordinary
differential equation ẋ = F(x), x ∈ R

2N , and recall why homoclinic orbits are
so typical in reversible systems. We assume that the homoclinic solution h
under consideration satisfies

lim
|ξ|→∞

h(ξ) = 0,

where zero is a hyperbolic steady state and (6) is satisfied for a linear operator
R with R2 = id. Of particular importance is now the case of a symmetric
homoclinic orbit, i.e. the orbit intersects the fixed point space Fix(R) = {x ∈
R2N : Rx = x}. Let us restrict to the situation that dim(Fix(R)) = N , which
will be similar to our assumptions concerning the more general equation (2).
The question of persistence of a symmetric homoclinic orbit under variation
of a parameter in a reversible setting now reduces to a question regarding the
relative position of Fix(R) and the stable manifold W s,+(0) of the steady state
zero. More precisely, if

Fix(R) + Th(0)W
s,+(0) = R

2N (4)

then the homoclinic orbit will persist upon slight variation of a parameter.
Indeed, the stable manifold will still intersect Fix(R) and induce a homoclinic
orbit via reversibility. Let us note that (4) is possible, since dimW s,+(0) = N
and Fix(R) = N ; hence, (4) is equivalent to the trivial intersection of the two
spaces. These arguments show that the persistence of (symmetric) homoclinic
orbits is related to the dimension of the sum of stable manifold and Fix(R).
Coming back to the case of general forward-backward-delay equations, we may
ask whether such a scenario has an analogon in this more general framework.
Of course, the setting is now infinite dimensional and due to the non-existence
of flows, concepts such as Poincaré-maps do not exist. However, it has been
shown in a series of recent papers [6, 7, 8, 9] that locally invariant manifolds
near the homoclinic orbit do exist. Here, we additionally want to exploit the
underlying reversibility and show that bifurcations near the homoclinic orbit
could be analysed similar to the corresponding ODE scenario.

The main scenario in the ODE-case
For the sake of illustration let us first explain the main scenario in the frame-
work of an ordinary differential equation

ẋ(t) = F(x(t), λ), λ ∈ R
2, x ∈ R

2N+2, (5)

where the vector field satisfies

F ◦R = −RF , (6)

for a linear map R ∈ L(RN) such that dim(Fix(R)) = N + 1. We are inter-
ested in a situation where the asymptotic steady state is non-hyperbolic and
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consider the case that that the linearization of F at zero possesses two simple
eigenvalues ±iω, ω �= 0, on the imaginary axis. The Lyapunov center theorem
(see [3]) then implies that the center manifold Mλ consists entirely of periodic
orbits for all λ ∼ 0. We remind that the center manifold is given as a graph
over the generalized center eigenspace and contains all global solutions of (5)
which stay in a sufficiently small neighborhood of zero. Let us additionally
assume the existence of a symmetric homoclinic orbit h of (5) for λ = 0, which
approaches the trivial steady state and

h(0) ∈ Fix(R). (7)

Due to the existence of periodic orbits near the steady state, h has to approach
the steady state along the strong stable manifold as t→ ∞. In particular, h(t)
approaches zero in forward time with exponential rate. By reversibility, h also
converges to zero in backward time with exponential rate. We will consider the
generic case that the center stable manifold W cs,+(0) and the strong unstable
manifold W u,−(0) intersect only along the homoclinic orbit for λ = 0. Hence

Th(0)W
cs,+
λ=0 (0) ∩ Th(0)W

u,−
λ=0(0) = span{∂th(0)}. (8)

In order to ensure genericity of the parameter, we assume that

{U ∈W s,+
λ (0) : λ ∼ 0} is transverse to Fix(R). (9)

This last assumption assures the existence of homoclinic orbits to the steady
state to be a codimension-one-phenomenon. Moreover, counting dimensions
we see that the center stable manifold W cs,+

λ (0) intersects the space Fix(R)
transversely at h(0). Let us focus on the generic case that

dim(Fix(R) ∩ Th(0)W
cs,+
0 (0)) = 1, (10)

and we refer to [14] for the scenario in case of a two-dimensional intersection.
We now discuss the resulting bifurcation scenario. More precisely, we are
interested in the existence of solutions to the center manifold. At least in the
ODE-case this has already been achieved in [14, 15]. In particular, one has to
distinguish the cases

a) dim [Th(0)W
cs,+
λ=0 (0) ∩ Th(0)W

cu,−
λ=0 (0)] = 2,

b) dim [Th(0)W
cs,+
λ=0 (0) ∩ Th(0)W

cu,−
λ=0 (0)] = 3.

(11)

Case a) is the generic case, which implies that center stable and center unstable
manifold intersect transversely along h. In this case the bifurcation scenario is
easy to analyse. Indeed, on account of hypothesis (9), we expect the existence
of a symmetric homoclinic solution hλ to the steady state for λ lying on a
suitable continuous curve in the two-dimensional parameter plane through
the origin. Taking into account (10) there exists a one-parameter family of
symmetric homoclinic solutions h̃sym,κ for all λ ≈ 0, which are parametrized
over κ ∼ 0 and which approach a periodic orbit in forward and backward time.
In particular, for each fixed κ the solution h̃sym,κ selects a unique periodic
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orbit, that is approached in forward and backward time. The solutions h̃sym,κ

account for the intersection of the center stable manifold and the space Fix(R).
Finally, we have to consider additional intersections of W cs,+(0) and W cu,−(0),
which may induce unsymmetric global solutions. But these do not exist, if the
intersection of their tangent spaces satisfies a).
However, if the ordinary differential equation also possesses a Hamiltonian
structure, case a) cannot occur (see also section 7). More interesting is there-
fore case b), which is compatible with a Hamiltonian structure. We then addi-
tionally conclude the existence of two one-parameter families of unsymmetric
homoclinic solutions to the center manifolds, where one family is induced by
the other via reversibility.

The main result
We can now state our main result, which addresses this bifurcation scenario in
the more general reversible equation (2), see also theorem 6 and 7 for a state-
ment of the results that lists all relevant hypotheses explicitly. Let us point
out again that we mainly want to understand how a reversible structure of the
forward-backward alias traveling wave equation (2) facilitates the bifurcation
analysis analogous to the ODE-scenario. The case that the lattice equation
(1) possesses an additional Hamiltonian structure will be addressed in section
7.
For the statement of the main result we introduce the following notation.
Differentiating (2) at 0 and λ = 0 we can write for any φ ∈ C0([−M,M ],RN )

DF(0, 0)[φ] =:

M∑
j=−M

A+
j φ(j),

where A+
j ∈ L(RN ,RN) are matrices for any j ∈ {−M, . . . ,M}. The next

theorem is the main result of this work and we refer to [14, 15] for a statement
in terms of ordinary differential equations.

Theorem 1
Let us consider equation (2), where F ∈ C2(R(2M+1)N ×R,RN) and F (0, λ) =
0 for all λ. Moreover, assume that (2) is reversible, that is for any φ ∈
C0([−M,M ],RN ) it is true that

F ((Rφ(−M), . . . , Rφ(M)), λ) = −RF ((φ(−M), . . . , φ(M)), λ), (12)

where R ∈ L(RN ) satisfies R2 = id and (15) below. Let us assume that
there is a homoclinic solution h of (2) for λ = 0, which satisfies Rh(0) = h(0)
and approaches zero in forward and backward time with exponential rate.
Moreover, we suppose that the equation

det

[
λ · id−

M∑
j=−M

A+
j (eλj · id)

]
= 0

possesses exactly two simple zeros λ = ±iω, ω �= 0, on the imaginary axis and
the real part of all other zeros with positive real part is larger than zero.
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Then, under generic assumptions (see the hypotheses in the statement of theo-
rem 7), there exists a continuous curve Hom in the two-dimensional parameter
space, such that exactly for parameter values λ on Hom the equation (2) pos-
sesses a homoclinic solution hλ, which approaches the steady state in forward
and backward time. Moreover, exactly one of the following cases occurs:

i) There exists a one-parameter family h̃sym,κ for each fixed λ ∼ 0, such
that every h̃sym,κ is a solution of (2) defined on R. Moreover, h̃sym,κ(0) ∈
Fix(R) and the solution approaches a nontrivial periodic orbit in forward
and backward time. These are the only homoclinic orbits to the center
manifold for fixed λ �= 0 and λ ≈ 0.

ii) Additionally to the family h̃sym,κ (as described in i)) there exist two
one-parameter families of non-symmetric homoclinic orbits to the center
manifold. These approach the steady state or a periodic orbit in forward
and backward time.

Remark
Let us note that this result covers all scenarios which may arise in the case
of a reversible equation if the generic assumptions (8) and (10) are satisfied,
since assumption (9) only states that we consider a generic parameter. The
hypotheses listed above do not make sense for the more general equation (2)
in the moment, but will later be formulated in a way that they make sense in
the general setting, see theorem 7. So we can give a complete picture of the
resulting bifurcation scenario of (2), as long as only homoclinic solutions to the
center manifold are addressed; see [14, 10] for the existence of two-homoclinic
solutions and more complicated behavior in the framework of ordinary differ-
ential equations.

Remark
As we will argue in section 7, we expect only case ii) in the statement of the
above theorem to occur if the original lattice differential equation (1) has a
Hamiltonian structure. Indeed, we will show that in the case of the Klein-
Gordon lattice, for example, this additional structure induces a first integral
for the traveling wave equation (2). This fact then typically prevents a trans-
verse intersection of center stable and center unstable manifold in the traveling
wave equation (2) and excludes possibility i) in theorem 1; see section 7 for
details.

Let us comment on some difficulties which have to be addressed in the sequel.
In the course of proving theorem 1 we will derive a bifurcation function, whose
zeros correspond to homoclinic solutions to the center manifold. This function
measures the distance between initial values in the center stable and center un-
stable manifold in an appropriate complement of TH(0)W

cs,+(0)+TH(0)W
cu,−(0)

within a Poincaré section. This method is known as Lin’s method, see [28, 17].
We are therefore introducing this concept to forward-backward-delay equa-
tions (even in the case of nonhyperbolic steady states) as long as we are only
interested in one-homoclinics. In particular, the notion of codimension of ho-
moclinic orbits in equation (2) becomes rigorous.
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By adapting Lin’s method to our situation we in particular have to deal with
the construction of appropriate (R-invariant) complements of TH(0)W

s,+(0) +
TH(0)W

u,−(0). Once we can construct suitable complements and determine
its dimensions the situation becomes analogous to the ODE-case. Of course
we are now working in an infinite dimensional setting, where the construction
of closed R-invariant complements and the counting of dimensions are non-
trivial tasks. This is even getting more complicated as the center stable and
center unstable manifold are constructed as submanifolds of a Banach space
which is not an Hilbert space, see [8, 9] and section 4. However, the approach
taken in this work is strong enough to reproduce the global picture of the
bifurcation scenario analogous to the ODE-case. In particular, we could now
aim at analysing quite general bifurcation scenarios of traveling waves in time-
reversible lattices (1) in the future.
We proceed as follows. After introducing some notation in the next section
we discuss the set up in section 3. There we also will make precise the no-
tion of reversibility (see section 3.1) and study properties of the linear system,
which arises after linearizing (2) along the homoclinic solution. The existence
of invariant manifolds as well as the local dynamics near the steady state is
addressed in section 4. In 5 we finally prove our main theorem by adapting
Lin’s method to the case of forward-backward-delay equations. The work is
concluded by a discussion section (see section 7) where we want to discuss the
relevance of our results for the Klein-Gordon and Fermi-Pasta-Ulam lattice
differential equation.

2 Notation and Definitions

Throughout this paper we will denote by BCη(J,E) for some interval J ⊂ R

and some Banach space E and some η ∈ R the space of all continuous functions
w : J → E, which are bounded with respect to the norm

‖w‖η := sup
t∈J

eη|t||w(t)|E.

Moreover, the following spaces will be used throughout this paper:

Y := R
N × L2([−M,M ],RN ),

Z̃ := R
N × L∞([−M,M ],RN )

X := {(ξ, ϕ) ∈ Y | ϕ ∈ H1([−M,M ],RN ) and ϕ(0) = ξ}
X̃ := {(ξ, φ) ∈ R

N × C0([−M,M ],RN ) : φ(0) = ξ}

As a convention, if subspaces are furnished with an additional ˜, they are
regarded as subspaces of X̃ with the induced norm. If they are furnished with
an additional ˆ, they are viewed as subspaces of X.

In the following we will use the notation xt ∈ L2([−M,M ],RN ) for an inte-
grable function x : R → RN . This function is defined by xt(θ) := x(t + θ) for
any t ∈ R.
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3 The setting

Instead of studying the traveling wave equation (2) directly, we prefer to work
with the abstract equation

U̇(t) = F((ξ(t), φ(t, ·)), λ)

=

(
F (φ(t,−M), . . . , φ(t, 0), . . . , φ(t,M)), λ)

∂θφ(t, θ)

)
,

(13)

where F ∈ BC2(RN(2M+1) × R; RN) and F (0, λ) = 0 for all λ. This approach
has first been used in [11, 12] although with a slightly different choice of state
spaces X, Y . Let us now define what a strong solution of (13) is.

Definition 1
We call a continuous function U(t) : [t1, t2) → Y a solution of (13) on (t1, t2),
where −∞ < t1 < t2 � ∞, if t → U(t) is continuous regarded as a map on
(t1, t2) with values in X, if t → U(t) is differentiable regarded as a map on
(t1, t2) with values in Y and (13) is satisfied on (t1, t2).
We call a differentiable function U(t) : (−∞, t2) → Y a solution of (13) on
(−∞, t2) and t2 ∈ R, if t→ U(t) is continuous regarded as a map on (−∞, t2)
with values in X and (13) is satisfied on (−∞, t2).

The next lemma clarifies the connection between solutions of (13) and our
original equation (2). The proof can be found in [6, 7, 8].

Lemma 1
Let

U(t) =

(
ξ(t)
ϕ(t)(·)

)

be a solution of (13) on (t1 − M, t2 + M). Then ϕ(t)(θ) = ξ(t + θ) for all
t ∈ (t1 − M,M + t2) and θ ∈ [−M,M ] with t + θ ∈ (t1 − M, t2 + M).
Furthermore ξ(t) solves (2) on the interval (t1, t2).

3.1 Reversibility

We introduce the notion of reversibility of our abstract equation (13) in this
section. More precisely, we want to assume that

RF(U, λ) = −F(RU, λ) (14)

for any U = (ξ, φ) ∈ X, where the linear map R : Y → Y is defined by

R(ξ, φ(θ)) := (Rξ,R[Sφ(·)]) = (Rξ,Rφ(−θ))

and (Sφ)(θ) := φ(−θ) for any φ ∈ C0([−M,M ],RN ). Moreover, we only
consider R ∈ L(RN) that can be represented in the form

R = Pi1 ◦ Pi2 ◦ . . . ◦ Pin , (15)
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where the reflection Pi, 1 � i � N , is defined by

Pi(x
1, . . . , xN ) �→ (x1, . . . , xi−1,−xi, xi+1, . . . , xN).

The next to examples provide two well-known lattice differential equations,
where the corresponding abstract equation satisfies (14).

Examples
a) Let us consider the Klein-Gordon equation (3). A travelling wave ansatz
leads to the abstract equation

 ∂tx(t)
∂tξ(t)
∂tφ(t, ·)


 =


 ξ(t)

φ1(t, 1) + φ1(t,−1) − 2φ1(t, 0) + V ′(φ1(t, 0))
∂θφ(t, ·)


 ,

where φ1 denotes the first component of φ = (φ1, φ2) : [−1, 1] → R2 and
(x, ξ, φ) ∈ X = {(x, ξ, (φ1, φ2)) ∈ R2 × H1([−1, 1],R2) : φ(0) = (x, ξ)}. Then
R is given by

R(x, ξ, φ(θ)) �→ (x,−ξ, φ1(−θ),−φ2(−θ)), (16)

which has the upper form (14).
b) Another important example is given by the Fermi-Pasta-Ulam model, which
has the form

ün = un+1 − 2un + un−1 + V ′(un+1 − un) + V ′(un−1 − un), n ∈ Z.

Making a travelling wave ansatz and casting the equation in abstract form
then leads to the equation

 ∂tx(t)
∂tξ(t)
∂tφ(t, ·)


 =


 ξ(t)

−1
c

(φ1(t, 1) + φ1(t,−1) − 2φ1(t, 0))
∂θφ(t, ·)




+


 0

−1
c

(V ′(φ1(t, 1) − φ1(t, 0)) + V ′(φ1(t,−1) − φ1(t, 0)))
0



(17)

with (x, ξ, φ) ∈ X, where X is defined as in example a) and where c �= 0 de-
notes the travelling wave speed. Again, this equation is reversible with respect
to R as given in (16).

Coming back to equation (2), we want to assume the existence of a symmetric
homoclinic orbit.

Hypothesis 1
Equation (2) possesses a homoclinic solution h for λ = 0, which satisfies h(t) =
Rh(−t) for all t � 0 and

|h(t)| � Me−αt

for some M,α > 0 and t � 0.
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Note that h induces a homoclinic solution H for the abstract equation via
H(t) = (h(t), ht), which satisfies RH(0) = H(0); that is, H is symmetric.
More generally, we call a solution U of (13) symmetric if its orbit intersects
Fix(R) in a point different from a steady state.

3.2 Solution operators for the non-autonomous linear

equation

In this chapter we want to review some known facts about linear functional
differential equations of mixed type which we will use in the sequel, see also
[20, 27]. We investigate the linear equation

ẏ(t) = D1F (h(t−M), . . . , h(t), . . . , h(t+M), 0)yt =: L(t)yt, (18)

where we recall that yt(θ) := y(t+ θ) for any θ ∈ [−M,M ].

Definition 2
We call a function x ∈ L2([−M, τ),CN ) a solution of (18) for someM < τ � ∞
and some initial condition φ ∈ L2([−M,M ],CN ), if x ∈ H1

loc([0, τ),C), x0 = φ
and (18) is satisfied for almost every t ∈ [0, τ).

Note that in any case L(t)φ for fixed t and φ ∈ C0([−M,M ],RN ) has the form

L(t)φ =

M∑
j=−M

Aj(t)φ(j) (19)

for some Aj(·) ∈ BC0(R, L(RN ,RN)). Let us now state a hypothesis which
implies that two solutions ỹ, y ∈ H1(R,RN) of (18) are identical provided they
coincide on some interval of length 2M , see [6, 27].

Hypothesis 2
det(A−M(·)) and det(AM(·)) do not vanish identically on any nontrivial interval
of R.

As in the nonlinear case we can relate equation (18) to the abstract equation

∂tV (t) = A(t)V (t), (20)

where the linear operator A(t) : X ⊂ Y → Y is defined by

A(t)

(
ξ
ϕ

)
=

(
L(t)ϕ
∂θϕ

)

for (ξ, ϕ) ∈ X. Let us set A+ := limt→∞ A(t) (i.e. where L(t) in the definition
of A(t) is replaced by L+ := limt→∞ L(t)). Then it is known that the spectrum
of the densely defined operator A+ : X ⊂ Y → Y only consists of eigenvalues
of finite multiplicity. Moreover, an element λ∗ ∈ C is in spec(A+), if the
characteristic function vanishes at λ∗, that is, if

det(
(λ)) := det

[
λ · id−

M∑
j=−M

A+
j (e+jλ · id)

]
= 0 (21)
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for λ = λ∗, where A+
j := limt→∞Aj(t). Furthermore, the algebraic multiplic-

ity of λ∗ as an eigenvalue of A+ (which is the dimension of its generalized
eigenspace) coincides with the order of λ∗ as a zero of det
(·); we refer to
[6, 7, 27] for proofs of these statements.
The following result implies that on suitable subspaces the abstract equation
(20) can be solved in forward- and backward time, respectively. The proof can
again be found in [6, 7, 27].

Theorem 2 (Center-dichotomy on R+)
(20) possesses a center-dichotomy on R+. That is, for any δ > 0 there exist
constants K,α > 0 and a family of strongly continuous projections P (t) : Y →
Y , t � 0, with the following properties. For U ∈ Y and t0 � 0

• there exists a continuous function Φcs
+ (·, ·)U : {(t, t0) : t � t0; t, t0 � 0} →

Y , such that Φcs
+ (t0, t0)U = P (t0)U . Moreover, Φcs(t, t0)U ∈ Rg(P (t))

and |Φcs
+ (t, t0)U |Y � Keδ|t−t0 ||U |Y for all t � t0 � 0.

• There exists a continuous function Φu
+(·, ·)U : {(t, t0) : t � t0; t, t0 �

0} → Y , such that Φu
+(t0, t0)U = (id − P (t0))U . Moreover, Φu

+(t, t0) ∈
ker(P (t)) and |Φu

+(t, t0)U |Y � Ke−α|t−t0||U |Y for all t0 � t � 0.

In the special case U ∈ X the functions t �→ Φcs(t, t0)U and t �→ Φu
+(t, t0)U

define classical solutions of (20) on their domain of definition. In any case, if
U ∈ Rg(P (t0)) with U = (ζ, φ(·)) the map Φcs

+ (t, t0)U is of the form (x(t), xt)
for t > t0, Φcs

+ (t0, t0)U = U and x(·) defines a solution of (18) with x0 = φ. An
analogous statement holds for Φu(t, t0)U .

Definition
We often call the existence of such a projection P (t) and such solution oper-
ators a center dichotomy on R+. The difference to an exponential dichotomy
is the fact that the norm of the solution operator Φcs

+ (t, t0) does not decay
exponentially in the difference |t− t0|.

Let us stress the fact that for any point U in the center stable subspace
Rg(P (t0)) there exists a function Φcs(t, t0)U = (x(t), xt), such that x(t) is
a solution of our original equation (18) for t > t0. Thus, we need not exclu-
sively focus on initial values U ∈ X (although these induce classical solutions
of the abstract equation (20)), since we are actually interested in solving the
equation ẋ(t) = L(t)xt.
Alternatively, there exist continuous solution operators Φs

+(t, t0), Φcu
+ (t, t0) for

t � t0 � 0 and t0 � t � 0, respectively, which define strong solutions for initial
values U ∈ X and satisfy the estimates

‖Φs
+(t, t0)‖L(Y,Y ) � Ke−α|t−t0|, ‖Φcu

+ (t, t0)‖L(Y,Y ) � Keδ|t−t0|.

Finally, we can also prove the existence of a center dichotomy on R−.
Let us now consider the case that the equation ẋ(t) = L(t)xt possesses a center
dichotomy on R+ with associated solution operators Φcs

+ ,Φ
u
+ and Φs

+,Φ
cu
+ . The

next lemma states that the projections Φcs(t0, t0) approach the projection πcs

associated to the center stable eigenspace of the autonomous linear equation
ẋ(t) = D1F (0, 0)xt =: L+xt.

11



Lemma 2
Consider the equation ẋ(t) = L+xt + L̃(t)xt, where L̃(t) := L(t) − L+, L̃(·) ∈
BC0(R, L(C0,RN)) and

|L̃(t)|L(C0,RN ) � Me−γ|t|

for t → ∞. In case that ẋ(t) = L+xt is hyperbolic (not hyperbolic) the
projection Φs

+(t, t) (Φcs(t, t)) approaches πs (πcs) for t → ∞ with respect to

the L(Y, Y )-norm, the L(X̃, X̃)-norm or the L(X,X)-norm.

Proof
We can assume without loss of generality that ẋ(t) = L(t)xt is hyperbolic as
t→ ±∞. Otherwise we consider the translated equation

ẋ(t) = −σx(t) + L(t)[eσ•xt(•)]

for small σ > 0, which is asymptotically hyperbolic for t→ ∞. Note that any
solution x(t) on R+ of the original equation ẋ(t) = L(t)xt induces a solution
y(t) of the translated equation via y(t) = e−σtx(t). Hence, let us consider the
abstract equation(

∂tξ(t)
∂tφ(t, ·)

)
=

(
L+[φ(t, ·)]
∂θφ(t, ·)

)
+

(
L̃(t)[φ(t, ·)]

0

)

=: A+

(
ξ(t)
φ(t, ·)

)
+B(t)

(
ξ(t)
φ(t, ·)

) (22)

We denote the solution operators associated to the exponential dichotomy
of the equation U̇ = A+U by eAs

+t for t � 0 and eAu
+t for t � 0, where

|eAs
+tU |Y � Me−β|t||U |Y for t � 0 and |eAu

+tU |Y � Me−ι|t||U |Y for t � 0 and
some 0 < β < ι.
Via integration (see [29] for example) we can see that the operator Φs

+(t, s)
associated to an exponential dichotomy of (22) on R+ solves the equation

eAs
+(t−s)W∗ = Φs

+(t, s)W∗ + eAs
+tΦu

+(0, s)W∗ (23)

+

∫ ∞

t

eAu
+(t−τ)B(τ)Φs

+(τ, s)W∗dτ −
∫ t

s

eAs
+(t−τ)B(τ)Φs

+(τ, s)W∗dτ

+

∫ s

0

eAs
+(t−τ)B(τ)Φu

+(τ, s)W∗dτ

for t � s � 0 and W∗ ∈ X. Here, the equation can be considered in Y and
all integrals can be regarded as Riemann integrals. Note that the integrands
are in fact well-defined: Since for W∗ ∈ X it turns out that Φs

+(τ, s)W∗ =
(x(τ), x(τ + ·)) for some continuous function x(·), the value B(τ)Φs

+(τ, s)W∗ is
well-defined. Setting t = s = t0 gives

πsW∗ = Φs
+(t0, t0)W∗ +

∫ ∞

t0

eAu
+(t0−τ)B(τ)Φs

+(τ, t0)W∗dτ

+

∫ t0

0

eAs
+(t0−τ)B(τ)Φu

+(τ, t0)W∗dτ + eAs
+t0Φu

+(0, t0)W∗. (24)

12



Now all integrals can be estimated in the Y -norm by M(t0)|W∗|Y , where
M(t0) → 0 as t0 → ∞. In fact the bound M(t0) is independent in W∗ ∈ X.
Note that for the estimate of the second integral appearing on the right hand
side of (24) we actually make use of the the assumption that |B(τ)|L(Y,Y ) con-
verges to zero as τ → ∞ with exponential rate.
Let us now discuss the situation in the case of the space X next. Now, W∗ ∈ X
and we have to consider the integrals in (24) as weak∗ integrals (as explained
in the appendix). Still, the value of the sum of the two integrals appearing
in equation (24) is in X for each t0 > 0 large enough, see the appendices of
[7, 8, 9]. Moreover, one can still estimate the second integral in (24) with
respect to the X-norm and show that it converges to zero, see again the ap-
pendix of [8] for details. �

4 Invariant manifolds

Since we want to study bifurcating homoclinic solutions of the abstract equa-
tion (

∂tξ(t)
∂tφ(t, ·)

)
= F((ξ(t), φ(t, ·)), λ) (25)

nearH , the existence of parameter dependent invariant manifolds of the steady
state becomes important. In this section we review and state existence results
of center manifolds, center (un-)stable and strong (un-)stable manifolds of the
equilibrium, which have been proved in [8, 9]. Let us start with the center
manifold, which helps us to clarify the set of bounded solutions near zero.

4.1 Local dynamics near the steady state

Let us make the following assumption, which states that the steady state zero
possesses exactly two simple purely imaginary eigenvalues. We remind that
the characteristic equation det
(·) has been defined in (21).

Hypothesis 3
det
(·) possesses exactly two simple, purely imaginary zeros ±iω, ω �= 0.
Hence, all other zeros of the characteristic equation have real part bigger than
zero.

The last hypothesis implies that the center eigenspace Ec, defined as the gen-
eralized eigenspace corresponding to all purely imaginary eigenvalues of the
operator A+ : Y → Y is two-dimensional and consists of the linear span of
the corresponding two eigenvectors associated to ±iω. Note that Ec can be
defined as the range of the spectral projection Pc : Y → Y , where for Φ ∈ Y

PcΦ := − 1

2πi

∫
γ

(A+ − λ)−1Φdλ,

and γ denotes a positively oriented closed curve enclosing ±iω, that stays
sufficiently close to the imaginary axis; see [6, 7, 13]. Let us set Ẽh := Rg(id−

13



Pc)
∣∣
X̃

, equipped with the X̃-topology. The following theorem has been proved
in [6].

Theorem 3 (Center manifold)
(25) possesses a two-dimensional, local invariant manifold M = Mλ ⊂ X̃,

which is tangent to Ec at 0 ∈ M for λ = λ0. The vector field F ∣∣
M on M is

reversible with respect to R, that is

F(RU, λ) = −RF(U, λ)

for all U ∈ Mλ, as long as U is close enough to zero. Moreover, M depends two
times differentiable on µ. That is, M can locally be represented as a graph of
a function Ψλ : Ec∩U → Ẽh for λ = 0, such that Ψλ is two times differentiable
with respect to λ and where U denotes a suitable small neighborhood of zero.

Together with hypothesis 3 we have the following corollary.

Corollary 1
If hypothesis 3 is satisfied, the two-dimensional center manifold consists en-
tirely of periodic orbits for every λ ≈ 0. That is, every initial value on the
center (except zero) lies on a nontrivial periodic orbit.

Proof
The proof of this claim follows by the Lyapunov-Center theorem. Let us indi-
cate the proof. First of all note that the eigenspace corresponding to ±iω is
given by the linear span of e1 = (1, cos(ωθ)) and e2 = (0, sin(ωθ)). Moreover,
e1 ∈ Fix(R) and e2 ∈ Fix(−R). If we consider the reduced dynamic on the
center eigenspace, the linear flow is just given by a rotation. In particular,
every solution of the linear flow is periodic and hits the e1-axis transversely.
Hence, by reversibility, the flow of the nonlinear flow also consists of periodic
orbits, since near zero the nonlinear flow is just a small perturbation of the
linear flow. This picture remains true for small λ �= 0. �

4.2 Invariant manifolds near the homoclinic orbit

In this section we state a result, which assures the existence of a center stable
manifold of zero near any point on the homoclinic orbit. For the precise state-
ment of the theorem we need to introduce some notation.

Notation
Since the linear equation (20) possesses a center dichotomy on R+, there exist
solution operators Φcs

+ ,Φ
u
+, satisfying the properties of theorem 2. Let us set

Ecs
+ (t0) := Rg[Φcs

+ (t0, t0)] and Eu
+(t0) := Rg[Φu

+(t0, t0)] for any t0 � 0. Choosing
δ > 0 there also exists a center dichotomy on R− with solution operators
Φu

−,Φ
cs
− satisfying

‖Φu
−(t, s)‖L(Y,Y ) � Me−α|t−s|, ‖Φcs

− (s, t)‖L(Y,Y ) � Meδ|t−s| (26)

for t � s � 0, some α,M > 0, and M = M(δ). We define Eu
−(t0) :=

Rg[Φu
−(t0, t0)] and Ecs

− (t0) := Rg[Φcs
− (t0, t0)] for any t0 � 0.

14



Theorem 4 (The center stable manifold)
Equation (13) possesses a C2-manifold W cs,+(0) = W cs,+

λ (0) ⊂ X̃ near H(0)
with the following properties:

a) The tangent space of W cs,+
0 (0) at H(0) ∈ W cs,+

0 (0) is Ẽcs
+ (0) := X̃ ∩

Ecs
+ (0).

b) If W+ ∈ W cs,+
λ (0) and W+ ≈ H(0) with respect to the X̃-norm, then

there exists a continuous function W (t) : [0,∞) → X̃, such that W (t) ∈
W cs,+

λ (0) for some small time interval [0, t∗), W (0) = W+ and W (t) =
(ξ(t), ξt), where ξ(t) : [−M, t∗) → R

N is a solution of (2) on (0, t∗).
Moreover, if λ ∼ 0 is sufficiently small, then ξ(t) is defined on [−M,∞)
and approaches a periodic orbit or the steady state zero in forward time
t→ ∞.

c) If there is a solution W (t) of the abstract equation (13) for λ = 0, such
that |W (t) − H(t)|X̃ is sufficiently small for all t � 0, then W (0) ∈
W cs,+

0 (0).

d) W cs,+
λ (0) is two times differentiable with respect to λ: If we supply equa-

tion (13) with λ̇ = 0 then the extended system possesses a local invariant

C2-manifold W cs,+
ex (0) ⊂ X̃ × R2 and W cs

ex(0) ∩
(
X̃ × {λ}

)
satisfies the

properties a), b), c).

Sketch of the proof
Let us make some comments concerning the proof of this theorem and refer
to [8, 9] for a complete proof. The first step is to parametrize solutions U(t)
near H(t) via U(t) = V (t)+H(t). Making this ansatz one can show that V (t)
solves an equation of the form

V̇ (t) = A(t)V (t) + G(t, V (t), λ), (27)

where A(t) denotes, as before, the linearization of (13) along the homoclinic
orbit H , see (20). Moreover, G is given by G(t, V, λ) := F(H(t) + V, λ) −
A(t)V − F(H(t), 0). We therefore try to find the function V as a fixed point
of the integral equation

V (t) = Φcs
+ (t, 0)V s

0 +

∫ t

0

Φcs
+ (t, s)Gmod(s, V (s), λ)ds (28)

+

∫ t

∞
Φu

+(t, s)Gmod(s, V (s), λ)ds,

where V s
0 ∈ Ẽcs

+ := Ecs
+ ∩X̃ and Gmod denotes a modified nonlinearity, such that

the Lipschitz constant remains globally small. We want to look for fixed points
V in the space BC2δ := BC2δ([0,∞), X̃), where functions remain bounded
with respect to t in the X̃-norm when multiplied by e−2δ|t| (where δ has been
defined in (26)). But we have to give a meaning to the integral terms appearing
in (28), since the solution operators Φcs

+ ,Φ
u
+ do not map X̃ to X̃. Moreover,

the map t �→ Φcs
+ (t, s)U with values in Z̃ = RN × L∞([−M,M ],RN ) is not
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even integrable. However, the integrals are well defined as weak∗ integrals, see
the appendix or [8, 9]. One can now show that there exists a unique solution
V ∈ BCδ of the integral equation (28), see [8, 9].
Finally, let us make a remark concerning the smoothness of W cs,+(0) as a
submanifold of X̃. Here, we make use of the fact that solutions starting near
H(0) in W cs,+(0) approach an orbit on the center manifold for t→ ∞, as has
been proved in [9]. Hence, solutions starting near H(0) stay uniformly close
to H for all times. Under these assumptions smoothness of W cs,+(0) has been
proved in [9]. �

We also need the existence of an strong unstable manifold W u,−(0) near H(0).

Theorem 5 (The strong unstable manifold)
Equation (13) possesses a C2-manifold W u,−(0) = W u,−

λ (0) ⊂ X̃ near H(0),
with the following properties:

a) The tangent space of W u,−
0 (0) at H(0) ∈W u,−

0 (0) is Ẽu
−(0) := X̃∩Eu

−(0).

b) IfW− ∈W u,−
λ (0) andW+ ≈ H(0) with respect to the X̃-norm, then there

exists a continuous function W (t) : (−∞, 0] → X̃, such that W (t) ∈
W u,−

λ (0) for some small time interval (−t∗, 0], W (0) = W− and W (t) =
(ξ(t), ξt), where ξ(t) : (−∞,M ] → RN is a solution of (2) on (−∞, 0)
which converges to 0 with exponential rate κ > 0 as t→ −∞.

c) If there is a solution W (t) of the abstract equation (13), such that
W (t) → 0 ∈ X̃ with exponential rate κ for t→ −∞ and if W (0) is close
enough to H(0) with respect to the X̃-norm, then W (0) ∈W u,−

λ (0).

d) W u,−
λ (0) is two times continuously differentiable with respect to λ: We

can represent W u,−
λ (0) in the form W u,−

λ (0) = H(0)+ graph(Ψ(·, λ)) and
Ψ(·, λ) : (Ẽu

−(0) × R2) ∩ U → Ẽcs
− (0) is two times continuously differen-

tiable with respect to the parameter λ, if U denotes a small neighborhood
of zero.

Similarly, one can prove the existence of a strong stable manifold W s,+
λ (0) and

a center unstable manifold W cu,−
λ (0) near H(0).

5 Properties of reversible equations

Before we state the main hypotheses we will collect some basic properties
of reversible forward-backward delay equations. We start with the following
lemma.

Lemma 3
If U(t) = (ξ(t), ξt) ∈ X is a solution of (13) on [0,∞), such that ξ : [−M,∞) →
RN solves (2), then V (t) = (η(t), ηt) is a solution of (13) on (−∞, 0), where
η : (−∞,M ] → RN is defined by

η(t) := Rξ(−t).
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Proof
Let us first remark that instead of viewing F as a function from R(2M+1)N to
RN we can also regard F as map from C0 := C0([−M,M ],RN ) to RN . Now
note that η(t) is well defined on t � 0, since ξ(t) is defined on t � 0. By
definition of R and reversibility we have f(R[Sφ]) = −Rf(φ) for any φ ∈ C0.
Thus,

∂tη(t) = −R∂tξ(−t) = −RF (ξ−t(·))
= −RF (R[Sηt]) = f(ηt).

This shows that η(t) is a solution on R−. Moreover, we have ∂tηt = ∂θηt on
(−∞, 0) which proves the claim. �

The next lemma implies that the tangent spaces of stable and unstable mani-
fold are related to each other via the involution R.

Lemma 4
R [

TH(0)W
s,+
0 (0)

]
= TH(0)W

u,−
0 (0).

Proof
Let us show that R[W s,+

0 (0)] = W u,−
0 (0) and consider a point U = (ξ, ψ) ∈

W s,+
0 (0); then there exists a solution U(t) = V (t) + H(t) = (ξ(t), ξt), where

V (t) solves the integral equation

V (t) = Φs
+(t, 0)V s

0 +

∫ t

0

Φs
+(t, s)Gmod(s, V (s), λ)ds

+

∫ t

∞
Φcu

+ (t, s)Gmod(s, V (s), λ)ds (29)

for some appropriate V s
0 ∈ Ẽs

+(0). If V (t) takes values in X for all t � 0 then
the proof is trivial. Indeed, considering U(t) = H(t) + V (t) and using lemma
3 we get a (classical) solution W (t) = H(t) + Ṽ (t) on R−, where Ṽ (t) solves
the integral equation corresponding to W u,−(0). Since the claim is therefore
true on a dense set and both manifolds are C2, the proof is completed. �

6 The main scenario

In this section we finally want to analyse the bifurcation scenario, which we
explained in the introduction by means of an ordinary differential equation.
We start by making some reasonable assumptions which we state in the next
two sections.

6.1 Relative Positions

6.1.1 The relative position of center stable and strong unstable
manifold

First of all we want to assume that center stable and strong unstable manifold
intersect only along the homoclinic orbit H , which is the generic case.
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Hypothesis 4
TH(0)W

cs,+
0 (0) ∩ TH(0)W

u,−
0 (0) = span 〈F(H(0), 0)〉.

On account of theorem 2 the linearization of (13) along H(t) for λ = 0 is of
the form (20) and possesses a center-dichotomy on R+ with solution operators
Φcs

+ (t, s), Φu
+(s, t) for t � s � 0. We set

Ecs
+ (t0) := Rg(Φcs

+ (t0, t0)
∣∣
Y
), Ẽcs

+ (t0) := Rg(Φcs
+ (t0, t0)

∣∣
X̃

).

Moreover, the linearization of (13) along H(t) for λ = 0 possesses a center-
dichotomy on R− with solution operators Φcs

− (t, s), Φu
−(s, t) for s � t � 0 and

we set Ecs
− (t0) := Rg(Φcs

− (t0, t0)
∣∣
Y
), Ẽcs

− (t0) := Rg(Φcs
− (t0, t0)

∣∣
X̃

). Similarly, the

spaces Ẽu
−(t0), E

u
−(t0), E

s
+(t0), Ẽ

s
+(t0) are defined.

Remark
Let us point out that in the case of a center-dichotomy on R+ only the space
Ecs

+ (0) is uniquely defined. We are therefore free to choose a closed complement
E of Ecs

+ (0) in Y , which then plays the role of the space Eu
+(0) = Rg(Φu

+(0, 0));
we refer to [29] for a proof of this fact. In particular, on account of hypothesis
4 we can make the choice

E := Eu
−(0) + span 〈Ψ∗〉 ,

where Eu
−(0) ⊂ Eu

−(0) denotes a closed complement of F(H(0), 0) and Ψ∗
is a nonzero vector which spans a complement of the sum Eu

−(0) + Ecs
+ (0).

With this choice E is closed, has trivial intersection with Ecs
+ (0) and defines

a complement. Hence, there exists a center dichotomy on R+ with solution
operators Φcs

+ ,Φ
u
+ and Rg(Φu

+(0, 0)) = E, see [29]. Similar considerations apply
to a center dichotomy on R−.

6.1.2 The relative position of center stable manifold and center
unstable manifold

Let us now make some general observations concerning the intersection of
W cs,+(0) and W cu,−(0). By assumption, the codimension of

TH(0)W
cs,+(0) + TH(0)W

u,−(0)

in X̃ is one. Since the codimension of TH(0)W
u,−(0) = Ẽu

−(0) in TH(0)W
cu,−(0) =

Ẽcu
− (0) is two (see the proof of lemma 5 below), we conclude that

2 � dim(TH(0)W
cu,−(0) ∩ TH(0)W

cs,+(0)) � 3.

In fact, this intersection cannot be higher dimensional since otherwise the
intersection of the tangent spaces of W s,+(0) and W cu,−(0) would at least
contain a two-dimensional linear subspace.
Let us now focus on the more interesting case that center stable and center
unstable manifold intersect non transversely along H ; in particular we only
address case ii) of theorem 1 (or equivalently, case b) of theorem 7). So let us
assume
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Hypothesis 5
The manifolds W cs,+(0) and W cu,−(0) intersect non transversely along H , that
is

dim
[
TH(0)W

cs,+(0) ∩ TH(0)W
cu,−(0)

]
= 3.

We remind the reader that this case is of particular interest, since the travelling
wave equations (2) of the most important lattice differential equations (like the
Klein-Gordon lattice) prevent a two-dimensional intersection of TH(0)W

cu,−(0)
and TH(0)W

cs,+(0), see the discussion in section 7.1.

6.1.3 The relative position of center stable manifold and Fix(R)

Since RW cs,+(0) = W cu,−(0) we conclude that TH(0)W
cs,+(0) ∩ Fix(R) ⊂

TH(0)W
cs,+(0)∩TH(0)W

cu,−(0). Taking into account that F(H(0)) is contained
in TH(0)W

cs,+(0) ∩ TH(0)W
cu,−(0) ∩ Fix(−R) we get

dim(TH(0)W
cs,+(0) ∩ Fix(R)) + 1 � dim(TH(0)W

cs,+(0) ∩ TH(0)W
cu,−(0)) � 3.

We make the following assumption.

Hypothesis 6
TH(0)W

cs,+(0) ∩ Fix(R) = 1.

This is the generic case in the framework of ordinary differential equations.
Indeed, if the space is (2N +2)-dimensional we conclude dim((Fix)R) = N+1
and dim(TH(0)W

cs,+(0)) = N +2, which generically leads to a one-dimensional
intersection of these two spaces.

6.2 Counting codimensions

Looking for homoclinic solutions to the steady state, we have to analyse how
stable and unstable manifold split when varying the parameter λ. It is therefore
important to determine the co-dimension of the sum of the corresponding
tangent spaces of stable and unstable manifold in X̃, since we want to measure
the distance of points in these manifolds within this complement.
It is the aim of this chapter to determine this codimension, which we expect
to be three by comparing the situation to an ordinary differential equation.
However, we work in the Banach space X̃ where we cannot count dimensions
as in the ODE-case. Let us now show that there exists a three-dimensional
subspace K̃ of X̃ which satisfies

K̃ ⊕
[
Ẽs

+(0) + Ẽu
−(0)

]
= X̃. (30)

Note that the dimension of K̃ in a finite dimensional setting (in the case of an
ODE) is indeed three: We assumed that the linearization of F in 0 possesses
exactly two eigenvalues on the imaginary axis; hence, stable and unstable
eigenspaces possess a two-dimensional complement. Now note that along the
homoclinic orbit H(t) stable and unstable manifold intersect which increases
the dimension of the complement by one, hence dim(K̃) = 3.
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Lemma 5
The space

Ξ̃ := Rg(Φs
+(0, 0)

∣∣
X̃

) + Rg(Φu
−(0, 0)

∣∣
X̃

) = Ẽs
+(0) + Ẽu

−(0)

has codimension 3 in the space X̃.

Proof
In order to prove the claim we will construct a particular complement K̃ of
Ξ̃ in X̃ and determine its codimension. Let us remind that for every U ∈
Ecs

+ (0) ⊂ Y there exists a continuous function V (t) = Φcs
+ (t, 0)U = (η(t), ηt) :

[0,∞) → Y , such that

‖V (t)‖Y � Meδ|t|‖U‖Y , t � 0, (31)

where δ > 0 can be chosen small enough and η(t) solves the equation η̇(t) =
D1f(ht, 0)ηt on R+. Moreover, the space Ecs

+ (0) is maximal with this property;
that is, every solution η(t) on R+ which satisfies (31) also satisfies (η(0), η0) ∈
Ecs

+ (0), see [7, 27]. Instead of constructing a center-dichotomy on R+ with
solution operators Φcs

+ ,Φ
u
+ we can alternatively consider the solution operators

Φs
+,Φ

cu
+ as explained after theorem 2, where ‖Φs

+(t, s)‖L(Y,Y ) � Me−α|t−s| for
some α > 0 and t � s � 0. Of course,

Es
+(0) = Rg(Φs

+(0, 0)
∣∣
Y
) ⊂ Ecs

+ (0) (32)

by maximality of Ecs
+ (0). We now choose a complement Y c ⊂ Y of Es

+(0) in
Ecs

+ (0). Let us show that Y c is 2-dimensional, which would then imply that
the codimension of Es

+(0) + Eu
−(0) in Y is three, since Ecs

+ (0) + Eu
−(0) has

a one-dimensional complement in Y by hypothesis 4. First of all note that
Φcs

+ (t0, t0) approaches πcs with respect to the L(Y, Y ) norm for t0 → ∞ as
we have shown in lemma 2. Similarly, Φs(t0, t0) approaches πs with respect
to the L(Y, Y )-norm for t0 → ∞. This shows that Es

+(t0) possesses a two-
dimensional complement in Ecs

+ (t0); at least if t0 >> 0 is large enough: Indeed,
note that Rg(πs) has codimension two in Rg(πcs) by hypothesis 3. We claim
that this implies that Y c is two-dimensional. In order to see this, we consider
the translated homoclinic orbit H t0(t) := H(t + t0). The linearization along
H t0 possesses a center dichotomy on R± with solution operators Φcs,t0

± ,Φu,t0
±

and Φs,t0
± ,Φcu,t0

± . If we now choose V ∈ Rg(Φcs,t0
+ (0, 0)) ∩X there is a classical

solution V (t) = (ξ(t), φ(t, ·)) of the equation

V̇ (t) = At0(t)V (t) :=

(
D1f(ht+t0 , 0)φ(t, ·)

∂θφ(t, ·)
)
,

for t � 0 and V (0) = V . By defining W (t) = V (t− t0) for t � t0, we observe
that V = W (t0) ∈ Ecs

+ (t0), which shows that Rg(Φcs,t0
+ (0, 0)) ⊂ Ecs

+ (t0). Simi-
lar, one can now show that the other direction holds, that is Rg(Φcs,t0

+ (0, 0)) ⊃
Ecs

+ (t0) and therefore we conclude that the two spaces coincide. We infer
from this that the codimension of Rg(Φs,t0

+ (0, 0)) in Rg(Φcs,t0
+ (0, 0)) with re-

spect to Y is two, if t0 > 0 is sufficiently large. Moreover, the complement

20



of Rg(Φcs,t0
+ (0, 0))+Rg(Φu,t0

− (0, 0)) is one-dimensional by hypothesis 4. Hence,
the codimension of Rg(Φs,t0

+ (0, 0))+Rg(Φu,t0
− (0, 0)) in Y is three. Now consider

the operator

ιt0 : Y × Y → Y

ιt0 : (U, V ) �→ Φs,t0
+ (0, 0)U − Φu,t0

− (0, 0)V.

Note that Rg(ιt0) = Rg(Φs,t0
+ (0, 0)) + Rg(Φu,t0

− (0, 0)). A short computation of
the adjoint operator ι∗t0 reveals that any element in the kernel of ι∗t0 (and hence
in a complement of Rg(ιt0)) defines a solution of the adjoint equation

V̇ (t) = −(At0(t))
∗V (t) (33)

where U(t) = (ξ(t), φ(t, ·)) and the adjoint operator has to be understood with
respect to the Y -scalar product. This shows that the adjoint equation (33) pos-
sesses three linear independent solutions on R, which may grow asymptotically
with algebraic rate (since all purely imaginary eigenvalues of the linearization
at zero are simple, the solutions are actually bounded on R as has been shown
in [6]. However, we won’t make use of this fact). Therefore, equation (33) also
possesses three linear independent solutions on R for t0 = 0 by translation.
Now any solution W (t) of (33) for t0 = 0 admits the representation

W (t) =

{
(Φcu

+ (0, t))∗U+ : t � 0
(Φcs

− (0, t))∗U+ : t � 0

for some suitable U+ in Rg(Φcs
− (0, 0)∗)∩Rg(Φcu

+ (0, 0)∗), where the latter space
defines a complement to Es

+(0) + Eu
−(0) in Y . This observation together with

the uniqueness hypothesis 2 shows that Es
+(0) +Eu

−(0) has codimension three
in Y . We can therefore choose a three-dimensional orthogonal complement
of Es

+(0) + Eu
−(0) in Y , which is spanned by the vectors e1, e2, e3, say. Since

X is dense in Y , we can find vectors ẽ1, ẽ2, ẽ3 ∈ X ⊂ X̃ sufficiently close to
e1, e2, e3, such that span〈ẽ1, ẽ2, ẽ3〉 is still a complement of Es

+(0) + Eu
−(0) in

Y . But since ẽ1, ẽ2, ẽ3 are now elements of X̃ this shows that Ẽs
+(0) + Ẽu

−(0)

has codimension three in X̃. �

Remark
We have factored out a 2-dimensional subspace of Ecs

+ (0) such that Φcs
+ (t, 0)

decays with exponential rate on the complement Es
+(0) with respect to t. This

shows that we in fact have obtained a trichotomy with solution operators
Φs

+,Φ
u
+,Φ

c
+. Here, Φs

+,Φ
u
+ decay exponentially in forward and backward time,

respectively, and Φc
+ ”captures” the center part, that is, Φc

+ is defined on a
two-dimensional space and may grow with algebraic rate.

Let us now collect more informations regarding a suitable complement K̃ of Ξ̃.
In particular, we want to assure that we can choose an R-invariant subspace
K̃. The next lemma is a step toward this direction.
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Lemma 6
There exists a two-dimensional subspace Ỹ c ⊂ (TH(0)W

cs,+
0 (0)∩TH(0)W

cu,−
0 (0)),

which has the property Ỹ c ∩ span 〈F(H(0), 0)〉 = {0} and

dim(Ỹ c ∩ Fix(R)) = 1, dim(Ỹ c ∩ Fix(−R)) = 1.

Proof
Observe that the intersection of the tangent spaces is R-invariant: Any vector
V ∈ TH(0)W

cs,+
0 (0) is mapped to TH(0)W

cu,−
0 (0) and vice versa. On the other

hand, the intersection can only contain a one-dimensional subspace of Fix(R)
by hypothesis 6. Taking into account hypothesis 5 we can therefore find a
two-dimensional subspace Ỹ c with the desired properties. �

We now make the generic assumption that Fix(R) is transverse to TH(0)W
cs,+
0 (0)+

TH(0)W
cu,−
0 (0):

Hypothesis 7
There exists a vector b0 ∈ Fix(R), such that

span 〈b0〉 + TH(0)W
cs,+
0 (0) + TH(0)W

cu,−
0 (0) = X̃.

Let C denote a one-dimensional, R-invariant complement of Ẽcs
+ (0) + Ẽu

−(0),
such that C ⊂ Fix(R). Note that such a complement exists on account of
hypothesis 7. We can therefore define a complement K̃ of Ξ̃ in the form
K̃ = Ỹ c ⊕ C; K̃ is then R-invariant and

dim(K̃ ∩ Fix(R)) = 2, dim(K̃ ∩ Fix(−R)) = 1.

In particular, there exist basis vectors b0, b1 in Fix(R) and b2 in Fix(−R) which
span the complement K̃ of Ξ̃. This is a generic assumption, since we expect
that neither Fix(R) nor Fix(−R) is completely contained in Ξ̃.
But why can’t we simply choose all vectors b0, b1, b2 in Fix(R) then with
the same reasoning? This is not possible if we restrict our attention to the
ODE case, however. Indeed, let us consider the case of an ODE in R2N+2;
then dimFix(R) = dim(Fix)(−R) = N + 1 and moreover dimTH(0)W

s,+(0) =

dimTH(0)W
u,−(0) = N . Taking into account that Ξ̃ is R-invariant a straight-

forward computation leads to the fact that only a N -dimensional subspace of
Fix(−R) and a (N − 1)-dimensional subspace of Fix(R) can be contained in
Ξ̃. Hence, at least one basis vector bi has to be chosen in Fix(−R), if we want
to obtain an R-invariant complement.

6.3 One-homoclinic orbits to the steady state

In this section we want to obtain the existence of (symmetric) homoclinic
solutions to the steady state (which are contained in the intersection of strong
stable and strong unstable manifold). Later on, we are also interested in the
existence of homoclinic orbits to the center manifold which approach a periodic
orbit in forward and backward time. These solutions lie in the intersection of
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center stable and center unstable manifold. However, in order to be able to
distinguish these solutions from homoclinic orbits to the steady state we will
start by studying the intersection of the strong stable manifold W s,+(0) and
the strong unstable manifold W u,−(0) of zero. We begin by defining a Poincaré
section at H(0) which will be helpful in the subsequent analysis. The following
lemma will be needed for that purpose.

Lemma 7
There exist complements Ẽs

+(0) ⊂ Ẽs
+(0) and Ẽu

−(0) ⊂ Ẽu
−(0) of span〈F(H(0))〉

which are closed with respect to the X̃-norm. Furthermore, the space Ẽs
+(0)+

Ẽu
+(0) is closed in X̃.

Proof
Let us first prove the claim concerning the existence of Ẽs

+(0). We start by
defining a complement C of span〈F(H(0))〉 in X and set C := Rg(Φs

+(0, 0)
∣∣
Ê
),

where Ê denotes a closed subspace of the Hilbert space X of codimension one,
such that

Rg(Φs
+(0, 0)

∣∣
Ê
) ⊕ span 〈F(H(0))〉 = Es

+(0).

The closure Es
+(0) of the space Rg(Φs

+(0, 0)
∣∣
Ê
) ⊂ Y in the Hilbert space Y pro-

vides a closed complement of span〈F(H(0))〉 in Es
+(0). Indeed, the intersec-

tion of the closure of this space with span〈F(H(0))〉 remains trivial; otherwise
Es

+(0) would coincide with the whole space Es
+(0). This is impossible, however,

since any vector in the orthogonal complement of Rg(Φs
+(0, 0)

∣∣
Ê
) with respect

to the Y -norm cannot be contained in the closure. This argument shows that

C ⊂ Es
+(0) (34)

and the right hand side of (34) defines a complement of span〈F(H(0))〉 in
Es

+(0) (in particular, with trivial intersection).

Let us now consider the closure of C in X̃ and denote this closure by Ẽs
+(0),

that is Ẽs
+(0) := C̄ where the closure is taken with respect to the X̃-norm. This

defines a closed complement of span〈F(H(0))〉 in Ẽs
+(0): Note first that Ẽs

+(0)
has only trivial intersection with span〈F(H(0))〉 on account of (34) (indeed,
the closure of C with respect to the X̃-norm is still contained in the right hand
side of (34)). By construction of Ẽs

+(0) the space span〈F(H(0))〉 + Ẽs
+(0) is

dense in Ẽs
+(0). Analogously to the proof of lemma 6.2 in [8] one can now

show that Ẽs
+(0) + span 〈F(H(0))〉 is closed in X̃, which proves that the sum

coincides with Ẽs
+(0). The space Ẽu

−(0) can now be defined via

Ẽu
−(0) := R[Ẽs

+(0)].

Then Ẽu
−(0) + Ẽs

+(0) is R-invariant and Ẽu
−(0) ⊂ Ẽu

−(0) is a closed complement

of span 〈F(H(0), 0)〉. The proof that Ẽu
−(0)+ Ẽs

+(0) is closed follows once more
from the proof of lemma 6.2 in [8]. �

Remark
The last proof uses the fact that we have shown the existence of the solution
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operator Φs
+ in the Hilbert space Y : We defined the desired complements as

closures of appropriate X-subspaces in the X̃-norm. The relation X ⊂ X̃ ⊂ Y
allowed us to control these closures, making use of the fact that X, Y are
Hilbert spaces. This procedure reminds at the sun-star theory for pure delay
differential equations [18], where one always uses advantages of the ”bigger”
and ”smaller” space (here Y and X̃) to end up with a powerful machinery.

Using this last lemma we can therefore define by

Σ̃ := Ẽs
+(0) ⊕ Ẽu

−(0) ⊕ K̃ ⊂ X̃

a closed, R-invariant Poincaré section to the homoclinic orbit at H(0). The
proof that Σ̃ is closed follows from the proof of lemma 6.2 in [8].

Definition 3
A tuple (γ+, γ−) is called Lin solution, if the following conditions are satisfied.

a) γ+/−(·) are solutions of (13) on R+, R−, respectively, whose orbits are
close to the orbit of the homoclinic solution H .

b) γ+(0), γ−(0) ∈ Σ̃ +H(0)

c) γ+(0) − γ−(0) ∈ K̃

d) γ+(0) ∈W s,+(0) and γ−(0) ∈ W u,−(0).

Choices
In the next section we want to construct Lin-solutions and derive a bifurcation
function. It will be very helpful during the analysis to make a special choice
for the subspaces Ecu

+ (0), Ecs
− (0) ⊂ Y with respect to a center dichotomy on

R+ and R−, respectively. Note that we already pointed out in the remark
after hypothesis 4 that these subspaces can be chosen; at least as long as they
provide closed complements of Es

+(0) and Eu
−(0), respectively. We now make

the specific choice

Ecs
− (0) := Es

+(0) + K̃, Ecu
+ (0) := Eu

−(0) + K̃, (35)

where Es
+(0) ⊂ Y denotes a closed complement of F(H(0), 0) in Es

+(0), which

satisfies Ẽs
+(0) ⊂ Es

+(0), see (34). Similarly, Eu
−(0) ⊂ Y denotes a closed com-

plement of F(H(0), 0) in Eu
−(0), which satisfies the property Ẽu

−(0) ⊂ Eu
−(0).

6.3.1 Construction of Lin-solutions

Let us now construct Lin solutions (γ+(0), γ−(0)). Since γ+(0) ∈W s,+(0), we
can look for γ+(·) in the form γ+(t) = H(t) + vs(t), where vs(0) = vs(0, V s, λ)
is defined for any V s ∈ Ẽs

+(0) by

vs(0, V s, λ) :
(
Ẽs

+(0) × R

)
∩ Bε(0) → Σ̃

vs(0, ·, ·) : (V s, λ) �→ V s +

∫ 0

∞
Φcu

+ (0, s)Gmod(s, V
s
∗ (s), λ)ds,
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where V s
∗ (·) = V ∗(·, V s, λ) ∈ BC−γ(R+, X̃) is the unique solution of the fixed

point equation with respect to W s,+(0) corresponding to V s ∈ Ẽs
+(0). G has

been defined in (27). Similarly, for any V u ∈ Ẽu
−(0) we define

vu(0, V u, λ) :
(
Ẽu
−(0) × R

)
∩ Bε(0) → Σ̃

vu(0, ·, ·) : (V u, λ) �→ V u +

∫ 0

−∞
Φcs

+ (0, s)Gmod(s, V
u
∗ (s), λ)ds,

where V u
∗ (·) = V u

∗ (·, V u, λ) ∈ BC−γ(R−, X̃) is the unique solution of the fixed
point equation with respect to W u,−(0) corresponding to V u ∈ Ẽu

−(0). In
particular, we can write

vs(0, V s, λ) = V s + yu(V s, λ) + ks(V s, λ) ∈ Ẽs
+(0) ⊕ Ẽu

−(0) ⊕ K̃,

vu(0, V u, λ) = V u + ys(V u, λ) + ku(V u, λ) ∈ Ẽu
−(0) ⊕ Ẽs

+(0) ⊕ K̃ (36)

due to our special choice for the spaces Ecu
+ (0), Ecs

− (0) in (35). On account of
b) in definition 3 we want to have

V s = ys(V u, λ), V u = yu(V s, λ) (37)

for all λ ∼ 0. (37) can be solved by the implicit function theorem: Consider(
V s − ys(V u, λ)
V u − yu(V s, λ)

)
= 0 (38)

for (V s, V u, λ) ∈
(
Ẽs

+(0) × Ẽu
−(0) × R

)
∩ Bε(0). Differentiating the left hand

side with respect to (V s, V u) at (V s, V u) = 0 at λ = 0 induces an invertible
map due to ∂V uys(0, 0) = 0 and ∂V syu(0, 0) = 0. Hence, (38) holds for a curve
(V s, V u) = (V s(λ), V u(λ)), λ ∼ 0. Let us summarize our results in the next
lemma.

Lemma 8
For each sufficiently small |λ| there is a unique Lin orbit (γ+, γ−) tending to
the equilibrium zero.

Proof
We define

γ+(t) = γ+,λ(t) := H(t) + vs(V s(λ), λ)(t)

γ−(t) = γ−,λ(t) := H(t) + vu(V u(λ), λ)(t)

and have already verified that (γ+, γ−) satisfies all assumptions of definition
3. �

6.3.2 Existence of symmetric homoclinic solutions

Let us now define the bifurcation equation by

κ(λ) := γ+,λ(0) − γ−,λ(0),
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whose zeros correspond to homoclinic orbits to the steady state zero. κ(λ) can
be considered as a map from R ∩ Bε(0) to K̃. Let us note that the solutions
vs/u(V, λ)(·) of the corresponding fixed point equations associated to W s,+(0)
and W u,−(0) actually satisfy

Rvs(V s, λ)(t) = vu(RV s, λ)(−t), Rvu(V u, λ)(−t) = vs(RV u, λ)(t). (39)

Indeed, vs(V s, λ)(·) admits the form vs(V s, λ)(t)+H(t) = U(t), where U(t) is a
solution of (13) for t � 0. Hence RH(t) = H(−t) and RU(t) = U(−t,RU(0)),
where U(t,RU(0)) denotes the solution of (13) on R− subject to the initial
value RU(0) (which in particular exists!). Moreover, the following lemma
holds.

Lemma 9
Rκ(λ) = −κ(λ). Hence, κ(λ) ∈ Fix(−R).

Proof
Let us first note that on account of (39) and the representation (36) we conclude

Rys(V, λ) = yu(RV, λ)

Rks(V, λ) = ku(RV, λ).

Hence, also the implicitly defined maps V s/u(λ) satisfy RV s(λ) = V u(λ). By
definition of κ(λ) this proves the claim. �

On account of our chosen complement K̃ of Ξ̃, we can regard κ as a map with
values in R by introducing a basis in the one-dimensional space K̃ ∩Fix(−R).
That is,

κ(λ) : R ∩ Bε(0) → R.

The next assumption assures that when varying λ1 of λ = (λ1, λ2) the mani-
folds W s,+

λ (0) and W u,−
λ (0) split with non vanishing speed in the direction of

the one-dimensional space (Fix(−R) ∩ K̃).

Hypothesis 8
∂λ1κ

′(λ1, λ2)
∣∣
λ1=0

�= 0.

We summarize our results in the following theorem.

Theorem 6
Assume that the hypotheses Hyp 1 - Hyp 8 are valid. Then the existence
of homoclinic orbits is a codimension-one-phenomenon. Hence, there exists a
locally defined C2-curve Hom = Hom(λ2) in the parameter space near λ = 0
with 0 ∈ Hom, such that for exactly all parameter points on the curve Hom
equation (2) possesses a (symmetric) homoclinic orbit hλ. In particular, hλ

satisfies hλ(t) = Rhλ(−t). Moreover, this homoclinic orbit converges to zero
in forward and backward time with exponential rate.

We can consider new parameters, such that Hom = {(0, λ2) : |λ2| � ε}.
Indeed, let us define new parameters (λ̃, λ2) via (λ1, λ2) = (Hom(λ2) + λ̃, λ2).
We work with these parameters from now on but refrain from introducing new
notation.
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6.4 Homoclinic solutions to the center manifold

In this section we finally want to detect all homoclinic orbits to the center
manifold. These solutions are induced by intersections of the center stable
and center unstable manifold.
We now want to construct Lin-solutions (γ+

c , γ
−
c ) to the center manifold, which

should have the following properties

a) γ
+/−
c (·) are solutions of (13) on R+, R−, respectively, whose orbits are

close to the orbit of the homoclinic solution H .

b) γ+
c (0), γ−c (0) ∈ Σ̃ +H(0)

c) γ+
c (0) − γ−c (0) ∈ K̃

d) γ+
c (0) ∈W cs,+(0) and γ−c (0) ∈W cu,−(0).

Note that solutions starting near H(0) in the center stable manifold W cs,+
λ (0),

λ ∼ 0, actually stay close to H for all t � 0. Indeed, all solutions on the
center manifold are periodic solutions. Solutions in W cs,+(0) starting near
H(0) approach a solution on the center manifold, hence a periodic orbit, in
forward time (we refer to [6] for a rigorous proof).
Let us now look for solutions

γ+
c (t) = H(t) + vcs,+(t)

in the center stable manifold W cs,+(0), which depend on λ and V cs
0 ∈ Ẽ cs

+ (0),

where Ẽ cs
+ (0) ⊂ X̃ denotes the closed subspace Ẽ cs

+ (0) := Ẽs
+(0) + Ỹ c. Then

vcs,+(0, ·, ·) :
(
Ẽ cs

+ (0) × R

)
∩ Bε(0) → Σ̃

vcs,+(0, ·, ·) : (V cs, λ) �→ V cs +

∫ 0

∞
Φu

+(0, s)Gmod(s, V
cs
∗ (s), λ)ds,

where V cs
∗ = V cs

∗ (·, V cs, λ) ∈ BC2δ([0,∞), X̃) denotes the unique fixed point of
the integral equation corresponding to W cs,+(0). Similarly, setting Ẽ cu

− (0) :=

Ẽu
−(0) + Ỹ c

vcu,−(0, ·, ·) :
(
Ẽ cu
− (0) × R

)
∩ Bε(0) → Σ̃

vcu,−(0, ·, ·) : (V cu, λ) �→ V cu +

∫ 0

−∞
Φs

+(0, s)Gmod(s, V
cu
∗ (s), λ)ds,

where V cu
∗ = V cu

∗ (·, V cu, λ) ∈ BC2δ((−∞, 0], X̃) denotes the unique fixed point
of the integral equation corresponding to W cu,−(0). We can now write these
values in the form

vcu,−(0, V cu, λ) = V u + V c + zs(V cu, λ) + c−(V cu, λ)

vcs,+(0, Ṽ cs, λ) = Ṽ s + Ṽ c + zu(Ṽ cs, λ) + c+(Ṽ cs, λ),
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where

(V u, V c, zs, c−) ∈ Ẽu
+(0) ⊕ Ỹ c ⊕ Ẽs

+(0) ⊕ C,

(Ṽ s, Ṽ c, zu, c+) ∈ Ẽs
+(0) ⊕ Ỹ c ⊕ Ẽu

+(0) ⊕ C.

In order to guarantee that property b) in the definition of a Lin-solution is
satisfied, we have to solve

zu(Ṽ s + Ṽ c, λ) = V u, zs(V u + V c, λ) = Ṽ s, (40)

which can be done using the implicit function theorem. Hence, we conclude
the existence of a C1-function (V c, Ṽ c, λ) �→ (V s(V c, Ṽ c, λ), V u(V c, Ṽ c, λ)) and
we define a bifurcation map via

ξ̂∞ :
(
Ỹ c × Ỹ c × R

)
∩ Bε(0) → Ỹ c × C,

ξ̂∞ : (V c, Ṽ c, λ) �→ (V c − Ṽ c) + c−(V u(V c, Ṽ c, λ), V c, λ)

−c+(V s(V c, Ṽ c, λ), V c, λ).

Since c− − c+ ∈ C, we have to choose Ṽ c = V c in order to guarantee that at
least the Y c-part of ξ̂∞ vanishes. Finally, we arrive at the reduced bifurcation
map

ξ∞ : (V c, λ) �→ c−(V u(V c, λ), V c, λ) − c+(V s(V c, λ), V c, λ).

Note that ξ∞ takes values in the one-dimensional subspace C ⊂ Fix(R).
Hence, we may consider ξ∞ as a map which takes values in R by choosing a ba-
sis in C. If we write V c = (V c

+, V
c
−) ∈ Y c with V c

+ ∈ Fix(R) and V c
− ∈ Fix(−R)

we have the following lemma.

Lemma 10
ξ∞(V c

+, V
c
−, λ) = −ξ∞(V c

+,−V c
−, λ).

Proof
Note that on account of Rzu(Ṽ s +V c, λ) = zs(RṼ s +RV c, λ) in equation (40)
we also have that RV u(V c, λ) = V s(RV c, λ). Hence,

R [
c−(V u(V c

+, V
c
−, λ), V c

+, V
c
−, λ) − c+(V s(V c

+, V
c
−, λ), V c

+, V
c
−, λ)

]
= c+(V u(V c

+,−V c
−, λ), V c

+,−V c
−, λ) − c−(V s(V c

+,−V c
−, λ), V c

+,−V c
−, λ),

which shows the claim on account of c+, c− ∈ Fix(R). �

Lemma 11
Under the above assumptions exactly the symmetric orbits correspond to the
solutions (V c

+, V
c
−, λ) = (V c

+, 0, λ) of ξ∞(V c
+, V

c
−, λ) = 0 for which V c

− = 0.

The proof of this lemma is straightforward, see also lemma 3.3.8 in [14]. Note
that D1ξ

∞(0, 0, 0) = D2ξ
∞(0, 0, 0) = 0. On account of lemma 10 we can now

write
ξ∞(V c

+, V
c
−, λ) = V c

− · q(V c
+, V

c
−, λ)

for a smooth function q for (V c
+, V

c
−, λ) ≈ 0. It is therefore reasonable to assume
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Hypothesis 9
DV c

+
q(0, 0, 0) �= 0.

Hence, when this assumption is satisfied, ξ∞ has the expansion

ξ∞(V c
+, V

c
−, 0) = V c

−
(
a · V c

+ + b · [V c
−]2 + h.o.t.

)
for some a �= 0 and b ∈ R for V c

−, V
c
+ ≈ 0. Let us summarize our results in the

following theorem.

Theorem 7
Under the above hypotheses Hyp 1-Hyp 9 we have the following scenario.

a) For all sufficiently small parameters λ there exists a one-parameter family
of symmetric homoclinic solutions hsym,κ of (2), parametrized by κ ≈ 0.
The map κ �→ hsym,κ is continuous as a map with values in BC0

loc(R,R
N).

Moreover, hsym,κ approaches the equilibrium for some κ in forward and
backward time if and only if λ ∈ Hom (see the statement of theorem
6). Otherwise, hsym,λ approaches a unique nontrivial periodic orbit in
forward and backward time.

b) For all sufficiently small parameters λ there exist two one-parameter
families of unsymmetric homoclinic solutions hasym,κ, gasym,κ of (2) with
hasym,κ(t) = Rgasym,κ(−t). Furthermore, for each fixed κ the solution
hasym,κ approaches the equilibrium zero or a periodic orbit in forward
and backward time.

Remark
Let us relate this result to theorem 1. In fact, the only difference in the state-
ment of theorem 7 is the fact that we have assumed hypothesis 5 which rules
out case i) in theorem 1. Indeed, case i) occurs if the center stable and cen-
ter unstable manifold intersect transversely. The above analysis can easily be
adapted to this case. We omit the details.

Let us now discuss the role of the parameter λ2 and focus on the existence
of heteroclinic cycles between the steady state zero and a periodic solution.
It suffices to look for heteroclinic solutions between the steady state and a
periodic solution. Such a solution is induced by a zero (0, V c

−, λ) of ξ∞ = 0.
Indeed, V c

+ = 0 guarantees that the associated solutions lies on the strong
stable manifold W s

+(0) of the steady state zero, see lemma 3.3.11 in [14]. One
can now show that the assumption

∂λ2q(0, 0, (0, λ2))
∣∣
λ2=0

�= 0

implies the existence of a differentiable curve HetCyc in the parameter plane
such that for all parameters λ ∈ HetCyc there exists a heteroclinic cycle
between zero and a (possible trivial) periodic solution and we refer to Lemma
3.3.12 in [14] for more details.
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7 Discussion

In this section we discuss various generalizations and the relevance of the above
results for the Fermi-Pasta-Ulam and Klein-Gordon lattice.

7.1 Lattice-differential equations with Hamiltonian struc-

ture

Although we dealt with general reversible forward-backward delay equations
(2) in this work, we now want to address the relevance of our results for lat-
tice differential equations with an additional Hamiltonian structure, such as
the Klein-Gordon lattice (3) or the Fermi-Pasta-Ulam lattice. This additional
structure imposes restrictions on the resulting bifurcation scenario in the trav-
elling wave equation (2). In the case of an ordinary differential equation, for
example, an additional Hamiltonian structure typically prevents the transverse
intersection of center stable and center unstable manifold along a homoclinic
solution, see [14, 2]. Hence, case a) in (11) is ruled out and we expect case b)
to occur. Let us now explain why we expect the same thing to happen here.

The Klein-Gordon lattice
Let us first consider the Klein-Gordon lattice

ün = γ(un+1 − 2un + un−1) + V ′(un), n ∈ Z, (41)

V ′(0) = 0 and V ′′(0) �= 0, which induces a reversible forward-backward delay
equation (2) via a travelling wave ansatz. Equation (41) is Hamiltonian with
(formal) Hamiltonian given by

Ham =
∑
n∈Z

1

2
v2

n + V (un) +
1

2
γ(un+1 − un)2.

As already observed before, the travelling wave equation reads

U ′(ξ) = W (ξ)

c2W ′(ξ) = γ(U(ξ + 1) − 2U(ξ) + U(ξ − 1)) + V ′(U(ξ)),
(42)

where c �= 0 denotes the travelling wave speed. This equation possesses a first
integral I, given for φ, ψ ∈ C0([−1, 1],R) by

I(φ(·), ψ(·)) = ψ(0) + (γ/c2) ·
∫ 1

0

(φ(ν) − φ(ν − 1))dν + (1/c2)

∫ 1

0

V ′(φ(ν))dν.

In fact, it is easy to verify that ∂ξI(U(ξ + ·),W (ξ+ ·)) = 0 along any solution
(U(ξ),W (ξ)) of (42). The function I now induces a first integral Ĩ : X̃ → R

of the travelling wave equation in abstract form (17). We expect the existence
of this first integral Ĩ to prevent a transverse intersection of center stable
and center unstable manifold along a homoclinic solution H . Let us give a
formal argument why this is true and let us consider the dynamic on the
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center manifold M first. There, the existence of a family of periodic orbits
implies that Ĩ restricted to M possesses an extremum in 0, say a minimum,
which corresponds to Ĩ = 0, say. Hence, Ĩ takes non-negative values on M.
The surface corresponding to Ĩ = 0 intersects the Poincaré-section Σ̃. Since all
orbits on the center stable and center unstable manifold W cs,+(0), W cu,−(0),
respectively, starting sufficiently close to H(0) approach a periodic orbit on
the center manifold, Ĩ also takes non-negative values on W cs,+(0) ∩ Σ̃ and
W cu,−(0)∩ Σ̃. If H(0) corresponds to a regular point of Ĩ we conclude that the
submanifolds W cs,+(0) ∩ Σ̃ and W cu,−(0) ∩ Σ̃ are located ”on the same side”
of the manifold {u : Ĩ(u) = 0} ∩ Σ̃. Hence,

TH(0)W
cs,+(0), TH(0)W

cu,−(0) ⊂ TH(0){Ĩ = 0}, (43)

which prevents a transverse intersection of W cs,+(0) and W cu,−(0). Note, how-
ever, that we expect the vector space TH(0)Ĩ = 0 to have codimension one in X̃

if H(0) corresponds to a regular point of Ĩ. This would certainly be true if the
value 0 corresponds to a regular value of the first integral I. Considering the
specific preimage U = 0 shows that zero is in fact not a regular value. However,
we would expect that the point H(0) gives rise to a regular point and hence,
a three-dimensional intersection of center stable and center unstable manifold
(as in hypothesis 5) is indeed expected generically in this situation.

It has been shown in [11] that there exists a region in the two-dimensional
(c, γ)-parameter plane, where the linearization at zero possesses exactly two
simple eigenvalues ±iω on the imaginary axis. More precisely, if the positive
parameters c, γ lie below the curve γc2, then the linearization at zero possesses
exactly two critical eigenvalues ±iω, ω �= 0, see [11] for details. However, up
to our knowledge the existence of homoclinic orbits of (41) in this parameter
region is not known; at least not by analytical means.

Note that once a homoclinic solution exists, we expect that the resulting bi-
furcation scenario can be studied using the methods introduced in this work.
In fact, even if we cannot determine the dimension of the space

TH(0)W
cs,+
λ=0 (0) ∩ TH(0)W

u,−
λ=0(0), (44)

we still know a priori that it is finite dimensional. Indeed, it has been shown
in [8] that the dimension of the space in (44) coincides with the dimension of
the kernel of a certain Fredholm operator (which is finite by definition). The
concepts used in this work therefore allow to relate the bifurcation scenario to
the study of the zero set of a certain bifurcation function ξ∞ : Rn → Rm (as
far as only solutions in W cs,+(0) ∩W u,−(0) are concerned that stay uniformly
close to the primary homoclinic solution).

The Fermi-Pasta-Ulam lattice

Let us now consider the equation

ün = un+1 − 2un + un−1 + V ′(un+1 − un) + V ′(un−1 − un), n ∈ Z. (45)
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Making a travelling wave ansatz we derive the equation

U ′(ξ) = W (ξ)

c2W ′(ξ) = U(ξ + 1) − 2U(ξ) + U(ξ − 1)

+ V ′(U(ξ + 1) − U(ξ)) + V ′(U(ξ − 1) − U(ξ)),

(46)

where c denotes the travelling wave speed. Again, there exists a first integral
J given by

J(φ(·), ψ(·)) = ψ(0) + (1/c2) ·
∫ 1

0

(φ(ν) − φ(ν − 1))dν

+ (1/c2)

∫ 1

0

V ′(φ(ν) − φ(ν − 1))dν

for φ, ψ ∈ C0([−1, 1],R). Hence, if there exists a homoclinic solution we expect
that center stable and center unstable manifold don’t intersect transversely
at any point of the homoclinic orbit. As we have seen above, however, our
argumentation depends strongly on the dynamic on the center manifold. What
is promising about the Fermi-Pasta-Ulam lattice is the fact that the existence
of solitary waves is known by analytical means, see [5].
In the case of the Fermi-Pasta-Ulam lattice zero is always a double, non semi-
simple eigenvalue of the linearization at zero for all parameter values c2 > 0.
Moreover, as c2 ↗ 1 there is a pair of real eigenvalues ±µ which approaches
the imaginary axis and becomes purely imaginary as c2 is increased through
one, see lemma 1 in [12]. Therefore, the resulting bifurcation scenario does not
fit exactly into the framework of this work. However, it should be possible to
analyse the resulting bifurcation with the methods and techniques introduced
in this work.

7.2 A double eigenvalue zero − The borderline case

We now consider a reversible forward-backward delay equation (2), where the
critical eigenvalues ±iω of the linearization of at the steady state coalesce
at zero and induce a double eigenvalue zero for λ = 0 (hence, hypothesis 3
is violated). More precisely, we assume that the characteristic equation pos-
sesses exactly one zero on the imaginary axis, namely zero, which is of second
order. For the unfolding of the resulting bifurcation on the two-dimensional
center manifold we need only one real parameter. Let us assume that it is
controlled by the first component λ1 of the two-dimensional parameter-vector
λ = (λ1, λ2). The second component λ2 now accounts for a homoclinic solution
hsym to the steady state at the critical value λ = 0. We are now interested in
the situation, where the critical eigenvalues at zero are purely imaginary for
λ1 < 0 and become real for λ1 > 0. This kind of bifurcation in the case of
ordinary differential equations has been studied by Champneys et al. [2]. The
interesting fact in this case is the observation that the homoclinic orbit hsym

becomes structurally stable as λ1 is increased through 0.
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Let us recall the scenario in the case of an ordinary differential equation and
make the additional assumption that center stable and center unstable mani-
fold intersect transversely along the symmetric homoclinic orbit hsym (we refer
to [2] for more details).
The first step in analysing this bifurcation is to understand the reduced dy-
namic on the center manifold, which in normal form is

ẋ = y

ẏ = λ1x+ x2,

where higher order terms have been truncated. In these coordinates, x de-
notes the variable which accounts for the Fix(R)-part acting on the center
eigenspace. The origin is a center for λ1 < 0 and a saddle for λ1 > 0. Hence,
we expect the existence of a small symmetric homoclinic orbit for λ1 �= 0,
which approaches the origin for λ1 > 0 and a distinguished steady state for
λ1 < 0. In the latter case the origin is enclosed by the homoclinic orbit.
With the understanding of the reduced dynamics on the center manifold one
can now show that generically the following scenario occurs:

Theorem [Champneys et al.]
Up to a change of parameters there exist fast decaying homoclinic solutions to
the equilibrium exactly for those parameter values (λ1, λ2) for which λ2 = 0.
For λ1 < 0 no further homoclinic solutions to the trivial steady state exist.
In the case λ1 = 0 there exists one homoclinic orbit to the equilibrium if λ2 � 0
which is algebraically decaying for λ2 < 0.
For λ1 > 0 and λ2 � 0 there exists one homoclinic orbit to the equilibrium. For
λ2 > 0 there exist two homoclinic orbits which coalesce in a saddle node bifur-
cation on some curve L := {(λ1, λ2) : λ2 � 0, λ1 = aλ2+o(λ2)} for some a > 0.

If the ordinary differential equation additionally possesses an Hamiltonian
structure, we have to abandon the assumption concerning a transverse intersec-
tion of center stable and unstable manifold (as explained in the first section of
this chapter). However, as has been proved in [2], the theorem above remains
true in this case as far as only symmetric homoclinic solutions are concerned
(note that there may be more solutions which do not intersect Fix(R)).
We expect that the above bifurcation scenario can be analysed in the more
general case (2) completely analogous to the ODE-case by using the methods
and results introduced in this work. As a technical point, let us stress the fact
that the steady state is not stable with respect to the center dynamic in this
case - a fact, which is relevant for the proof of the smoothness of the center
stable and unstable manifold. However, it should be possible to overcome this
technical problem, see the appendix II of [16].

33



7.3 Continuous delay

Our results are not limited to equations (2) with discrete delays. In fact, we
can consider a general reversible forward-backward delay equation

U̇(t) = F(U(t+ ·), λ), (47)

U(t+ ·) ∈ C0([−M,M ],RN ), instead. Equations of the more general form (47)
also appear frequently as travelling wave equations of equations in elasticity
[6, 9, 24, 25] or phase transitions [23]. The corresponding calculations in this
case translate verbatim to this more general case.

8 Appendix: The weak∗ integral

In this section we want to clarify in which sense the integral∫ t

0

T (t, s)G(s)ds (48)

is well defined, if s → G(s) = (g(s), 0) maps continuously into the space
X̂ = RN × C0([−M,M ],CN ) for some M > 0.

Assumption 1
Let L(·) ∈ BC0(R, L(C0([−M,M ],CN ),CN)) and let L(t) → L± with respect
to the operator norm as t → ±∞, where L± ∈ L(C0([−M,M ],CN ),CN).
Consider (

∂tξ(t)
∂tφ(t, ·)

)
= A(t)

(
ξ(t)
φ(t, ·)

)
=

(
L(t)φ(t, ·)
∂θφ(t, ·)

)
. (49)

If the equations ẏ(t) = L±yt are hyperbolic, (49) possesses an exponential di-
chotomy on R+ (respectively R−) with associated solution operators Φs

+(τ, σ),
Φu

+(σ, τ) for τ ≥ σ ≥ 0 (respectively Φs
−(σ, τ), Φu

−(τ, σ) and τ ≤ σ ≤ 0).
Otherwise equation (49) possesses a (center-) dichotomy on R+ with solution
operators Φcs

+ (t, s),Φu
+(s, t) or Φs

+(t, s),Φcu
+ (s, t) for t ≥ s ≥ 0. We now con-

sider the case that T (t, s) is one of these solution operators on R+.

Let us now choose some element

(η, ψ) ∈ Ỹ := C
N × L1([−M,M ],CN )

and note that
s �→ 〈T (t, s)G(s), (η, ψ)〉 ∈ L1([0, t],C), (50)

where 〈·, ·〉 denotes the pairing between Z̃ = CN × L∞([−M,M ],CN ) and Ỹ ;
that is

〈(ξ, φ), (η, ψ)〉 = ξ · η +

∫ M

−M

φ(θ)ψ(θ)dθ

for (ξ, φ) ∈ Z̃ and (η, ψ) ∈ Ỹ . Here, Z̃ can be identified with the dual space
of Ỹ . Hence, there exists a unique Q ∈ Z̃, such that

〈Q, (η, ψ)〉 =

∫ t

0

〈T (t, s)G(s), (η, ψ)〉ds (51)

for every (η, ψ) ∈ Ỹ ; see the appendix of [18].
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Definition 4
We set

∫ t

0
T (t, s)G(s)ds := Q and call Q the weak∗ integral.

From now on we view the integral term in (48) as a weak∗ integral, which is
an element of Ỹ ∗ = Z̃ by definition. Note that if s �→ G(s) is continuous and
takes values in X, then the weak∗ integral coincides with the usual Riemann
integral. Let us now prove that the integral is actually an element of X̃ =
{(ξ, φ) ∈ CN × C0([−M,M ],CN ) : φ(0) = ξ}. The next lemma has been
proved in [7].

Lemma 12
For each fixed t ≥ 0 we have

∫ t

0
T (t, s)G(s)ds ∈ X̃.

The weak integral actually depends continuously on t:

Lemma 13
The function v : t → ∫ t

0
T (t, s)G(s)ds is continuous as a function from [0,∞)

to X̃ and

‖v(t)‖X̃ �
∫ t

0

Meα(t−s)ds · sup
0�s�t

‖G(s)‖X̂ ,

if T (t, s) satisfies the estimate ‖T (t, s)‖L(Z̃,Z̃) � Meα(t−s) for t ≥ s ≥ 0 and
some α ∈ R.

Proof
Note that the integral is well defined with values in X̃ by the previous lemma.
Since the map t → ∫ t

0
T (t, s)G(s)ds is continuous when regarded with values

in Ỹ ∗ = Z̃ (see lemma 2.1, page 54 in [18]) and the norm of L∞ restricted
to C0 coincides with the usual norm in C0, the claim concerning continuity
follows immediately by lemma 2.3 in [18]. �
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