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Abstract. We consider a semilinear parabolic equation of the form
ut = uxx + f(u, ux) defined on the circle x ∈ S1 = R/2πZ. For a
dissipative nonlinearity f this equation generates a dissipative semiflow
in the appropriate function space, and the corresponding global attrac-
tor Af is called a Sturm attractor. If f = f(u, p) is even in p, then
the semiflow possesses an embedded flow satisfying Neumann boundary
conditions on the half-interval (0, π). This is due to O(2) equivariance of
the semiflow and, more specifically, due to reflection at the axis through
x = 0, π ∈ S1. For general f = f(u, p), where only SO(2) equivariance
prevails, we will nevertheless use the Sturm permutation σ introduced
for the characterization of Neumann flows to obtain a purely combina-
torial characterization of the Sturm attractors Af on the circle. With
this Sturm permutation σ we then enumerate and describe the hetero-
clinic connections of all Morse-Smale attractors Af with m stationary
solutions and q periodic orbits, up to n := m + 2q ≤ 9.

Dedicated to Professor Hiroshi Matano on the occasion of his 60th birthday.

1. Introduction

Consider scalar semilinear parabolic equations of the form

ut = uxx + f(x, u, ux) (1.1)

defined on the interval 0 ≤ x ≤ 2π with periodic boundary conditions

u(t, 0) = u(t, 2π), ux(t, 0) = ux(t, 2π) , (1.2)

or equivalently, defined on the circle x ∈ S1 = R/2πZ. Under suitable
regularity and growth assumptions on the nonlinearity f = f(x, u, ux), such
equations generate global semiflows on appropriate function spaces, that is,
any solution u(t, ·) of (1.1), (1.2) is defined for all time t ≥ 0 (see, e.g.,
[Hen81, Paz83]). Here we assume

f ∈ C2 is dissipative . (1.3)

This is guaranteed, for example, by sign and growth conditions of the form

f(x, v, 0) · v < 0 for all large |v| , (1.4)

|f(x, v, p)| < C(|v|)(1 + |p|γ) , (1.5)
for all (x, v, p) ∈ S1 × R2, with some suitable constant 0 ≤ γ < 2, and a
continuous function C(|v|). In fact these specific conditions are sufficient
(but not necessary) to ensure that (1.1), (1.2) generates a global dissipative
semigroup

SP
f (t) : XP → XP , t ≥ 0 , (1.6)
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on a Sobolev space XP = Hs(S1), 3/2 < s < 2, which embeds into C1(S1).
See, for example, [AF88, Mat88, MN97, FRW04, CR08] and the references
included there. Here and onwards the superscript P stands for the periodic
boundary conditions (1.2) on the interval (0, 2π). We recall the definition of
XP in terms of the fractional power space for the Laplacian ∂xx under peri-
odic boundary conditions, that is XP := D((id−∂xx)s

P). Fourier expansion
representation of the elements u ∈ XP,

u =
∑
k≥0

ak cos kx+ bk sin kx , (1.7)

provides the Sobolev norm ‖ · ‖XP as

‖u‖2
XP =

∑
k≥0

(1 + k2)s(a2
k + b2k) . (1.8)

The dissipative property of the semigroup SP
f (t), t ≥ 0, requires the ex-

istence of a fixed large ball in XP in which any solution u(t, ·) eventually
stays for all time t ≥ t0(u(0, ·)). This property is ensured by conditions
(1.4), (1.5). It entails the existence of a nonempty global attractor

AP
f ⊂ XP (1.9)

which is the maximal compact invariant subset of the state space XP and
consists of all globally defined bounded orbits of the semiflow, see [Hal88,
BV92, HMO02]. In particular any solution u(t) = u(t, ·) of (1.1), (1.2),
has a nonempty ω-limit set in AP

f . To emphasize the Sturm type nonlinear
nodal properties of equation (1.1), we call the global attractor AP

f a Sturm
attractor, in this setting.

In the case of separated boundary conditions the semiflow (1.6) is gradient
and the ω-limit set of any solution is a unique equilibrium point, [Zel68,
Mat78, HR92]. However, in our case of periodic boundary conditions the
semiflow is not gradient-like in general. This provides for a more interesting
geometric and dynamical structure of AP

f since, in addition to equilibria,
the global attractor may also exhibit nonequilibrium periodic orbits, (cf.
[AF88, Mat88, MN97]).

The absence of a variational structure for the semiflow complicates the
study of the geometric and dynamical structure of AP

f . To our rescue we
have the Sturm property: for any given pair of solutions u1, u2 of (1.1), (1.2)
and any fixed t, let zP = zP(u1(t, ·) − u2(t, ·)) denote the number of strict
sign changes of the x-profiles x 7→ u1(t, x)−u2(t, x) of the difference u1−u2.
Then the zero number

t 7→ zP(u1(t, ·)− u2(t, ·)) , (1.10)

is a monotone nonincreasing function of time t and is finite for any t > 0,
[Stu36, Mat82, Ang88]. Moreover zP drops strictly at multiple zeros of the
x-profile. It was Matano who first introduced the closely related concept of
the lap number z(ux) + 1, and thus initiated todays insight into the central
importance of the zero number z for the global dynamics of PDEs like (1.1);
[Mat82]. As a consequence, for example, the ω-limit set of any solution
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u(t) = u(t, ·) of (1.1), (1.2) either contains an equilibrium or is a periodic
orbit, (cf. [FMP89]).

The set EP
f of equilibrium solutions of (1.1), (1.2) is the set of solutions

of the spatially 2π-periodic ODE boundary value problem (here and where
convenient we use ′ = d/dx)

v′′ + f(x, v, v′) = 0 , x ∈ S1 , (1.11)

corresponding to the stationary problem. To assure finiteness and nonde-
generacy of the equilibria v ∈ EP

f we assume hyperbolicity. An equilibrium
v ∈ EP

f is called hyperbolic if the linearized problem around v,

λu = uxx + ∂pf(x, v(x), vx(x))ux + ∂vf(x, v(x), vx(x))u , x ∈ S1 , (1.12)

has no eigenvalue λ with zero real part, Re(λ) = 0. Then the unstable
dimension of v, iP(v), is given by the number of eigenvalues of (1.12) with
strictly positive real part, counting algebraic multiplicities. In spite of the
apparent absence of a variational context the unstable dimension iP(v) is
called the Morse index of v.

Similarly, to require nondegeneracy of a periodic orbit we assume hy-
perbolicity. Let u(t) = u(t, ·) denote a nonstationary periodic solution
of SP

f (t) with minimal period τ > 0 and initial value u(0) = u0 ∈ XP.
The Floquet multipliers of u(t) are the eigenvalues of the evolution opera-
tor Pτ : XP → XP defined by the linearization of (1.1), (1.2) around the
periodic solution u(t), at time t = τ ;

Pτ = DSP
f (τ)u0 . (1.13)

Then the periodic orbit u = {u(t) : 0 ≤ t < τ} is hyperbolic if µ = 1 is an
algebraically simple eigenvalue of Pτ and is the unique Floquet multiplier of
u(t) on the complex unit circle. The (strong) unstable dimension iP(u) of
u is the number of characteristic multipliers of u(t) with modulus |µ| > 1,
counting algebraic multiplicities. For details see, e.g., [Hen81, CR08]. As
in the case of equilibria, iP(u) is called the Morse index of the (hyperbolic)
periodic orbit u. Note that the dimension of the unstable manifold is iP(v),
for a hyperbolic equilibrium v, but is iP(u) + 1, for a hyperbolic periodic
orbit u.

Let
SturmP(x, u, ux) (1.14)

denote the Sturm class of dissipative C2-nonlinearities f = f(x, u, ux), sat-
isfying (1.3), for which all equilibria and periodic orbits are hyperbolic. The
restricted Sturm classes

SturmP(u, ux) , SturmP(x, u) , . . . , (1.15)

are also defined in the obvious way.
The characterization of Sturm attractors AP

f for f ∈ SturmP(x, u, ux) has
been considered in the literature. See for example [CR08, JR10a, JR10b]
and their references for some results on the geometric and dynamical prop-
erties of AP

f . We remark that hyperbolicity of all equilibria and rotating
waves is a generic property in the space G of functions f = f(x, u, ux) en-
dowed with the Whitney C2 topology, [JR10a]. This is equally true in the
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space G0 of functions f = f(u, ux). We also quote the following remarkable
transversality property of the stable and unstable manifolds of hyperbolic
periodic orbits:

Theorem 1: (See [CR08], Theorem 8.2.) The stable and unstable man-
ifolds of two hyperbolic periodic orbits u± of (1.1), (1.2) always intersect
transversely,

W u(u−) ∩ W s(u+) . (1.16)

In the case of equilibria for semilinear parabolic equations under sepa-
rated boundary conditions such transversality results have been previously
established in [Hen85, Ang86].

The transversality result of Theorem 1 still holds when one of the periodic
orbits is replaced by a hyperbolic equilibrium. However, in general this result
does not extend to the case of a pair of equilibria v± ∈ EP

f . Furthermore,
while homoclinic behavior to periodic orbits is excluded, cf. [Nad98, CR08],
homoclinic behavior to equilibria is known to occur, see [SF92]. Due to
this main difficulty the characterization of Sturm attractors AP

f for f ∈
SturmP(x, u, ux) is still open.

The main goal of the present paper is a systematic study of heteroclinic
orbits of the problem

ut = uxx + f(u, ux) , x ∈ S1 = R/2πZ , (1.17)

corresponding to (1.1), (1.2) with nonlinearity in the restricted Sturm class

f ∈ SturmP(u, ux) , (1.18)

where f = f(u, ux) is not allowed to depend on x, explicitly. In contrast with
the general case, the geometric and dynamical structure of Sturm attractors
AP

f for f ∈ SturmP(u, ux) is much more tractable. Our aim here is the
presentation of a purely combinatorial characterization of the heteroclinic
orbit structure in the Sturm attractors AP

f for f in the restricted class (1.18);
see Theorem 3.

The important characteristic feature of our problem (1.17) is its S1-
equivariance with respect to shifts, due to the x-independent form of the
nonlinearity f = f(u, ux). Indeed fix any shift by ϑ ∈ S1. Then u(t, x+ ϑ)
is a solution of (1.17) whenever u(t, x) itself is. This S1-equivariance is in-
herited as S1-invariance by the Sturm global attractor AP

f . Moreover, any
periodic orbit of (1.17) is a rotating wave, that is, the corresponding solution
has the form u(t, x) = v(x− ct) rotating around S1 with arbitrary constant
speed c 6= 0, [AF88, Mat88, MN97]. Here v is any 2π-periodic solution of
the ODE

v′′ + f(v, v′) + cv′ = 0 , x ∈ S1 = R/2πZ , (1.19)

again with ′ = d/dx. In the following we let RP
f denote the set of rotating

waves of (1.17).
It follows from the Sturm property that, for f ∈ SturmP(u, ux), any

solution of (1.17) either approaches a single (hyperbolic) equilibrium solution
or a (hyperbolic) rotating wave as t→ +∞.
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The same remains true in backwards time, for t → −∞, due to the
backward uniqueness result for parabolic equations, see [Hen81]. In fact,
the restriction of SP

f (t) to the set AP
f defines a flow on AP

f and therefore it
makes sense even for t < 0.

In addition, for f ∈ SturmP(u, ux) homoclinic behavior to equilibria is
also excluded, see [MN97]. Then, the global attractor AP

f decomposes as

AP
f = EP

f ∪ RP
f ∪HP

f , (1.20)

where HP
f denotes the set of heteroclinic orbits, i.e. solutions u(t, ·) which

limit to two different elements of EP
f ∪ RP

f for t → ±∞; see for example
[FRW04]. In the following we write v ; w, for v, w ∈ EP

f ∪ RP
f , if there

exists a connecting heteroclinic orbit from v to w.
The set of equilibria EP

f for f = f(u, ux) is the set of spatially 2π-periodic
solutions of the ODE

v′′ + f(v, v′) = 0 , x ∈ S1 = R/2πZ . (1.21)

In general, this set is composed of two types of solutions: the set ZP
f of

spatially homogeneous solutions, v ≡ e, corresponding to the zeros of f(·, 0),

f(e, 0) = 0 ; (1.22)

and the set FP
f of spatially nonhomogeneous solutions of (1.21), v = v(x)

with v′ 6≡ 0. We use the letter F because we sometimes view nonhomoge-
neous equilibria as frozen waves, i.e. rotating waves with zero wave speed c;
compare (1.21) with (1.19). However, spatially nonhomogeneous solutions
are always nonhyperbolic in the S1-equivariant case f = f(u, ux). In fact,
in this case u = vx is an eigenfunction of the linearization at v

λu = uxx + fp(v, vx)ux + fv(v, vx)u , x ∈ S1 , (1.23)

corresponding to the trivial eigenvalue λ = 0. We also remark that these
solutions always occur in families of shifted copies around x ∈ S1 due to
the S1-equivariance of (1.21). Therefore we caution the reader that for
f ∈ SturmP(u, ux), due to hyperbolicity, all equilibria v ∈ EP

f are spatially
homogeneous. Hence, for f ∈ SturmP(u, ux) we have that FP

f = ∅ and

EP
f = ZP

f . (1.24)

In fact a small perturbation f(u, ux) + εux shows that FP
f = ∅ is a generic

property in the space G0.
The transversality result of Theorem 1 extends to all the hyperbolic ele-

ments of EP
f ∪ RP

f , equilibria and periodic orbits, as follows.

Theorem 2: (See [FRW04], Proposition 3.2.) The stable and unstable
manifolds of two hyperbolic elements v± ∈ EP

f ∪RP
f of (1.17) always intersect

transversely,
W u(v−) ∩ W s(v+) . (1.25)

This transversality and rigidity result is essential for the geometric de-
scription of the Sturm attractor AP

f for f ∈ SturmP(u, ux) and is the main
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reason why it possesses the Morse-Smale property; see for example [HMO02]
for details on this property.

Using transversality the authors have determined necessary and sufficient
conditions for the existence of heteroclinic orbit connections between any
pair of hyperbolic equilibria or rotating waves of the semiflow SP

f (t) gener-
ated by (1.17). See [FRW04], and for partial results also [Miy04].

Due to the Morse-Smale rigidity property the heteroclinic connections in
the global attractor AP

f are preserved when the nonlinearity f is changed by a
smooth homotopy that preserves hyperbolicity of all equilibria and periodic
orbits. Such a homotopy was used in [FRW04] to obtain a semiflow SP

f (t)
with an embedded semiflow satisfying Neumann boundary conditions on
the half-interval 0 ≤ x ≤ π. The heteroclinic connections were subsequently
determined from adjacency relations which encode the configuration of the
stationary states of this Neumann problem. Further on, in Section 4, we will
review the appropriate adjacency relation for our problem (1.17), namely the
notion of (P)-adjacency; see [FRW04].

To distinguish the problem satisfying Neumann boundary conditions on
the half-interval 0 ≤ x ≤ π from our case of periodic boundary conditions on
the interval 0 ≤ x ≤ 2π we will use the superscript N whenever referring to
the Neumann problem. We will also refer to this problem as the Neumann
case (N), while our problem (1.1), (1.2) will be called the periodic case (P).

The embedded Neumann problem obtained by the homotopy process also
possesses a Sturm attractor AN

f . A characterization for this Neumann Sturm
attractor AN

f in purely combinatorial terms is provided by a permutation
defined on the set of its stationary states. Assuming hyperbolicity (but not
necessarily homogeneity) of all equilibria v1, . . . , vn in AN

f , the permutation
σ = σN

f ∈ S(n) is given by the ordering of the Neumann boundary values
of the equilibria at x = 0 and x = π. To be specific, if the equilibria are
labeled by the ordering at x = 0

v1(0) < v2(0) < · · · < vn(0) , (1.26)

then σ = σN
f is defined by the labeling at x = π

vσ(1)(π) < vσ(2)(π) < · · · < vσ(n)(π) . (1.27)

Such a permutation is called Sturm permutation and is an appropriate ob-
ject for the combinatorial characterization of Sturm attractors. See [FR91,
Fie94, FR96, Fie96, FR99, FR00] in the case of semilinear parabolic equa-
tions under separated boundary conditions and [Roc94] in the case of fi-
nite dimensional discretizations. We also refer to [Roc91, F&al02, Wol02a,
Wol02b, HW05, FR08, FR09, FR10] for applications of this characterization,
and to [FS02, Rau02] for surveys on the subject.

We will recall some of these results in Section 2. Here it suffices to mention
that a characterization of Neumann Sturm attractors for some restricted
classes of nonlinearities has recently been obtained in terms of particular
Sturm permutations called integrable involutions; see [FRW11]. For f in
restricted classes like f = f(u) or f = f(u, ux) with even dependence on ux

the ODE
v′′ + f(v, v′) = 0 (1.28)
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has a first integral which we denote by H = H(v, v′); see [Rag10]. In this
case there is an intimate relation between the Neumann solutions of the ODE
(1.28) on the interval 0 ≤ x ≤ π, alias the equilibria vj ∈ EN

f , and the 2π-
periodic solutions of (1.28). This relation is behind all the results obtained
for the periodic problem (P) and is due to the cyclic reflection symmetric
shape of the bounded level curves of H. In fact, extending any equilib-
rium solution vj(x) to −∞ < x < ∞ by reflection through the boundaries
we obtain a periodic solution of (1.28) with possibly non-minimal period
2π. Conversely, from any 2π-periodic solution of (1.28) we obtain, after an
appropriate x-shift, an equilibrium solution vj ∈ EN

f .
To prepare our main result we first define a Sturm permutation σ = σP

f ∈
S(n) associated to our problem (1.17) for f ∈ SturmP(u, ux). Let us collect
all the values ej of the spatially homogeneous equilibria vj ≡ ej ∈ EP

f and all
the maxima wk and minima wk of the rotating waves wk ∈ RP

f in a vector
(ν1, . . . , νn) such that

ν1 < ν2 < · · · < νn . (1.29)

Then, σP
f ∈ S(n) is defined as the permutation of {ν1, . . . , νn} corresponding

to the product of all maximum/minimum 2-cycles (wk wk) for the rotating
waves wk with odd `k = zP(wk,x)/2.

σP
f =

∏
`k odd

(wk wk) . (1.30)

Note that for a rotating wave wk ∈ RP
f the number zP(wk,x) is related to

the Matano lap number introduced in [Mat82] in the setting of Neumann
boundary conditions.

Our main result consists of the following theorem:

Theorem 3: A Sturm permutation σ ∈ S(n) is a Sturm permutation
σ = σP

f in the class f ∈ SturmP(u, ux) of x-periodic S1-equivariant Sturm
problems (1.17) if and only if σ is an integrable involution, as defined in
Section 3.

We postpone the proof of this theorem to Section 5. As a preparation we
review in Section 2 the definition and characterization of Sturm permuta-
tions σ for the case of semilinear parabolic equations defined on the interval
0 ≤ x ≤ π and satisfying Neumann boundary conditions. We recall the
Sturm class of nonlinearities f ∈ SturmN(x, u, ux) for the Neumann prob-
lem (N). In Section 3 we review the characterization of Sturm permutations
σ for the restricted (Hamiltonian) class of nonlinearities f ∈ SturmN(u). We
recall the definition of integrable involutions, and also the extension of the
characterization results to the restricted class of x-reversible nonlinearities
in SturmN(u, ux), which are even in p = ux. In Section 4 we review the
adjacency relations for the equilibria EN

f of the Neumann flow and for the
critical elements EP

f ∪RP
f of (1.17). In Theorem 7 we establish a convenient

link between the two adjacency relations, and in Theorem 8 we recall the
characterization of heteroclinic orbits for (1.17) in terms of adjacency.
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Finally, in Section 6 we apply Theorems 3 and 8 to describe the hete-
roclinic orbit connections of a number of examples of Sturm attractors AP

f

with f ∈ SturmP(u, ux). In particular, we use the list of all Sturm permu-
tations σ ∈ S(n) with n ≤ 9 which are integrable involutions σ = σN

f in the
Neumann problem f ∈ SturmN(u) (cf. [FRW11]) to:

(a) enumerate all Sturm attractors AP
f , f ∈ SturmP(u, ux), with up to

m equilibria and q rotating waves for n = m+ 2q ≤ 9; and
(b) determine their heteroclinic orbit connections.

2. Sturm permutations

In this section we recall some results for the semilinear parabolic equation

ut = uxx + f(x, u, ux) , 0 ≤ x ≤ π , (2.1)

subject to the Neumann boundary conditions

ux(t, 0) = ux(t, π) = 0 . (2.2)

For a dissipative C2-nonlinearity f = f(x, u, ux) this problem – the Neu-
mann case (N) – generates a global dissipative Neumann semiflow

SN
f (t) : XN → XN , t ≥ 0 , (2.3)

on a Sobolev space XN = Hs(0, π) ∩ {u : ux = 0 at x = 0, π}, 3/2 < s < 2,
which embeds in C1(0, π). Then, due to dissipativeness, the semiflow SN

f (t)
also has a Sturm attractor

AN
f ⊂ XN . (2.4)

Besides, SN
f (t) possesses a gradient-like structure due to the existence of

a Lyapunov function; see [Zel68, Mat88]. Therefore, the Neumann Sturm
attractor AN

f decomposes as

AN
f = EN

f ∪HN , (2.5)

where EN
f denotes the set of equilibria of (2.1), (2.2) and HN

f denotes the
set of heteroclinic orbits.

The set EN
f is the set of solutions of the ODE Neumann boundary value

problem (again ′ = d/dx)

v′′ + f(x, v, v′) = 0 , 0 ≤ x ≤ π , (2.6)

v′(0) = v′(π) = 0 . (2.7)

Here, as in (1.12), an equilibrium v ∈ EN
f is called hyperbolic if λ = 0 is not

an eigenvalue of the linearization at v, given by

λu = uxx + ∂pf(x, v(x), vx(x))ux + ∂vf(x, v(x), vx(x))u (2.8)

for 0 ≤ x ≤ π and satisfying the Neumann boundary conditions (2.2). The
number iN(v) of positive eigenvalues is the Neumann Morse index of v.

The Sturm class of nonlinearities

SturmN(x, u, ux) (2.9)
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is defined as the set of dissipative f = f(x, u, ux) for which all equilibria of
(2.1), (2.2) are hyperbolic. Likewise, the more restrictive classes

SturmN(u) , SturmN(u, ux) , . . . (2.10)

are also defined. Unlike the equivariant S1 case f ∈ SturmP(u, ux), hyper-
bolic equilibria in the x-independent Neumann case f ∈ SturmN(u, ux) need
not be spatially homogeneous.

As before, for f ∈ SturmN(x, u, ux) problem (N) possesses only a finite
number n of equilibria,

EN
f = {v1, . . . , vn} , (2.11)

which turns out to be odd. The graphs of the equilibria vj ∈ EN
f ,

{(x, vj(x), v′j(x)) : 0 ≤ x ≤ π} , (2.12)

define a braid on n strands in [0, π]×R2. Traversing the strands from x = 0
to x = π the braid defines a permutation σ = σN

f ∈ S(n). This is the Sturm
permutation for problem (N), introduced in [FR91], which is determined by
the ordering of the Neumann boundary values of the equilibria at x = 0 and
x = π. To be specific, we label the equilibria by their ordering at x = 0

v1(0) < v2(0) < · · · < vn(0) . (2.13)

Then the Sturm permutation σ = σN
f is defined by the labeling at x = π

vσ(1)(π) < vσ(2)(π) < · · · < vσ(n)(π) . (2.14)

This permutation is essential for the characterization of Sturm attractors.
Its dynamical importance stems from the fact that Sturm attractors AN

f and
AN

g are C0-orbit equivalent if σN
f = σN

g , see [FR00]. In particular, as shown
in [FR96], σN

f determines all heteroclinic orbit connections in AN
f .

Sturm permutations are characterized, in purely combinatorial terms, as
dissipative Morse meander permutations; see [FR99]. For a permutation
σ ∈ S(n) to be dissipative requires σ(1) = 1 and σ(n) = n. The Morse
property requires the integers (called Morse numbers)

ij(σ) :=
j−1∑
k=1

(−1)k+1 sign(σ−1(k + 1)− σ−1(k)) , 1 ≤ j ≤ n , (2.15)

to be all nonnegative (empty sums denoting zero). In fact the Neumann
Morse indices of the hyperbolic equilibria vj ∈ EN

f , i.e. the number of
strictly positive eigenvalues λ of (2.8), satisfy:

iN(vj) = ij(σ) , 1 ≤ j ≤ n . (2.16)

To define the meander property consider a C1 Jordan curve which inter-
sects the horizontal axis transversely at exactly n points. Numbering the
intersections by 1, 2, . . . , n along the Jordan curve, let σ(1), σ(2), . . . , σ(n)
denote the numbering along the horizontal axis. Any permutation σ ∈ S(n)
which is obtained in this way is called meander permutation; see [Arn88].

Then we have the following characterization of Sturm permutations for
the Neumann case (N):
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Theorem 4: (See [FR99], Theorem 1.2.) A permutation σ ∈ S(n) is a
Sturm permutation σ = σN

f in the Sturm class f ∈ SturmN(x, u, ux) if and
only if σ is a dissipative Morse meander permutation.

3. Hamiltonian type

Here we consider again the Neumann case (N) and recall our charac-
terization [FRW11] of Sturm permutations in the more restrictive class of
f ∈ SturmN(u). In this case the ODE (2.6) in the stationary problem for
the equilibria v ∈ EN

f has the form

v′′ + f(v) = 0 , (3.1)

which corresponds to the integrable Hamiltonian planar system

v′ = p , p′ = −f(v) . (3.2)

For this reason when f ∈ SturmN(u) we say that the Sturm attractor AN
f is

of Hamiltonian type.
The Hamiltonian function H = H(v, p) for the pendulum equation (3.2)

is

H(v, p) =
1
2
p2 + F (v) , (3.3)

where 1
2p

2 is the kinetic energy and the potential F satisfies dF (v)/dv =
f(v). The level sets of H contain essential information regarding the shape
of the equilibrium solutions in the phase plane (v, p). Via the nesting of
equilibria vj , the Hamiltonian imposes constraints on the Sturm permuta-
tion σf . In [FRW11] these constraints were used to characterize the Sturm
permutations in the Hamiltonian class f ∈ SturmN(u).

Reversibility with respect to the reflection x 7→ −x is a second distinctive
property of (3.1). This property immediately implies that the Sturm per-
mutation σ = σN

f for f ∈ SturmN(u) must necessarily be an involution, i.e.
satisfies

σ = σ−1 . (3.4)

Indeed, the involution x→ π−x leaves (3.1) invariant and maps the set EN
f of

equilibria to itself. The same transformation replaces σ by σ−1, which proves
(3.4). Because σ = σN

f is an involution it possesses a unique representation
as a product of disjoint 2-cycles

σ = (c1 c1) . . . (cr cr) . (3.5)

Sturm permutations σN
f in the class f ∈ SturmN(u) are characterized

as integrable involutions (cf. [FRW11]). The integrability property of an
arbitrary involution σ ∈ S(n) is defined in terms of the nesting properties of
its 2-cycles (3.5) as follows:

• For α 6= β the 2-cycles (cα cα) and (cβ cβ) are intersecting if the
corresponding open intervals in R possess a nonempty intersection,
that is (cα, cα) ∩ (cβ, cβ) 6= ∅;

• Intersecting 2-cycles (cα cα) and (cβ cβ) are nested if one of these
intervals strictly contains the other, i.e. if (cβ − cα)(cα − cβ) > 0;



ATTRACTORS FOR PARABOLIC EQUATIONS 11

• Nested 2-cycles (cα cα) and (cβ cβ) are centered if the mid-points of
these intervals coincide, i.e. if cα + cα = cβ + cβ ;

• In view of (2.16) a point j is called σ-stable if ij(σ) = 0. Then the
σ-stable core Cα of the 2-cycle (cα cα) is defined as the set

Cα = {j : ij(σ) = 0, cα < j < cα} , (3.6)

and two nested 2-cycles (cα cα) and (cβ cβ) are core-equivalent if
they share the same σ-stable core, Cα = Cβ.

Finally an arbitrary involution permutation σ ∈ S(n) is called integrable if
the following three conditions all hold:

(I.1) intersecting 2-cycles are nested;
(I.2) core-equivalent 2-cycles are centered;
(I.3) non-nested 2-cycles are separated by at least one σ-stable point.
We recall the following characterization of Sturm permutations in the

Hamiltonian class f ∈ SturmN(u):

Theorem 5: (See [FRW11], Theorem 1.) A Sturm permutation σ =
σN

f ∈ S(n) is in the Hamiltonian class f ∈ SturmN(u) if and only if σ ∈ S(n)
is an integrable involution.

We remark that the integrability condition, with a complexity of the order
O(n2) steps, is easy to verify for any given Sturm involution σ ∈ S(n).

For future reference we next recall the standard tool widely used to discuss
periodic solutions of (3.1) – the period map; see for example [Ura64, Smo83,
Sch90, Roc07]. Let v = v(x, a) denote the solution of (3.1) with initial value
v(0, a) = a, v′(0, a) = 0, and let D ⊂ R denote the open set of real values
a ∈ R such that v = v(x, a) is a periodic nonconstant solution of (3.1). Then
the period map

TN
f = TN

f (a) : D → R+ (3.7)

is defined as the minimal period of the solution v = v(x, a), that is

v(TN
f (a), a) = v(0, a) = a , v′(TN

f (a), a) = v′(0, a) = 0 , (3.8)

and TN
f > 0 is minimal with these properties. Then a ∈ R corresponds to

the left boundary value of a nonconstant equilibrium vj ∈ EN
f , i.e. a = vj(0),

if and only if
TN

f (a) = 2π/` , for some ` ∈ N . (3.9)

The period map was used in an essential way in the proof of Theorem 5.
The above results, established for the Hamiltonian case f ∈ SturmN(u),

also extend to f ∈ SturmN(u, ux) in the class of reversible nonlinearities
f = f(v, p), which are even in the second variable,

f(v,−p) = f(v, p) . (3.10)

Indeed this ensures reversibility with respect to the reflection x 7→ −x of
the ODE (2.6) corresponding to the stationary problem for the equilibria
vj ∈ EN

f , which in this case has the form

v′′ + f(v, v′) = 0 . (3.11)
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For this reason the class of nonlinearities f satisfying (3.10) is called re-
versible in [FRW11]. Here the class of reversible f ∈ SturmN(u, ux) will be
denoted symbolically by

SturmN(u, u2
x) . (3.12)

The study of the Neumann problem (N) in the case of reversible f ∈
SturmN(u, u2

x) is analogous to the Hamiltonian case f ∈ SturmN(u). In
fact, the discussion of the phase portrait for the planar system

v′ = p , p′ = −f(v, p) , (3.13)

corresponding to the ODE (3.11) in the reversible case, is analogous to the
study of the planar system (3.2). In particular (3.11) is integrable as an
ODE, and the set C of its periodic orbits is open and bounded in the plane
(v, v′) due to dissipativity sign condition (1.4) of f . Moreover, C is symmetric
with respect to the v-axis and there is a period map TN

f of class C2,

TN
f : DN → R+ (3.14)

with DN := {a ∈ R : (a, 0) ∈ C}, which extends the period map (3.7)
introduced for f ∈ SturmN(u) to the case of reversible f ∈ SturmN(u, u2

x).
For the details see [FRW11].

These observations are condensed in the following

Theorem 5′: A Sturm permutation σ = σN
f ∈ S(n) is in the class of

reversible f ∈ SturmN(u, u2
x) if and only if σ is an integrable involution.

4. Heteroclinic connections: S1 versus Neumann

In this section we compare the characterization of heteroclinic orbits in
Sturm attractors, both, under periodic and Neumann boundary conditions.
We first recall the adjacency relations: for equilibria vj ∈ EN

f in the Neu-
mann problem (N), and for equilibria and rotating waves wj ∈ EP

f ∪ RP
f in

the periodic problem (P). We also recall a period map defined for prob-
lem (P). Then we follow a homotopy which freezes all rotating waves and
symmetrizes f = f(v, p) while preserving the Morse-Smale structure of the
Sturm attractor AP

f . This homotopy establishes an embedding relation be-
tween problems (P) and (N), which we use as a bridge between the adjacency
relations in both problems.

The adjacency relations, as developed by [Wol02b] for the Neumann prob-
lem (N), involve the use of zero numbers. We recall that zP in (1.10) is
computed for x ∈ S1 = R/2πZ. In the following we let zN denote the zero
number computed on the restricted half-interval x ∈ [0, π]. Accordingly, the
adjacency relation for the Neumann problem (N) employs the zero number
zN, while the adjacency relation for the periodic problem (P) uses the zero
number zP, see [FRW04].

Two different hyperbolic equilibria v1, v2 ∈ EN
f of the Neumann problem

(2.1), (2.2) are called (N)-adjacent if there does not exist another equilibrium
v ∈ EN

f such that

zN(v1 − v) = zN(v2 − v) = zN(v1 − v2) , and (4.1)
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v(0) is strictly between v1(0) and v2(0) . (4.2)

Two hyperbolic Neumann equilibria v1, v2 ∈ EN
f possess a heteroclinic orbit

if, and only if, they are (N)-adjacent, see [Wol02b], Theorem 2.1.
In the case of periodic boundary conditions (P) the notion of adjacency

is entirely analogous. Two different hyperbolic equilibria or rotating waves
of (1.17), w1, w2 ∈ EP

f ∪ RP
f , are called (P)-adjacent if there does not exist

another element w ∈ EP
f ∪ RP

f such that

zP(w1 − w) = zP(w2 − w) = zP(w1 − w2) , and (4.3)

max
x∈S1

w(x) is strictly between max
x∈S1

w1(x) and max
x∈S1

w2(x) . (4.4)

Here k := zP(w1 − w2) must be even, due to the periodic boundary condi-
tions. In [FRW04], Theorem 1.3, it is shown that two equilibria or rotating
waves are connected by a heteroclinic orbit if, and only if, they are (P)-
adjacent.

The heteroclinic orbit connection results of [FRW04] are based on the
relation between the solutions of the periodic problem (P) on S1 = R/2πZ
and the solutions of a Neumann problem set up on the full interval 0 ≤
x ≤ 2π. In the present paper, however, it is more advantageous to relate
the solutions of our periodic problem (P), (1.17), which is set up on the full
interval 0 ≤ x ≤ 2π, with the solutions of the Neumann problem (N) set up
on the half-interval 0 ≤ x ≤ π. Therefore we need to adapt the heteroclinic
orbit connection results of [FRW04] to the setting of the half-interval.

We first recall the “freezing” and “symmetrizing” homotopies that change
the nonlinearity f = f(u, ux) preserving the heteroclinic structure by the
Morse-Smale property. We start with problem (P).

We define the period map TP
f to be used with problem (P) via the planar

system
v′ = p , p′ = −f(v, p)− cp (4.5)

which corresponds to the rotating wave equation (1.19) with wave speed
parameter c ∈ R.

Let CP ⊂ R2 denote the open set of initial conditions (v, p) for which
there exists some c ∈ R such that (v, p) is a periodic point of (4.5). Note
that dissipativity sign condition (1.4) of f = f(v, p) implies that CP and
the possible wave speeds c are bounded, [FRW04]. Inspired by Matano and
Nakamura, [MN97], we define:

(i) the unique wave speed c = c(v, p) such that (v, p) is a periodic point;
(ii) the minimal period

TP
f = TP

f (v, p) (4.6)

of the periodic orbit through (v, p).
See also [FRW04], Lemma 4.2. Let TP

f (a) = TP
f (a, 0) denote the restriction

of TP
f (v, p) to the open set of initial values (v, p) on the v-axis,

TP
f : DP → R+ (4.7)

with DP := {a ∈ R : (a, 0) ∈ CP}. Note that the function c = c(v, p)
is bounded. Moreover, by construction, c(v, p) is in fact a first integral of
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(4.5). Indeed all points on the periodic orbit through the point (v, p) share
the same value c = c(v, p).

The solution w = w(x) of (4.5) with initial value (v, p) = (a, 0) for a ∈ DP

and nonzero c := c(a, 0) corresponds to a rotating wave w ∈ RP
f of (1.17) if,

and only if,
TP

f (a) = 2π/`, for some ` ∈ N . (4.8)
Furthermore, this rotating wave is hyperbolic if and only if

ṪP
f (a) := dTP

f (a)/da 6= 0 . (4.9)

See [FRW04], Lemma 4.4. The integer number ` = `(w) introduced in (4.8)
is called the period lap number of w, and is half of the Matano lap number,

`(w) = zP(wx)/2 . (4.10)

See, also [FRW11].
We recall that CP is bounded and that minimal periods are uniformly

bounded from below [AR67, Yor69]. Hence hyperbolicity of all rotating
waves implies finiteness of RP

f . In the following, for f ∈ SturmP(u, ux), we
denote by m the number of spatially homogeneous equilibria of (1.17) and
by q the number of its rotating waves, i.e.

m := #EP
f , q := #RP

f . (4.11)

Shifted spatial profile snapshots of the same rotating wave are considered
identical, of course.

The “freezing” homotopy introduced in [FRW04] is a C2-smooth homo-
topy f τ , 0 ≤ τ ≤ 1, of the form

f τ (v, p) = f(v, p) + τc(v, p)p . (4.12)

This homotopy, from f0 = f(v, p) to h(v, p) := f1, “freezes” all rotating
waves to zero wave speed as τ goes from 0 to 1. Most importantly the
homotopy does not change the spatial profiles of the rotating waves and
preserves the period map TP

f in an open region CP
0 ⊂ CP which includes all

interesting values of TP
f in view of (4.8), say for example TP

f (v, p) ≤ 3π.
Hence, this homotopy produces a nonlinearity h for which the period map,
in the region CP

0 , satisfies
TP

h = TP
f , (4.13)

and all rotating waves become frozen waves. Therefore we obtain

RP
h = FP

h , (4.14)

and the x-profiles w = w(x) of the previously rotating waves become the x-
profiles of frozen waves, alias spatially nonhomogeneous stationary solutions
w ∈ FP

h . Of course, here the frozen waves w ∈ FP
h are taken together with

all their shifted snapshot copies w(·+ ϑ) for ϑ ∈ S1.
In addition, h satisfies h(a, 0) = f(a, 0) for all a ∈ R. Thus the zero sets

ZP of f(·, 0) and h(·, 0) coincide,

ZP
h = ZP

f (4.15)

and hyperbolicity of all spatially homogeneous equilibria e ∈ ZP
h is preserved.

In fact, an easy computation shows that hyperbolicity of e ∈ ZP
h is equivalent

to hv(e, 0) 6= k2, k ∈ Z and this condition is ensured by hv(e, 0) = fv(e, 0).
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Figure 1. Top: A phase portrait corresponding to a frozen non-
linearity h. The region CP

0 := C1 ∪ C2 ∪ C3 is shaded in light
gray. The region U, in dark gray, corresponds to the set of orbits
which intersect the v-axis exactly once. Bottom: A phase por-
trait corresponding to the symmetrized nonlinearity g. The region
Q1(CP

0 ) := C1 ∪ C2 ∪ C3 is shaded in light gray, and the region
Q1(U) = U is shaded in dark gray.

Therefore, the freezing homotopy does not affect the homogeneous equilibria.
Moreover, it does not introduce any additional equilibria, frozen or rotating
waves.

As remarked before, spatially nonhomogeneous equilibria w ∈ FP
h which

arrise from hyperbolic rotating waves are not hyperbolic as equilibria. For
this reason h 6∈ SturmP(u, ux), in general. However, in view of (4.13), (4.9),
the equilibria w ∈ FP

h are normally hyperbolic, i.e. the trivial eigenvalue
of the linearization at w is simple. This condition is sufficient to invoke
the Morse-Smale property and claim the preservation of the heteroclinic
connectivity along the homotopy. See [FRW04] for details.

The “symmetrizing” homotopy, also introduced in [FRW04], runs from
the nonlinearity h to a reversible nonlinearity g, i.e. such that

g(v,−p) = g(v, p) (4.16)

for all v, p. This homotopy symmetrizes the periodic orbits of the planar
system (4.5) with respect to the v-axis and preserves the period map TP

h ,
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again in the region CP
0 . The symmetrization homotopy is a family of diffeo-

morphisms Qτ , 0 ≤ τ ≤ 1, of the phase plane (v, p) which takes the region
Q0(CP

0 ) = CP
0 to a region Q1(CP

0 ) which is symmetric with respect to the
v-axis. This symmetric region is obtained from CP

0 by the harmonic mean
between orbit points (v, p) on the upper half-plane and their images (v,−p̃)
from the lower half-plane. For details we refer to [FRW04]. An illustra-
tion is shown in Figure 1. We remark that this symmetrization extends
to all the orbits which intersect the v-axis only once. Then the homotopy
gτ , 0 ≤ τ ≤ 1, with g0 = h, is obtained from the phase portrait defined
in Qτ (CP

0 ). The final nonlinearity g is obtained by an arbitrary C2-smooth
extension of g1 to the plane, preserving the reversibility symmetry (4.16).
Then we have

TP
g ◦Q1 = TP

h , (4.17)

on CP
0 . Moreover, the symmetrization can be accomplished in such way

that g(a, 0) = h(a, 0) for all a ∈ R, so that all the spatially homogeneous
equilibria are preserved, i.e.

ZP
g = ZP

h , (4.18)
together with their hyperbolicity. Again, dissipativity sign condition (1.4)
is preserved and no new equilibria, frozen or rotating waves are introduced.

We emphasize that both the freezing and symmetrizing homotopies pre-
serve the relative configuration in the phase plane (v, p) of the periodic orbits
and fixed points corresponding to rotating waves and equilibria of problem
(P).

Since hyperbolicity fails at frozen waves, we have g 6∈ SturmP(u, ux).
However, normal hyperbolicity for v ∈ FP

g prevails. Indeed (4.17) restricted
to the v-axis yields

TP
g (a) = TP

h (a) , (4.19)

for all a ∈ DP
0 := {a ∈ R : (a, 0) ∈ CP

0 }. Hence preservation of heteroclinic
connectivity ensues.

Let v ∈ FP
g denote a symmetrized frozen wave, i.e. a solution of

v′′ + g(v, v′) = 0 , x ∈ S1 . (4.20)

In fact, each frozen wave v = v(x) is reflection symmetric in S1, by re-
versibility of g(v, p). Consider the extreme values

v = max
x∈S1

v(x) , v = min
x∈S1

v(x) . (4.21)

Among the x-shifted copies of v in FP
g there are representatives v±(x) =

v(x− s±) which satisfy

v′±(0) = 0 , ±v′′±(0) < 0 . (4.22)

That is, v+, v− correspond to the solutions which have their maximum and
minimum value, respectively, occurring at x = 0:

v+(0) = v , v−(0) = v . (4.23)

This is where we invoke the reversibility (4.16) of g(v, p). By reflection
symmetry of (4.20), periodicity v±(0) = v±(2π) and v′±(0) = v′±(2π) = 0
imply

v±(x) = v±(2π − x) , v′±(x) = −v′±(2π − x) . (4.24)
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For x = π we obtain
v′±(π) = 0 . (4.25)

Therefore v±(x) both satisfy Neumann boundary conditions on the half-
interval 0 ≤ x ≤ π and, using the same notation for the restrictions of v±
to the half-interval, we have v± ∈ FN

g ⊂ EN
g .

Since we obtain exactly two distinct solutions v+, v− ∈ FN
g for each ro-

tating wave w ∈ RP
f , the Neumann problem possesses exactly 2q spatially

nonhomogeneous solutions. In addition to these solutions, also the spatially
homogeneous solutions e ∈ ZP

g = ZP
f of (4.20) satisfy Neumann boundary

conditions. Hence v ≡ e ∈ ZN
g and the Neumann problem possesses ex-

actly m spatially homogeneous solutions. Therefore, by cutting the circle
S1 at x = 0 and x = π we obtain a Neumann problem (N) on the resulting
half-interval with n := m+ 2q stationary solutions, EN

g = ZN
g ∪ FN

g .
Comparing the period maps for (N) and (P) we obviously have the identity

TN
g = TP

g . Hence g ∈ SturmN(u, u2
x). In addition, if v ∈ FN

g possesses the
extreme values (4.21), then

TN
g (v) = TN

g (v) = 2π/` , ` ∈ N , (4.26)

by (3.9). Moreover, the following alternative is satisfied:

v+(π) = v+(0) = v , v−(π) = v−(0) = v if ` is even ,

v+(π) = v−(0) = v , v−(π) = v+(0) = v if ` is odd .
(4.27)

The integer ` := 2π/TN
g (v) is the period lap number of the frozen wave v+.

Indeed ` = `(v+) = `(v−). Note that

`(v±) = zP(v±,x)/2 = zN(v±,x) + 1 (4.28)

coincides with the Matano lap number on the Neumann half-interval x ∈
[0, π].

We collect the properties of the composed freezing and symmetrizing ho-
motopy in the following:

Lemma 6: Let f ∈ SturmP(u, ux). Then there exists a C2 homotopy
f τ , 0 ≤ τ ≤ 1, from f0 = f(v, p) to a reversible f1 = g(v, p), which is even
in p, such that:

(i) All spatially homogeneous solutions of the periodic problem (P) are
preserved,

ZP
g = ZP

f = EP
f , (4.29)

and remain hyperbolic along the homotopy.
(ii) All rotating waves wk ∈ RP

f remain (normally) hyperbolic and become
reflection symmetric frozen waves vk ∈ FP

g which satisfy

max
x∈S1

vk(x) = max
x∈S1

wk(x) ,

min
x∈S1

vk(x) = min
x∈S1

wk(x) .
(4.30)

Furthermore, the period map TP
f is preserved along the homotopy, on

a restricted domain CP
0 which contains the periodic spatial profiles of
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all rotating waves wk ∈ FP
f . Hence,

TP
g (a) = TP

f (a) for a ∈ DP
0 , (4.31)

where DP
0 = {a ∈ R : (a, 0) ∈ CP

0 }. Therefore, all frozen waves vk ∈
FP

g are normally hyperbolic. Moreover, no new frozen or rotating
waves are introduced.

In general g 6∈ SturmP(u, ux) but, instead, g ∈ SturmN(u, u2
x). In addition,

the following relations between problems (P) and (N) are satisfied:
(iii) v ≡ e is a spatially homogeneous equilibrium v ∈ ZP

g if and only if
also v ≡ e ∈ ZN

g .
(iv) Each frozen wave v ∈ FP

g has two different Neumann representatives
v+, v− defined by (4.23), (4.21). Denoting their restrictions to the
half-interval 0 ≤ x ≤ π by v+, v− again, we have that v ∈ FP

g if and
only if v+, v− ∈ FN

g .
(v) The period maps TN

g and TP
g are identical,

TN
g = TP

g . (4.32)

(vi) The boundary values of v+, v− ∈ FN
g on the half-interval 0 ≤ x ≤ π

satisfy (4.27), (4.26).

Let us relate the Neumann semiflow SN
g (t) on XN = Hs(0, π)∩ {u : ux =

0 at x = 0, π} with the S1 semiflow SP
g (t) on XP = Hs(S1) = Hs(R/2πZ).

Recall that g = g(v, p) is even in p, i.e. reversible. We first observe the
isometric equivalence

XN ∼= XP ∩ {u : all bk = 0} (4.33)

in terms of the Fourier expansion (1.7) of u in Section 1. Here we have
represented elements u ∈ XN as

u =
∑
k≥0

ak cos kx , (4.34)

due to their L2 eigenfunction expansion for the Laplacian ∂xx, and we can
define XN by the Fourier coefficients ak via the bounded norm

‖u‖2
XN :=

∑
k≥0

(1 + k2)sa2
k . (4.35)

Thanks to Fourier, this follows directly from the definition of the fractional
power space XN := D((id−∂2

xx)s) under Neumann boundary conditions.
Alternatively, and circumventing the above slight abuse of notation, we may
define the equivalence (4.33) by explicit reflection through the boundary as
the lifting

E : XN → XP ∩ {u : all bk = 0}
u 7→ ũ

(4.36)

where ũ(x) := u(x), for 0 ≤ x ≤ π, and ũ(x) := u(2π − x), for π ≤ x ≤ 2π.
In particular the lift E commutes with the respective semiflows

SP
g (t)Eu = ESN

g (t)u , (4.37)
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for all u ∈ XN. Indeed this follows from uniqueness of both semiflows and
invariance of the reflection invariant subspace XP ∩ {u : all bk = 0} under
the O(2)-equivariant semiflow SP

g (t). The latter fact hinges on x-reversibility
of g, of course.

Remark that, by Lemma 6, (iii) and (iv), each equilibrium or rotating
wave w ∈ EP

f ∪ RP
f of (P) is represented by an equilibrium v+ ∈ EN

g of (N)
on the half-interval x ∈ [0, π] with maximum value at x = 0. Comparing the
adjacency definitions (4.2) in (N) and (4.4) in (P) we obtain the following
correspondence:

Theorem 7: Let f ∈ SturmP(u, ux) and g ∈ SturmN(u, u2
x) denote two

homotopy related nonlinearities as in Lemma 6. Let w1, w2 ∈ EP
f ∪RP

f denote
two different equilibria or rotating waves of problem (P) given by (1.17), and
let v1

+, v
2
+ ∈ EN

g denote the corresponding representative equilibria of problem
(N), i.e. the frozen Neumann solutions. Then w1, w2 are (P)-adjacent if and
only if v1

+, v
2
+ are (N)-adjacent. Moreover

zN(v2
+ − v1

+) = zP(w2 − w1)/2 . (4.38)

Proof: As in the previous Lemma, we let vj
+ ∈ EP

g denote the frozen
and symmetrized representatives of the elements wj ∈ EP

f ∪ RP
f , using the

same notation as for their restrictions to the half-interval, vj
+ ∈ EN

g . We
recall that the composed freezing and symmetrizing homotopy preserves the
relative configuration in the phase plane (v, p) of the periodic orbits and
fixed points corresponding to rotating waves and equilibria of problem (P).
In particular, (4.30) implies that the periodic orbits of v1

+ and v2
+ have the

same relative position in the phase plane (v, p) as the periodic orbits of w1

and w2. If these orbits are not nested then

zP(v2
+ − v1

+) = zP(w2 − w1) = 0 . (4.39)

If, without loss, the orbit of w1 is in the interior of the orbit of w2, then the
phase plane argument of [MN97], Lemma 4.8, implies that

zP(w2 − w1) = zP(w2
x) , (4.40)

and also
zP(v2

+ − v1
+) = zP(v2

+,x) . (4.41)
Then (4.31) shows that

zP(w2
x) = 4π/TP

f (a) = 4π/TP
g (a) = zP(v2

+,x) , (4.42)

where a := maxx∈S1 w2(x) = maxx∈S1 v2
+(x). Hence

zP(v2
+ − v1

+) = zP(w2 − w1) . (4.43)

Since the periodic problem is set up on the full interval x ∈ [0, 2π] while the
Neumann problem is set up on the half-interval x ∈ [0, π], we indeed have
(4.38). In particular k := zP(w1 − w2) is even.

If w1, w2 are not (P)-adjacent, then there is an equilibrium or rotating
wave w ∈ EP

f ∪ RP
f of (1.17) with

zP(w1 − w) = zP(w2 − w) = k (4.44)
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and satisfying (4.4). The corresponding representatives v1
+, v

2
+ and v+ in

EN
g , which are equilibria of the Neumann problem (N) with maximum values

occurring at x = 0, satisfy

v+(0) is strictly between v1
+(0) and v2

+(0) . (4.45)

By the phase plane argument ([MN97], Lemma 4.8) we have

zN(v1
+ − v+) = zN(v2

+ − v+) = k/2 . (4.46)

Hence, in view of (4.38), v1
+, v

2
+ are not (N)-adjacent, cf. (4.1), (4.2).

Conversely, suppose v1
+, v

2
+ are not (N)-adjacent. Then there exists an

equilibrium solution v ∈ EN
g of the Neumann problem satisfying

zN(v1
+ − v) = zN(v2

+ − v) = zN(v1
+ − v2

+) (4.47)

and v(0) strictly between v1
+(0) and v2

+(0). Without loss of generality we
assume

v1
+(0) < v(0) < v2

+(0) . (4.48)

Let ṽ1
+, ṽ

2
+ and ṽ denote the reflection extensions through the boundary of

v1
+, v

2
+ and v, respectively. These are frozen waves or spatially homogeneous

equilibria of the frozen symmetrized periodic problem (P),

ṽ1
+, ṽ

2
+, ṽ ∈ EP

g = ZP
g ∪ FP

g . (4.49)

Then (4.47) implies

zP(ṽ1
+ − ṽ) = zP(ṽ2

+ − ṽ) = zP(ṽ1
+ − ṽ2

+) = k (4.50)

with k := 2zN(v1
+ − v2

+). Moreover, if ṽ is spatially nonhomogenous, then
ṽ(0) is either the maximum or the minimum value of ṽ. Respectively, ṽ ∈ FP

g

is the representative v+, or v−, of a frozen wave corresponding to a rotating
wave w ∈ RP

f . Therefore, by the invariance of zP(ṽj
+(· + ϑ) − ṽ(·)) with

respect to phase shifts ϑ ∈ S1 (see [AF88, MN97, FRW04] again) we find
that

zP(w1 − w) = zP(w2 − w) = zP(w1 − w2) . (4.51)

The same holds true if ṽ ≡ e ∈ ZP
g is spatially homogeneous, in which

case w ≡ e ∈ EP
f is the corresponding spatially homogeneous equilibrium.

Furthermore, we also have

max
x∈S1

w1(x) = v1
+(0) , max

x∈S1
w2(x) = v2

+(0) . (4.52)

If k > 0 we conclude from ṽ(0) = v(0) > v1
+(0) and zP(v1

+ − ṽ) = k that
ṽ = v+. Hence

max
x∈S1

w(x) = max
x∈S1

ṽ(x) = v(0) . (4.53)

Consequently, we have

max
x∈S1

w1(x) < max
x∈S1

w(x) < max
x∈S1

w2(x) . (4.54)

If k = 0 this holds true trivially. Hence w blocks adjacency of w1 and w2

which, therefore, cannot be (P)-adjacent. This concludes the proof. �
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Adjacency in (N) determines the heteroclinic connectivity of the elements
in EN

g . The same occurs in (P) for the elements of EP
f ∪RP

f . In fact, we recall
the following relation between adjacency and connectivity in (P):

Theorem 8: (See [FRW04], Theorems 1.3 and 1.4.) Again let f ∈
SturmP(u, ux) and consider any two different (hyperbolic) elements w± ∈
EP

f ∪ RP
f . Then there is a heteroclinic orbit connection between w+ and w−

if, and only if, w+ and w− are (P)-adjacent. Moreover, the connecting orbits
run in the direction of decreasing Morse indices, that is, w+

; w− only if

iP(w+) > iP(w−) . (4.55)

The two previous theorems together show that, for f ∈ SturmP(u, ux),
two different (hyperbolic) equilibria or rotating waves w1, w2 ∈ EP

f ∪ RP
f of

(1.17) on S1 = R/2πZ are connected by a heteroclinic orbit if, and only if,
the corresponding frozen Neumann solutions v1

+, v
2
+ ∈ EN

g are (N)-adjacent
on the half-interval [0, π].

For completeness we next collect various aspects of this relation between
the equilibria and rotating waves of our periodic problem (P) and the cor-
responding frozen equilibria of the Neumann problem (N).

Theorem 9:
(i) Let f(e, 0) = 0 define a homogeneous equilibrium of (P) or (N). Then

e is an equilibrium both for (P) and (N). Moreover, e is hyperbolic if and
only if fv(e, 0) 6= k2, k ∈ Z. The respective Morse indices iP(e) for e ∈ EP

f

and iN(e) for e ∈ EN
f satisfy:

iP(e) = 2iN(e)− 1 = 1 + 2[
√
fv(e, 0)] > 0 if fv(e, 0) > 0 ,

iP(e) = iN(e) = 0 if fv(e, 0) < 0 ,
(4.56)

where the floor function [·] denotes the integer part.
(ii) Let w ∈ RP

f denote a rotating wave of the periodic problem (P) with
nonlinearity f = f(v, p). Also for problem (P), but with a reversible non-
linearity g = g(v, p) obtained from f by the freezing and symmetrizing ho-
motopy of Lemma 6, let v ∈ FP

g represent a nonhomogeneous frozen wave
equilibrium corresponding to w. In addition, let v± ∈ FP

g denote x-shifted
copies of v such that

v+(0) = max
x∈S1

v(x) = max
x∈S1

w(x) ,

v−(0) = min
x∈S1

v(x) = min
x∈S1

w(x) .
(4.57)

Then the rotating wave w is (normally) hyperbolic for the problem (P) with
nonlinearity f if, and only if, the frozen representation v+ ∈ EN

g in the half-
interval x ∈ [0, π] is a hyperbolic equilibrium of the Neumann problem (N)
with nonlinearity g. This statement also holds with v+ replaced by v−.

Let `(w) denote the period lap number of the rotating wave w ∈ RP
f ; see

(4.10). Then, the period lap number of the frozen waves v, v± ∈ FP
g satisfy

`(v+) = `(v−) = `(v) = `(w) . (4.58)
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Moreover, the Morse indices of w ∈ RP
f and v+ ∈ EN

g , for problems (P) and
(N) respectively, satisfy

iN(v+) ∈ {`(v+), `(v+) + 1} , and (4.59)

iP(w) =

 2iN(v+)− 1 if iN(v+) = `(v+) ,

2iN(v+)− 2 if iN(v+) = `(v+) + 1 .
(4.60)

In addition iN(v+) = iN(v−) and (4.59), (4.60) also hold with v+ replaced
by v−.

Proof of Theorem 9(i): The proof of (i) is an elementary computation
involving sines and cosines in the case of (P) and only cosines in the case
of (N). As a remark we point out that (4.56) implies that the Morse index
iP(e) of an unstable homogeneous hyperbolic equilibrium e ∈ EP

f of (P) is
always odd. �

As an outline to the proof of (ii) we recall the relations (4.31), (4.32)
between period maps of (P) and (N) in Lemma 6, i.e.

TN
g (a) = TP

g (a) = TP
f (a) for a ∈ DP

0 . (4.61)

We use these identities to show that hyperbolicity of the equilibrium v+ ∈ EN
g

of (N) is equivalent to hyperbolicity of w ∈ RP
f in case w is a rotating wave

of (P), or its normal hyperbolicity in case w is a frozen wave.
The Neumann case (N) is considered in [FRW11], Lemma 2, and refers

to similar results appearing in the literature, in particular [Smo83, BF88,
BF89, FRW04]. We restate this result in the following Proposition.

Proposition 10: Let v+, v− ∈ EN
g denote equilibrium solutions of the

Neumann problem (N) in the half-interval x ∈ [0, π] corresponding to x-
shifted copies of a frozen wave v ∈ FP

g with v+(0) = maxx∈S1 v(x), v−(0) =
minx∈S1 v(x). Then, hyperbolicity of v+ ∈ EN

g (and also of v− ∈ EN
g ) occurs

if and only if
ṪN

g (a) 6= 0 (4.62)

for a := v+(0). Also iN(v+) = iN(v−) in the hyperbolic case. Moreover,

iN(v+) =


`(v+) if ṪN

g (a) > 0 ,

`(v+) + 1 if ṪN
g (a) < 0 ,

(4.63)

where the period lap number `(v+) of v+ satisfies `(v+) = 2π/TN
g (a).

For the benefit of the reader we include the proof of this well known result.

Proof: We start with a reversible C2-smooth nonlinearity g = g(v, p),
even in p, and let v = v(·, α) denote the solution of the ODE

v′′ + g(v, v′) = 0 , (4.64)

with initial conditions

v(0, α) = α , v′(0, α) = 0 . (4.65)
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By definition (3.14) of the period map TN
g : DN → R+ we also have that

v(kTN
g (α), α) = α , v′(kTN

g (α), α) = 0 (4.66)

for α ∈ DN and any integer k ∈ N. Moreover, in view of the reversibility of
g and by the arguments (4.24)-(4.25) we obtain

v′(kTN
g (α)/2, α) = 0 . (4.67)

Differentiating this equation with respect to α and defining

v(·, α) := ∂v(·, α)/∂α (4.68)

we have

v′(kTN
g (α)/2, α) + v′′(kTN

g (α)/2, α) k ṪN
g (α)/2 = 0 . (4.69)

For a ∈ DN such that TN
g (a) = 2π/k and v′′(0, a) < 0 we have that a =

v(0, a) is the maximum value of the 2π-periodic solution v of (4.64). In
this case, the restriction of v(·, a) to the interval x ∈ [0, π] is v+ ∈ EN

g . In
addition,

sign v′′(π, a) = (−1)` sign v′′(0, a) = (−1)`+1 , (4.70)
where ` := `(v+) is the period lap number of the equilibrium v+; see (4.28).
Together with (4.69) this shows that ṪN

g (a) 6= 0 implies

sign v′(π, a) = (−1)` sign ṪN
g (a) . (4.71)

To prove the specific claims (4.63) we establish a relation between v′(π, a)
and the Morse index iN(v+). Towards this objective we first remark that v
solves the linearization

Lv := v′′ + gp(v(x), v′(x))v′ + gv(v(x), v′(x))v = 0 , (4.72)

with initial conditions

v(0, α) = 1 , v′(0, α) = 0 ; (4.73)

see (4.65). But vx also solves Lvx = 0 and is linearly independent from
v, by (4.65), (4.73). Hence the classical Sturm comparison theorem implies
that the zeros of v and vx alternate. See, for example, [CL55] or [Har64].
Therefore, we obtain

zN(v(·, a)) = zN(vx) + 1 = `(v+) . (4.74)

More generally, let ψµ denote the solution of the eigenvalue problem

Lψµ = µψµ (4.75)

with initial conditions

ψµ(0) = 1 , ψ′µ(0) = 0 . (4.76)

Then we have
v(·, a) = ψ0 . (4.77)

Note that (4.69) with ṪN
g (a) = 0 yields v′(π, a) = 0. In this case ψ0

restricted to x ∈ [0, π] is an eigenfunction of the linearization of the Neumann
problem (N) around the equilibrium v+ corresponding to the eigenvalue
µ = 0 = λ`. In particular, this yields the hyperbolicity claim (4.62) for the
Neumann equilibrium v+ on the half-interval x ∈ [0, π].
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Again by Sturm comparison, the nonzero vector Ψµ := (ψµ, ψ
′
µ) rotates

more slowly than V := (v, v′) for positive eigenvalue parameters µ, whereas
it rotates faster for negative µ. Therefore (4.73) and (4.74) imply that the
eigenvalues λk of the Sturm-Liouville Neumann linearization L satisfy

λ` > 0 > λ`+1 ⇔ sign v′(π, a) = (−1)`+1 ,
λ` < 0 < λ`−1 ⇔ sign v′(π, a) = (−1)` .

(4.78)

Combined with (4.71), this is equivalent to

iN(v+) = `(v+) + 1 ⇔ ṪN
g (a) < 0 ,

iN(v+) = `(v+) ⇔ ṪN
g (a) > 0 ,

(4.79)

which proves claim (4.63). The claims on v− follow from (4.26) and the
same Sturm comparison argument. �

Proof of Theorem 9(ii): To prove (ii) we use (4.61) to establish the rela-
tion between hyperbolicity of the Neumann equilibria v± ∈ EN

g of (N) and
(normal) hyperbolicity of the rotating or frozen wave w ∈ RP

f ∪ FP
f of (P).

Hyperbolicity in the Neumann case (N) is the subject of Proposition 10. In
the case of problem (P), (normal) hyperbolicity of w ∈ RP

f occurs if, and
only if, ṪP

f (w) 6= 0 for w := maxx∈S1 w(x), see also (4.9). For the proof
of this result see [FRW04], Lemmas 4.3 and 4.4. Moreover, by [FRW04],
Lemma 5.3, the following alternative holds

iP(w) =


2`(w)− 1 if ṪP

f (w) > 0 ,

2`(w) if ṪP
f (w) < 0 ,

(4.80)

where `(w) = zP(wx)/2 is the period lap number of w, (4.10). By (4.8) we
have `(w) = 2π/TP

f (w). Then, equality of the period lap numbers (4.58)
follows from (4.61). Finally, a comparison between (4.80) and (4.63) via

`(v+) = 2π/TN
g (w) = 2π/TP

f (w) = `(w) (4.81)

yields (4.60) and completes the proof. �

5. Proof of the main result

This section is dedicated to the proof of Theorem 3, which is the main
result already stated in Section 1. In preparation for this proof, we recall
the definition of the Sturm permutation σP

f in the spatially periodic setting
of f ∈ SturmP(u, ux). Let (ν1, . . . , νn) denote the vector whose entries,
ordered by ν1 < ν2 < · · · < νn, correspond to the collected values of the
spatially homogeneous equilibria ej ∈ EP

f , j = 1, . . . ,m, and the maxima
wk and minima wk of the rotating waves wk ∈ RP

f , k = 1, . . . , q. Of course
n = m+2q. Then, the cycle decomposition of the permutation σP

f ∈ S(n) of
{ν1, . . . , νn} consists of all maximum/minimum 2-cycles (wk wk) for those
rotating waves wk with odd period lap number `k := `(wk), see (4.10):

σP
f =

∏
`k odd

(wk wk) . (5.1)
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Proof of Theorem 3: Let g = g(v, p) denote the reversible nonlinearity
obtained from f = f(v, p) by the freezing and symmetrizing homotopy of
Lemma 6. Our objective is to identify the Sturm permutation σP

f defined
for f ∈ SturmP(u, ux) as the Sturm permutation σN

g derived from the frozen
and symmetrized g ∈ SturmN(u, u2

x),

σP
f = σN

g . (5.2)

Indeed suppose (5.2) has been proved. Theorem 5′ applied to σN
g then

shows that the Sturm permutation σP
f is necessarily an integrable involu-

tion. Moreover, this condition is also sufficient. In fact, by Theorem 5 all
Sturm integrable involutions are realized by nonlinearities g ∈ SturmN(u).
Therefore, all Sturm integrable involutions are realized by nonlinearities
f ∈ SturmP(u, ux) of the form f(u, p) = g(u) + cp with g ∈ SturmN(u) and
c 6= 0. This proves Theorem 3, up to the P−N claim (5.2) above.

To prove (5.2) we scrutinize the freezing and symmetrizing homotopy of
Lemma 6. The homogeneous equilibria ej , j = 1, . . . ,m, in EP

g are also zeros
of g(·, 0), hence equilibria of the Neumann problem (N) on the half-interval
x ∈ [0, π];

ej ∈ EN
g , j = 1, . . . ,m . (5.3)

Let vk ∈ FP
g , k = 1, . . . , q, denote the reflection symmetric frozen waves

corresponding to the rotating waves wk ∈ RP
f , k = 1, . . . , q; see Lemma 6,

(ii). Moreover, let vk,± ∈ FN
g , k = 1, . . . , q, denote the representatives of

the frozen waves vk which satisfy Neumann boundary conditions on the
half-interval x ∈ [0, π]; see Lemma 6, (iv). By (4.23), (4.21) and (4.30) we
have

vk,+(0) = wk = max
x∈S1

wk(x) ,

vk,−(0) = wk = min
x∈S1

wk(x) .
(5.4)

To compute the Sturm permutation σN
g , let {v̂1, . . . , v̂n}, denote the set

of equilibria of the Neumann problem, v̂r ∈ EN
g , r = 1, . . . , n, ordered by

their initial values
v̂1(0) < v̂2(0) < · · · < v̂n(0) . (5.5)

Then, we have v̂r = νr for 1 ≤ r ≤ n and one of the following three
possibilities occur:

• v̂r is a spatially homogeneous equilibrium ej ∈ EN
g , in which case

v̂r(π) = v̂r(0) ; (5.6)

• v̂r is a frozen wave representative vk,± ∈ EN
g such that `k is even, in

which case again we have (5.6);
• v̂r is a frozen wave representative vk,± ∈ EN

g such that `k is odd, in
which case we have the alternative

v̂r(0) = wk and v̂r(π) = wk if v̂r = vk,+ ,

v̂r(0) = wk and v̂r(π) = wk if v̂r = vk,− .
(5.7)

Since σ = σN
g is defined by (2.14),

v̂σ(1)(π) < v̂σ(2)(π) < · · · < v̂σ(n)(π) , (5.8)



26 BERNOLD FIEDLER, CARLOS ROCHA, AND MATTHIAS WOLFRUM

we conclude from (5.6), (5.7) that σP
f = σN

g . This identifies σP
f as σN

g and
completes the proof of Theorem 3. �

6. Sturm Attractors in the class SturmP(u, ux)

Sturm permutations σP
f encode essential information on the Sturm at-

tractors AP
f . In particular, σP

f in the class of f ∈ SturmP(u, ux) collects
ODE information regarding the equilibria and rotating waves of AP

f such as
Morse indices, zero numbers, adjacency relations and period lap numbers.

In the following we represent the PDE Sturm attractors AP
f in the spatially

periodic class of S1-equivariant f ∈ SturmP(u, ux) by connection graphs GP
f .

The graphs GP
f are directed acyclic with m + q vertices of two types: m

vertices corresponding to the homogeneous equilibria v1, . . . , vm ∈ EP
f , rep-

resented by black dots; and q vertices corresponding to the rotating waves
w1, . . . , wq ∈ RP

f , represented by circles with Matano’s period lap num-
bers `(wk) = zP(wk,x)/2 attached. The directed edges of GP

f correspond to
heteroclinic orbit connections between adjacent elements of EP

f ∪ RP
f . By

transversality, heteroclinic connectivity in AP
f is transitive; see for example

[HMO02]. Moreover, Theorem 8 implies that heteroclinic orbits can only run
from higher to strictly lower Morse indices. Hence the connection graph GP

f

comes with a natural flow defined edge orientation. In addition, we invoke
transitivity to represent only heteroclinic connections v+

; v− between el-
ements v± ∈ EP

f ∪ RP
f which are not transitively connected via additional

elements w ∈ EP
f ∪ RP

f , eg. v+
; w ; v−. We call such heteroclinic con-

nections minimal since they are minimal with respect to the transitivity of
;. Therefore, an edge between two vertices v+, v− ∈ EP

f ∪ RP
f represents a

heteroclinic orbit connection v+
; v− which is minimal. By transitivity, all

heteroclinic connections in AP
f can be inferred from the minimal heteroclinic

connections.
The (minimal) flow-defined order of a Morse decomposition is an equiva-

lent notion; see for example [Mis95]. Indeed the homogeneous equilibria EP
f

and the rotating wave circles RP
f together define a Morse decomposition of

the global attractor AP
f , due to the absence of homoclinic orbits and of hete-

roclinic cycles among them. The flow-defined order is the minimal transitive
order relation compatible with the directed heteroclinic orbits u(t), t ∈ R,
among the distinct elements of EP

f ∪ RP
f . In other words, the flow-defined

order prefers to order as few pairs as possible: only if there exists a di-
rected heteroclinic path between two distinct elements of EP

f ∪ RP
f this pair

is ordered accordingly. Therefore the flow-defined order is indeed equivalent
to the above orientation of the acyclic connection graph GP

f of the global
attractor AP

f .
In the Neumann class SturmN(x, u, ux), Sturm attractors AN

f1
,AN

f2
with

the same Sturm permutation σN
f1

= σN
f2

are flow equivalent, cf. [FR00]. We
suspect that this also holds in the spatially periodic class SturmP(u, ux).
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Alas, a proof is elusive even though transversality reduces flow equiva-
lence to the construction of homotopies. By Lemma 6 we have reduced
SturmP(u, ux) to the reversible/integrable class SturmN(u, u2

x), but we are
lacking a homotopy in this class, as in the original equivariant class. Never-
theless, Theorem 8 shows that σP

f1
= σP

f2
implies connection equivalence of

AP
f1
,AP

f2
, in the sense that

GP
f1

= GP
f2
. (6.1)

Therefore, a list of all integrable Sturm involutions σP
f provides a first step

towards a classification of the Sturm attractors AP
f for f ∈ SturmP(u, ux).

We represent permutations σ ∈ S(n) of {1, 2, . . . , n} by cycle notation.
Let ι(n) denote the number of integrable Sturm involutions σ ∈ S(n). As
the number of meander permutations in S(n) increases exponentially with
n (see [LZ92]), the number ι(n) might also get very large with increasing
n. Table 1 shows the first six numbers in the sequence. Table 2 lists, up to
trivial equivalences induced by x 7→ −x, u 7→ −u, all Sturm permutations
σn,κ ∈ S(n), 1 ≤ κ ≤ ι(n), n ≤ 7, which are integrable involutions. See
[FRW11] for details on these lists.

n 1 3 5 7 9 11
ι(n) 1 1 2 4 10 23

Table 1. Number ι(n) of Sturm permutations σ ∈ S(n) which
are integrable involutions.

n = 1 :
σ1,1 = {1} = id ;

n = 3 :
σ3,1 = {1, 2, 3} = id ;

n = 5 :
σ5,1 = {1, 2, 3, 4, 5} = id ;
σ5,2 = {1, 4, 3, 2, 5} = (2 4) ;

n = 7 :
σ7,1 = {1, 2, 3, 4, 5, 6, 7} = id ;
σ7,2 = {1, 2, 3, 6, 5, 4, 7} = (4 6) ;
σ7,3 = {1, 6, 3, 4, 5, 2, 7} = (2 6) ;
σ7,4 = {1, 6, 5, 4, 3, 2, 7} = (2 6)(3 5) ;

Table 2. List of all integrable Sturm involutions σn,κ ∈ S(n), 1 ≤
κ ≤ ι(n), n ≤ 7, up to trivial equivalence.

By Theorem 3, Tables 1 and 2 also provide complete lists of all Sturm
permutations σP

f in the spatially periodic class f ∈ SturmP(u, ux).
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All necessary information to construct the connection graphs GP
f of the

associated Sturm attractors AP
f in that periodic class is contained in the

Sturm permutation σP
f . This includes not only ODE information like the

Morse indices and the period lap numbers. It also contains PDE information
like the heteroclinic adjacency relations of all equilibria and rotating waves
in EP

f ∪ RP
f . With the objective of constructing the connection graphs GP

f

from the Sturm integrable involution σ = σP
f we proceed in five steps to

sequentially determine all:
1. Stable homogeneous equilibria;
2. Unstable homogeneous equilibria;
3. Rotating waves;
4. Heteroclinic orbit connections;
5. Period lap numbers and Morse indices.

Step 1: Stable homogeneous equilibria.

Given an integrable Sturm involution σ = σP
f , we first compute the Morse

numbers ik(σ) according to (2.15). Then we determine the σ-stable points,
i.e. the points k such that ik(σ) = 0; see Section 3. By [FRW11], Lemma 7,
all σ-stable points k are fixed points of σ, that is σ(k) = k. This immediately
identifies the stable equilibria of AP

f , alias the ODE saddles of (4.20). Indeed,
by Theorem 9, (4.56), and (2.16) the stable equilibria correspond to the
solutions vk ∈ EP

f ∪ RP
f for which

iP(vk) = iN(vk) = ik(σ) = 0 . (6.2)

We recall that only equilibria of AP
f can be stable, [AF88]. Moreover, all

equilibria are spatially homogeneous, EP
f = ZP

f .

Step 2: Unstable homogeneous equilibria.

Next, we determine the remaining (unstable homogeneous) equilibria. We
remark that between each pair of consecutive stable equilibria there is ex-
actly one PDE unstable equilibrium, alias an ODE center of (4.20). Let
j < k denote the ordering of two successive stable equilibria, i.e.

ij(σ) = ik(σ) = 0 and ic(σ) > 0 for all j < c < k . (6.3)

Of course j and k are fixed by the permutation σ and, by [FRW11], Lemma
1, they are both odd. By the meander property of the permutation σ we
have a Jordan curve which intersects the horizontal axis transversely at
exactly n points; see Section 2. In our stylized version this Jordan curve
always intersects verticaly the horizontal axis and is composed of half-circles.
This curve is called a meander (see [Arn88]) and the intersection points
are numbered by 1, 2, . . . , n along the meander, and by σ(1), σ(2), . . . , σ(n)
along the horizontal axis. The meander section µ(j, k) corresponding to
the interval j, j + 1, . . . , k is also a Jordan curve which yields the section
σ(j), σ(j + 1), . . . , σ(k) of the permutation σ.

The Morse property ic(σ) ≥ 0, for j < c < k, implies

σ(j + 1) > j . (6.4)
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In fact, since σ = σ−1 is an involution, from (2.15) we obtain

ij+1(σ) = ij(σ) + (−1)j+1 sign(σ(j + 1)− σ(j)) . (6.5)

Hence ij(σ) = 0, σ(j) = j odd and ij+1(σ) > 0 yields (6.4). Therefore
σ(j+1) is located to the right of j on the horizontal axis. Similarly we have

σ(k − 1) < k (6.6)

and conclude that σ(k− 1) is located to the left of k on the horizontal axis.
To determine the (unique) unstable homogeneous equilibrium located be-

tween the (stable) equilibria vj and vk we consider the alternative k = j+ 2
or k > j + 2 (alias k ≥ j + 4).

If k = j+2 by (6.4) and (6.6) we have that σ(j+1) = j+1 is fixed as well
by the permutation. In this case, vj+1 = vk−1 is the unique (homogeneous)
equilibrium between vj and vk and is unstable with

iP(vj+1) = iN(vj+1) = ij+1(σ) = 1 , (6.7)

by (4.56). See Figure 2 (i) for an illustration of the meander section in this
case.

If k > j+ 2, we first remark that j+ 1 and k− 1 cannot both be fixed by
σ. To show this we argue by contradiction.

Assume that j + 1 and k − 1 are both fixed. Then

ik−1(σ) = ij+1(σ) = 1 , (6.8)

by (2.15); see illustration in Figure 2 (ii).
Let I(j + 1, k− 1) denote the section of the horizontal axis between j + 1

and k−1. If the meander section µ(j+1, k−1) does not intersect I(j+1, k−1)
then the union of µ(j+1, k− 1) with I(j+1, k− 1) is a closed Jordan curve

J(j + 1, k − 1) = µ(j + 1, k − 1) ∪ I(j + 1, k − 1) . (6.9)

In this case the rotation δ(j+1, k−1) of the tangent to the meander section
µ(j + 1, k − 1) between the extreme points j + 1 and k − 1 is equal to the
total rotation around the (piecewise smooth) Jordan curve J(j + 1, k − 1),
which is ±2π; see [doC76]. From the relation between the tangent rotation
and the Morse numbers, see for example [Roc91], we have

δ(j + 1, k − 1)/π = ik−1(σ)− ij+1(σ) . (6.10)

Then (6.8) implies δ(j+1, k−1)/π = 0 which contradicts the total rotation
of ±2π.

Hence the meander section µ(j + 1, k − 1) must intersect I(j + 1, k − 1)
at some point c0, j + 1 < c0 < k− 1. Assume that c0 is the first such point
along the meander µ(j + 1, k − 1), see again Figure 2 (ii). Then the union
of the meander section µ(j + 1, c0) with I(j + 1, c0) is also a closed Jordan
curve,

J(j + 1, c0) = µ(j + 1, c0) ∪ I(j + 1, c0) , (6.11)

with the orientation provided by the meander section µ(j+1, c0). Moreover,
as in (6.10) the rotation δ(j + 1, c0) of the tangent to the meander section
µ(j + 1, c0) between the extreme points j + 1 and c0 is

δ(j + 1, c0)/π = ic0(σ)− ij+1(σ) . (6.12)
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j j+1 j+2=k

j j+1 k-1 kc0

(iii)

(i)

(ii)

j j+1 k-1 kc0c’0

(iv) j j+1 ks(k-1)k-1 j+2 s(j+2)

a

g

(-)

(+)

Figure 2. Illustration of meander sections µ(j, k) in the follow-
ing cases: (i) k = j + 2; (ii) k > j + 2 and J(j + 1, c0) (with
shaded interior) oriented counter-clockwise (−); (iii) k > j + 2
and J(j + 1, c0) oriented clockwise (+); (iv) 2-cycles α and γ for
k > j + 2 and j + 1 fixed by σ.

This implies that the orientation of the Jordan curve J(j + 1, c0) is not
counter-clockwise. Indeed, the total rotation of the tangent around the
Jordan curve yields δ(j + 1, c0) = −2π. Then ij+1 = 1 implies ic0(σ) = 0
which corresponds to a σ-stable point c0 between j and k contradicting the
assumption ic0(σ) > 0 of (6.3).

We show next that the orientation of J(j + 1, c0) cannot be clockwise
either. In fact, in that case there must exist a point c′0 on the meander
section µ(j + 1, c0), i.e. j + 1 < c′0 < c0, which is located on the horizontal
axis to the left of j + 1 (and j). See the illustration in Figure 2 (iii). This
implies that c′0 is in a 2-cycle α0 of σ with

σ(c′0) < j < j + 1 < c′0 < k − 1 < k . (6.13)

Arguing symmetrically for the σ-fixed point k − 1 we have a last point c1
along the meander µ(j+1, k−1) at which µ(j+1, k−1) intersects I(j+1, k−1)
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and we obtain a point c′1, with c1 < c′1 < k − 1, which is in a 2-cycle α1 of
σ with

j < j + 1 < c′1 < k − 1 < k < σ(c′1) . (6.14)
By (6.13) and (6.14) the 2-cycles α0 and α1 are non-nested. Therefore they
must be separated by a σ-stable point c between j and k, by the integrability
condition (I.3) of σ. See Section 3. This contradicts the assumption ic(σ) >
0 of (6.3) and shows that j + 1 and k − 1 cannot both be fixed by σ.

Let j + 1 be fixed by σ. Then the point k − 1 belongs to a 2-cycle
α = (cα k − 1) of σ. Since k is σ-stable, cα satisfies cα = σ(k − 1) < k − 1.
See illustration in Figure 2 (iv). Remark that the point j + 2 belongs to a
2-cycle γ of σ with σ(j+2) < j+2. Therefore, to avoid a forbidden σ-stable
point, the integrability condition (I.3) of σ implies that α and γ are nested,
hence σ(k − 1) < j < j + 1. Moreover, the same argument implies that
there are no 2-cycles comprised between j and k. Then vj+1 is the unstable
equilibrium and has Morse index

iP(vj+1) = 2iN(vj+1)− 1 = 2ij+1(σ)− 1 > 0 (6.15)

by (4.56).
Arguing symmetrically if k − 1 is fixed by σ, we obtain the unstable

equilibrium vk−1 with Morse index

iP(vk−1) = 2iN(vk−1)− 1 = 2ik−1(σ)− 1 > 0 . (6.16)

Finally, if j + 1 also belongs to a 2-cycle β, the above argument symmet-
rically implies that β = (j + 1 cβ) with j + 1 < cβ = σ(j + 1). Hence, the
points j + 1 and k − 1 belong to the 2-cycles,

α = (cα k − 1) and β = (j + 1 cβ) , (6.17)

and the integrability condition (I.3) of σ implies

cα = σ(k − 1) < cβ = σ(j + 1) , (6.18)

again to avoid a forbidden σ-stable point. Therefore, either α and β are
identical, or they are nested by the integrability condition (I.1) of σ. In the
first case α = β implies j + 1 = σ(k − 1) and k − 1 = σ(j + 1). See the
illustration in Figure 3 (a). If α 6= β the following alternative applies: either
α is the inner 2-cycle, i.e. α ⊂ β in the obvious notation, in which case

cβ < j + 1 < cα < k − 1 ; (6.19)

or β is the inner 2-cycle, i.e. α ⊃ β, in which case

j + 1 < cβ < k − 1 < cα . (6.20)

See the illustration in Figure 3 (b) and (c), respectively.
Note that all 2-cycles comprised between j and k are centered. In fact,

they are core-equivalent by the absence of σ-stable points. Hence they are
centered by the integrability condition (I.2) of σ. Therefore, the middle
point of the innermost 2-cycle is a fixed point of σ and corresponds to the
unstable homogeneous equilibrium.

If α ⊂ β then c := (j + 1 + cα)/2 is the middle point of α. Remark that
cα = σ(j+1) and j+1 have the same even/odd parity by [FRW11], Lemma
6. Then vc is the unstable homogeneous equilibrium with Morse index

iP(vc) = 2iN(vc)− 1 = 2ic(σ)− 1 > 0 , (6.21)
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(a)

j j+1 kk-1 c = (k-1)b s

j j+1= (k-1)s k

(b)

a

b

c = (j+1)a s

(c) j j+1kk-1 c = (k-1)b s

a

b

c = (j+1)a s

k-1= (j+1)s

a=b

Figure 3. Relative position of the 2-cycles α = (cα j + 1) and
β = (k − 1 cβ) of σ: (a) α = β; (b) α ⊂ β; (c) α ⊃ β.

again by (4.56). The same result applies if α = β with c := (j + k)/2. If
α ⊃ β then the middle point of β is c := (cβ + k− 1)/2 and the same result
ensues.

This completes the localization of all the unstable (spatially homogeneous)
equilibria and the computation of their Morse indices. Summarizing, if
either j + 1 or k − 1 is a fixed point of σ then the unstable homogeneous
equilibrium between vj and vk is, respectively, vj+1 or vk−1 with Morse index
given by (6.15) or (6.16). If both j + 1 and k − 1 belong to 2-cycles of σ
then the unstable homogeneous equilibrium between vj and vk is vc, where
c corresponds to the middle point of the innermost 2-cycle, and its Morse
index is given by (6.21).

Step 3: Rotating waves.

We proceed by determining the rotating waves of AP
f , i.e. the 2π-periodic

orbits of (4.20). After exhausting, in the previous steps, the set of fixed
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points of σ corresponding to the (spatially homogeneous) equilibria we are
left with an even number of points corresponding to the rotating waves.
Recall that each rotating wave wk ∈ RP

f corresponds to a pair of points
representing its maximum and minimum values, wk and wk respectively.
Therefore our next objective is to match the pair of points corresponding to
each rotating wave.

By construction, each 2-cycle of σ corresponds to a rotating wave wk ∈ RP
f

with odd period lap number. In this case the 2-cycles of σ immediately
identify the matching pair of points corresponding to the same rotating
wave. All the remaining points are fixed by σ and correspond to the rotating
waves wk ∈ RP

f with even period lap number. The relative position of the
2-cycles of σ and of the σ-fixed points corresponding to the (homogeneous)
equilibria determine the matching pairs among these remaining fixed points
of σ. In fact, the nesting in the ODE phase plane (v, p) of the periodic
orbits corresponding to rotating waves induces a regular bracket structure
on the matching pairs of points representing the rotating waves. This is the
structure of the parentheses ordinarily used in the arithmetic expressions to
indicate the hierarchical order of computations, [Lan03]. The matching of
left and right brackets uniquely determines the pair of points representing
the same rotating wave. See [FRW11] for more details.

Step 4: Heteroclinic orbit connections.

With all equilibria and rotating waves wk ∈ EP
f ∪ RP

f determined from
σ = σP

f we turn to the heteroclinic orbit connections between them. These
are determined from the (P)-adjacency relations as asserted by Theorem 8.
Let w1, w2 denote two different equilibria or rotating waves in EP

f ∪RP
f and

let v1
+, v

2
+ ∈ EN

g denote the corresponding representative Neumann equilibria
of the frozen symmetrized problem (N) on the half-interval x ∈ [0, π]. Of
course vj

+ = wj ≡ e in case of an equilibrium wj ∈ EP
f , which we recall is

spatially homogeneous. We now use that a heteroclinic orbit (of (P) with
nonlinearity f) from w1 to w2 exists if and only if a heteroclinic orbit (of
(N) with nonlinearity g) exists from the frozen and symmetrized Neumann
representative v1

+ to v2
+; see Theorem 7.

Let v1, . . . , vn ∈ EN
g denote the Neumann equilibria of the problem (N).

To establish heteroclinic (N)-adjacency of equilibria vj ∈ EN
g we consider the

differences vj − vk for all equilibria vj 6= vk and compute the zero numbers
zN(vj − vk). We recall that the Sturm permutation σN

g = σP
f determines

these zero numbers; see [FR96], Proposition 2.1. Specifically

zN(vj − vk) = zjk(σ) , (6.22)

where

zjk(σ) := ij(σ) +
1
2
[(−1)k sign(σ(k)− σ(j))− 1]

+
k−1∑

c=j+1

(−1)c sign(σ(c)− σ(j)) ,
(6.23)
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for j < k, and zkj(σ) = zjk(σ). In particular for two successive equilibria,
e.g. k = j + 1, we have

zN(vj − vj+1) = min{ij(σ), ij+1(σ)} . (6.24)

For details we refer to [FR96].

Step 5: Period lap numbers and Morse indices.

In this final step we determine the Matano period lap numbers `(w) =
zP(wx)/2 and the Morse indices iP(w) of all rotating waves w of AP

f . By
(4.58) a rotating wave w ∈ RP

f and the corresponding symmetrized frozen
wave v+ ∈ FP

g have the same period lap number, `(w) = `(v+). Let v0 ∈
ZP

g ∪ FP
g denote a homogeneous equilibrium or symmetrized frozen wave of

the spatially periodic problem (P) with v0 6= v+. Choose v0 such that on the
phase plane (v, p) the periodic orbit of v+ encircles the orbit of v0. Then,
by [MN97], Lemma 4.8, we have

zP(v+ − v0) = zP(v+,x) . (6.25)

By (4.28) this implies

`(v+) = zP(v+ − v0)/2 . (6.26)

Therefore Theorem 7, (4.38) implies

`(w) = `(v+) = zN(v+ − v0
+) . (6.27)

This determines the Matano period lap number of the rotating wave w ∈ RP
f .

Note that the zero number zN(v+−v0
+) was already computed in the previous

step.
Finally, the Morse indices of all rotating waves wk ∈ RP

f are determined
from σ using Theorem 9. Let vj ∈ EN

g denote the equilibrium of the frozen
symmetrized problem (N) corresponding to the restriction of vk,+ ∈ EP

g to
the half-interval, vj = vk,+ in 0 ≤ x ≤ π. Then iN(vj) = ij(σ) and (4.60)
implies

iP(w) =

 2ij(σ)− 1 if ij(σ) = `(w) ,

2ij(σ)− 2 if ij(σ) = `(w) + 1 .
(6.28)

This completes the recipe for the construction of the connection graph GP
f

from the Sturm permutation σ = σP
f . Let us denote by AP

n,κ and GP
n,κ the

Sturm attractor and connection graph of (1.17) corresponding to σn,κ ∈ S(n)
with n = m+ 2q.

The Sturm attractors AP
1,1 and AP

3,1 are particularly simple. They corre-
spond to (m, q) = (1, 0) and (m, q) = (3, 0), respectively, and have dimen-
sions dim AP

1,1 = 0 and dim AP
3,1 = 1.

For n = 5, the two cases AP
5,1 and AP

5,2 correspond to (m, q) = (5, 0)
and (m, q) = (3, 1), respectively. Their dimensions are dim AP

5,1 = 1 and
dim AP

5,2 = 3. Figure 4 shows stylized meanders corresponding to the Sturm
permutations σ5,1 and σ5,2, and the nesting configuration in the ODE phase
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plane (v, p) of the PDE homogeneous equilibria and periodic orbits of (4.20)
corresponding to the equilibria and rotating waves of (1.17).

1 2 3 4 5

(m,q)=(5,0)

1 234 5

1

(m,q)=(3,1)

s5,2

s5,1

Figure 4. Meanders and phase plane configurations for σ5,1 and
σ5,2. Left: Stylized meanders. Right: Phase plane configurations
(m and q denote the number of equilibria and 2π-periodic orbits,
respectively). The number attached to the periodic orbit denotes
its Matano period lap number.

The connection graphs for the Sturm attractors with n ≤ 5 are shown in
Figure 5.

i=0 i=0

i=1G1,1

G3,1 G5,1

1

i=0

i=1

i=3G5,2

i=0

i=1

Figure 5. Connection graphs GP
n,κ for Sturm attractors AP

n,κ

with 1 ≤ κ ≤ ι(n) and n ≤ 5.

In the following we denote by AP
1 tAP

2 the connected sum of AP
1 and AP

2

obtained by gluing the two attractors via the identification of the maximal
equilibrium of AP

1 with the minimal equilibrium of AP
2 . Indeed dissipative-

ness of f ∈ SturmP(u, ux) imply that such highest and lowest elements of
EP

f ∪ RP
f exist in AP

f , due to monotonicity of the semiflow. In fact these
extreme objects are stable and hence coincide with spatially homogeneous
equilibria.

Likewise we define GP
1 tGP

2 as the connection graph associated with AP
1 t

AP
2 . Then, we can easily see that

GP
5,1 = GP

3,1 t GP
3,1 . (6.29)

In fact, this is already visible in the corresponding permutations. At the
meander level this connected sum corresponds to a concatenation of the
respective meanders by their extreme points.

The connection graph GP
5,2 corresponds to a Sturm attractor AP

5,2 with
three equilibria and one rotating wave. From our list of integrable Sturm
involutions it is the simplest Sturm attractor AP

n,κ with exactly one rotating
wave.

The rotating wave w of AP
5,2, with period lap number `(w) = 1 and Morse

index iP(w) = 1, possesses an unstable manifold of dimension dimW u(w) =
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iP(w) + 1 = 2. Moreover, the middle unstable equilibrium e2, with Morse
index iP(e2) = 3, possesses heteroclinic orbit connections to the rotating
wave w, e2 ; w. Since codimW s(w) = iP(w) = 1, by transversality we
have

dim(W u(e2) ∩W s(w)) = dimW u(e2)− codimW s(w) = 2 . (6.30)

Also w ; e1, w ; e3 and the respective connecting sets are two dimensional
manifolds,

dim(W u(w)∩W s(e1)) = dim(W u(w)∩W s(e3)) = dimW u(w) = 2 . (6.31)

w

e
1

e
3

e
2

Figure 6. A geometric representation of the Sturm “spindle”
attractor AP

5,2, with m = 3 and q = 1. See also [KW01].

A geometric model studied by [KW01] in the technically somewhat differ-
ent setting of positive feedback delay equations is the spindle attractor. See
Figure 6. The spindle attractor W is the closure of the unstable manifold of
a central equilibrium e0 and is split by an invariant disk S into the basins of
attraction toward the tips e+, e−. The invariant disk S corresponds to hete-
roclinic orbit connections between e0 and a unique periodic orbit w. Clearly
the connection graph of the spindle attractor coincides with our connection
graph GP

5,2. We suspect, but did not prove, that in fact the global PDE
attractor AP

5,2 is C0 orbit equivalent to the spindle attractor.
For n = 7 we have four connection graphs. The corresponding stylized

meanders and ODE phase plane nesting configurations are presented in Fig-
ure 7. All the connection graphs GP

n,κ for n = 7 are shown in Figure 8.
We can immediately see that the first two cases correspond to the con-

catenation of previous ones. In fact, we have

GP
7,1 = GP

3,1 t GP
3,1 t GP

3,1 , (6.32)

GP
7,2 = GP

3,1 t GP
5,2 . (6.33)

Each of the other two cases, AP
7,3 and AP

7,4, possesses two rotating waves:
q = 2 and m = 3. In the ODE phase plane (v, p) the periodic orbits
associated to these rotating waves are nested, see Figure 7. Therefore we
denote by w1 and w2 the rotating waves associated to the innermost and
outermost periodic orbits, respectively.
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1 2 3 4 5 6 7

(m,q)=(7,0)

1 2 3 456 7

(m,q)=(5,1)

1

1 23 4 56 7

2
1

(m,q)=(3,2)

1 23456 7

(m,q)=(3,2)

s7,1

s7,2

s7,3

s7,4

1
1

Figure 7. Meanders and phase plane configurations for all inte-
grable Sturm involutions σn,κ with n = 7. Left: Stylized meanders.
Right: Phase plane configurations. The periodic orbits have the
Matano period lap number attached.
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Figure 8. Connection graphs GP
n,κ for the Sturm attractors AP

n,κ

with 1 ≤ k ≤ κ(n) and n = 7.

The attractor AP
7,3 has dimension dim AP

7,3 = 5. In fact the unstable mid-
dle equilibrium, e2, has Morse index iP(e2) = 5. The (innermost) rotating
wave w1 has period lap number `(w1) = 2 and Morse index iP(w1) = 3,
while the (outermost) rotating wave w2 has period lap number `(w2) = 1
and Morse index iP(w2) = 1. We have e2 ; w1, w2 ; e1, w2 ; e3 and, due
to transversality, the connecting sets are two dimensional manifolds,

dim(W u(e2) ∩W s(w1)) = dimW u(e2)− codimW s(w1)

= iP(e2)− iP(w1) = 2 ,
(6.34)

dim(W u(w2) ∩W s(e1)) = dim(W u(w2) ∩W s(e3)) = dimW u(w2)

= iP(w2) + 1 = 2 .
(6.35)

We also have w1 ; w2 and, since the two rotating waves have different
periods, it should be interesting to study the geometry of the respective
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σ9,1 = {1, 2, 3, 4, 5, 6, 7, 8, 9} = id ;
σ9,2 = {1, 2, 3, 4, 5, 8, 7, 6, 9} = (6 8) ;
σ9,3 = {1, 2, 3, 6, 5, 4, 7, 8, 9} = (4 6) ;
σ9,4 = {1, 2, 3, 8, 5, 6, 7, 4, 9} = (4 8) ;
σ9,5 = {1, 2, 3, 8, 7, 6, 5, 4, 9} = (4 8)(5 7) ;
σ9,6 = {1, 4, 3, 2, 5, 8, 7, 6, 9} = (2 4)(6 8) ;
σ9,7 = {1, 8, 3, 4, 5, 6, 7, 2, 9} = (2 8) ;
σ9,8 = {1, 8, 3, 6, 5, 4, 7, 2, 9} = (2 8)(4 6) ;
σ9,9 = {1, 8, 7, 4, 5, 6, 3, 2, 9} = (2 8)(3 7) ;
σ9,10 = {1, 8, 7, 6, 5, 4, 3, 2, 9} = (2 8)(3 7)(4 6) ;

Table 3. List of integrable involutive Sturm permutations σ ∈ S(9).

connecting set. This set is a three dimensional manifold. In fact, since
dimW u(w1) = iP(w1)+1 = 4 and codimW s(w2) = iP(w2) = 1, by transver-
sality we obtain

dim(W u(w1) ∩W s(w2)) = dimW u(w1)− codimW s(w2) = 3 . (6.36)

We recall that all the possible asymptotic phases are realized by heteroclinic
orbits, (see [FRW04] for details).

In spite of exhibiting also two rotating waves, the Sturm attractor AP
7,4 is

quite different from the previous one. Both rotating waves w1 and w2 have
the same period lap number, `(w1) = `(w2) = 1, and the corresponding
Morse indices differ by one, iP(w1) = 2 and iP(w2) = 1. In this case we
have dimW u(w1) = iP(w1) + 1 = 3, dimW u(w2) = iP(w2) + 1 = 2 and
the unstable middle equilibrium e2 has Morse index iP(e2) = 1. Therefore,
the Sturm attractor has dimension dim AP

7,4 = 3. Moreover, w1 ; w2,
w1 ; e2 and the respective connecting sets are two dimensional manifolds.
Indeed, since codimW s(w2) = iP(w2) = 1 and codimW s(e2) = iP(e2) = 1,
tranversality implies

dim(W u(w1) ∩W s(w2)) = dimW u(w1)− codimW s(w2) = 2 , (6.37)

dim(W u(w1) ∩W s(e2)) = dimW u(w1)− codimW s(e2) = 2 . (6.38)

Also w2 ; e1, w2 ; e3 with connecting sets which are two dimensional
manifolds, and e2 ; e1, e2 ; e3 with one dimensional manifold connections.

For n = 9 the list of Sturm attractors AP
n,κ and connection graphs GP

n,κ

becomes even more variegated, while still manageable. Up to trivial equiv-
alence, there are exactly 10 Sturm permutations which are integrable invo-
lutions. These are listed in Table 3, see [FRW11] for details.

For presentation purposes we organize these Sturm permutations into four
sets Pq according to the number q of rotating waves of the corresponding
Sturm attractors:

P0 = {σ9,1} ,
P1 = {σ9,2, σ9,3} ,
P2 = {σ9,4, σ9,5, σ9,6, σ9,9} ,
P3 = {σ9,7, σ9,8, σ9,10} .

(6.39)
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The first set P0 corresponds to Sturm attractors without rotating waves.
There is, of course, one attractor AP

9,1 with nine equilibria and no rotating
waves, corresponding to σP

f = σ9,1 = id. It has dim AP
9,1 = 1, and one easily

verifies that
GP

9,1 = GP
3,1 t GP

3,1 t GP
3,1 t GP

3,1 . (6.40)
See Figure 9.

The second set P1 consists of two Sturm permutations. The corresponding
attractors AP

9,2 and AP
9,3 possess one rotating wave and seven homogeneous

equilibria each. They both satisfy dim AP
9,2 = dim AP

9,3 = 3, and their con-
nection graphs can be written as

GP
9,2 = GP

3,1 t GP
3,1 t GP

5,2 , GP
9,3 = GP

3,1 t GP
5,2 t GP

3,1 . (6.41)

The meanders and phase plane configurations obtained from the Sturm
permutations in P0 and P1 are shown in Figure 9. The connection graphs
of the corresponding Sturm attractors are presented in Figure 10.

1 2 3 4 5 6 7 8 9

(m,q)=(9,0)

1 2 3 4 5 678 9

1

(m,q)=(7,1)

1

1 2 3 456 7 8 9

s9,1

s9,2

s9,3

(m,q)=(7,1)

Figure 9. Meanders and phase plane configurations for the
Sturm permutations in P0 and P1. Left: Stylized meanders. Right:
Phase plane configurations.

i=0

i=1 1

i=0

i=1

i=3

1

i=0

i=1

i=3

G9,1 G9,2 G9,3

Figure 10. Connection graphs GP
9,κ for the Sturm permutations

in P0 and P1.

The third set of Sturm permutations P2 consists of four permutations
corresponding to Sturm attractors with exactly two rotating waves and five
equilibria. The connection graphs of the first three Sturm attractors are
concatenations of previous ones. We have

GP
9,4 = GP

3,1 t GP
7,3 , GP

9,5 = GP
3,1 t GP

7,4 , GP
9,6 = GP

5,2 t GP
5,2 , (6.42)

and dim AP
9,4 = 5, dim AP

9,5 = dim AP
9,6 = 3.
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The connection graph GP
9,9 of the fourth attractor AP

9,9 does not decompose
into previous ones. It has a special geometrical interest because in the phase
plane the periodic orbits corresponding to the rotating waves are nested and
both encircle the three middle equilibria. The meanders and phase plane
configurations associated to the set P2 of Sturm permutations are shown in
Figure 11.

1 2 3 45 6 78 9

(m,q)=(5,2)

2
1

1 2 3 45678 9

1
1

1 234 5 678 9

11

1 234 5 678 9

1
1

(m,q)=(5,2)

(m,q)=(5,2)

(m,q)=(5,2)

s9,5

s9,6

s9,9

s9,4

Figure 11. Meanders and phase plane configurations for the set
P2 of Sturm permutations. Left: Stylized meanders. Right: Phase
plane configurations with attached Matano period lap numbers.

In several aspects the Sturm attractor AP
9,9 is similar to AP

7,4. We denote
again by w1 and w2 the rotating waves corresponding to the innermost
and the outermost periodic orbits, respectively. Then both have the same
period lap number `(w1) = `(w2) = 1 and their Morse indices differ by one,
iP(w1) = 2 and iP(w2) = 1. Again we have dimW u(w1) = iP(w1) + 1 = 3
and the attractor has dimension dim AP

9,9 = 3. The middle equilibrium e3
is stable, iP(e3) = 0, and the two unstable equilibria have Morse indices
iP(e2) = iP(e4) = 1. With respect to heteroclinic orbit connections in AP

9,9

we have w1 ; w2, w1 ; e2 and w1 ; e4 for which the corresponding
connecting sets are two dimensional manifolds,

dim(W u(w1) ∩W s(w2)) = dimW u(w1)− codimW s(w2) = 2 , (6.43)

dim(W u(w1) ∩W s(e2)) = dimW u(w1)− codimW s(e2) = 2 , (6.44)

dim(W u(w1) ∩W s(e4)) = dimW u(w1)− codimW s(e4) = 2 . (6.45)
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Moreover, we also have w2 ; e1, w2 ; e5 with two dimensional connecting
manifolds, and e2 ; e1, e2 ; e3, e4 ; e1, e4 ; e5 with one dimensional
heteroclinic connections.

All the connection graphs GP
9,κ associated to the Sturm permutations in

P2 are presented in Figure 12.
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G9,4 G9,5
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Figure 12. Connection graphs GP
9,κ for the set P2 of Sturm permutations.

Finally, the set of Sturm permutations P3 corresponds to three Sturm
attractors AP

9,7, AP
9,8, and AP

9,10, each with exactly three rotating waves and
three equilibria. In all three cases the ODE periodic orbits which generate
the rotating waves are nested and encircle the middle equilibrium e2. Other-
wise the attractors are completely different. The meanders and phase plane
configurations associated to this set P3 of Sturm permutations are depicted
in Figure 13.

1 23 4 5 6 78 9

(m,q)=(3,3)

2
2

1

1 23 456 78 9

3
2 1

1 2345678 9

1
1

1

(m,q)=(3,3)

(m,q)=(3,3)

s9,7

s9,8

s9,10

Figure 13. Meanders and phase plane configurations for the set
P3 of Sturm permutations. Left: Stylized meanders. Right: Phase
plane configurations with attached Matano period lap numbers.

Let w1, w2 and w3 denote the rotating waves corresponding to the in-
nermost, the middle and the outermost periodic orbits, respectively. For
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the Sturm attractor AP
9,7, the period lap numbers of the rotating waves are

`(w1) = `(w2) = 2 and `(w3) = 1, while the Morse indices are iP(w1) = 4,
iP(w2) = 3 and iP(w3) = 1. Moreover, the middle equilibrium e2 has Morse
index iP(e2) = 3. Therefore dimW u(w1) = iP(w1)+1 = 5 and the attractor
has dimension dim AP

9,7 = 5. In AP
9,7 we have the heteroclinic orbit connec-

tions w1 ; w2, w1 ; e2 and e2 ; w3 for which the connecting sets are two
dimensional manifolds,

dim(W u(w1) ∩W s(w2)) = dimW u(w1)− codimW s(w2) = 2 , (6.46)

dim(W u(w1) ∩W s(e2)) = dimW u(w1)− codimW s(e2) = 2 , (6.47)

dim(W u(e2) ∩W s(w3)) = iP(e2)− iP(w3) = 2 . (6.48)
In addition w2 ; w3 and the connecting set is a three dimensional manifold,

dim(W u(w2) ∩W s(w3)) = iP(w2) + 1− iP(w3) = 3 , (6.49)

Note that by transitivity also w1 ; w3, and the connecting set is a four
dimensional manifold,

dim(W u(w1) ∩W s(w3)) = iP(w1) + 1− iP(w3) = 4 . (6.50)

The heteroclinic orbit connections w3 ; e1, w3 ; e3, which complete the
edges of the connection graph GP

9,7, are two dimensional manifolds,

dim(W u(w3) ∩W s(e1)) = dim(W u(w3) ∩W s(e3)) = dimW u(w3)

= iP(w3) + 1 = 2 .
(6.51)

In the case of the Sturm attractor AP
9,8, the inner rotating wave has pe-

riod lap number `(w1) = 3 and Morse index iP(w1) = 5, the middle one has
period lap number `(w2) = 2 and Morse index iP(w2) = 3, and the outer
one has period lap number `(w3) = 1 and Morse index iP(w3) = 1. More-
over, the unstable middle equilibrium has index iP(e2) = 7 and the Sturm
attractor has dimension dim AP

9,8 = 7. The heteroclinic orbit connections
corresponding to w1 ; w2, w2 ; w3 are three dimensional manifolds,

dim(W u(w1) ∩W s(w2)) = dimW u(w1)− codimW s(w2)

= iP(w1) + 1− iP(w2) = 3 ,
(6.52)

dim(W u(w2) ∩W s(w3)) = dimW u(w2)− codimW s(w3)

= iP(w2) + 1− iP(w3) = 3 ,
(6.53)

The remaining edges of the connection graph GP
9,8 correspond to e2 ; w1,

w3 ; e1, w3 ; e3 and are two dimensional manifolds,
dim(W u(e2) ∩W s(w1)) = dimW u(e2)− codimW s(w1)

= iP(e2)− iP(w1) = 2 ,
(6.54)

dim(W u(w3) ∩W s(e1)) = dim(W u(w3) ∩W s(e3)) = dimW u(w3)

= iP(w3) + 1 = 2 .
(6.55)

Finally, in the case of the Sturm attractor AP
9,10 all the rotating waves

have the same period lap number, `(w1) = `(w2) = `(w3) = 1. Yet, while
w1, w3 have Morse indices iP(w1) = iP(w3) = 1, the rotating wave w2 has
Morse index iP(w2) = 2. Moreover, the unstable middle equilibrium e2 has



ATTRACTORS FOR PARABOLIC EQUATIONS 43

Morse index iP(e2) = 3 and the attractor has dimension dim AP
9,10 = 3. The

connecting sets corresponding to the edges of the connection graph GP
9,10 are

all two dimensional manifolds. In fact, we have the connections w2 ; w1

and w2 ; w3 for which

dim(W u(w2) ∩W s(w1)) = iP(w2) + 1− iP(w1) = 2 , (6.56)

dim(W u(w2) ∩W s(w3)) = iP(w2) + 1− iP(w3) = 2 . (6.57)
Also the middle equilibrium e2 satisfies e2 ; w1 and

dim(W u(e2) ∩W s(w1)) = iP(e2)− iP(w1) = 2 . (6.58)

Moreover, the edges of the connection graph GP
9,10 are completed by w1 ; e1,

w1 ; e3, w3 ; e1 and w3 ; e3 for which

dim(W u(w1)∩W s(e1)) = dim(W u(w1)∩W s(e3)) = iP(w1)+1 = 2 , (6.59)

dim(W u(w3)∩W s(e1)) = dim(W u(w3)∩W s(e3)) = iP(w3)+1 = 2 . (6.60)
All the connection graphs GP

9,κ associated to the Sturm permutations in
P3 are shown in Figure 14.
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Figure 14. Connection graphs GP
9,κ for the set P3 of Sturm permutations.

This completes the description, up to trivial equivalence, of all the Sturm
connection graphs GP

f for f ∈ SturmP(u, ux) with m equilibria, q rotating
waves, and n = m+ 2q ≤ 9.
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