
Abstract

This thesis presents a dynamical systems approach for handling
uniqueness problems in nonautonomous planar systems. The method
is shown while being applied to a problem of uniqueness of a ground
state of the continuum limit of a strictly anharmonic multi-dimensional
lattice. Although this problem, and even a more general version of it,
was already solved by Pucci and Serrin, we believe that our method
sheds a new light on it.

Our solution to the uniqueness problem has two parts. In the first
one we deal with the region u > 0 and give a uniqueness result for
it. The second part presents a local result, i.e. that is independent
of the initial condition, when analyzing what happens near the origin.
In addition we discuss Pucci and Serrin’s solution to the problem, and
present it while using some concepts and results from the dynamical
systems approach.
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1 Introduction

This thesis presents a dynamical systems approach for handling uniqueness

problems in‘ nonautonomous planar systems. The method is shown while

being applied to a problem of uniqueness of a ground state of the continuum

limit of a strictly anharmonic multi-dimensional lattice. Although this prob-

lem, and even a more general version of it, was already solved by Pucci and

Serrin [10], we believe that our method sheds a new light on it.

The paper begins with an introduction to dynamical systems and phase

plane analysis in the second section. The third section reviews Rosenau

and Schochet’s [9] discussion of lattice and continuum dynamics and their

dynamical systems approach to the existence problem for a multi-dimensional

continuum limit, including most details of the proof. Sections four and five

phrase the uniqueness problem and present a dynamical systems approach

to its solution. Section four deals with the region u > 0, while section five

completes the proof by presenting a local result analyzing what happens near

the origin. Finally, the last section focuses on Pucci and Serrin’s [10] solution

to the problem, and presents it while using some concepts and results from

the dynamical systems approach.
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2 Dynamical Systems and Phase-Plane Anal-

ysis

This section presents important definitions and results from dynamical sys-

tems theory, and in specific those related to phase space and phase plane

analysis. The proofs are mostly classic, well known results of the field and

were therefore omitted. The reader can find those proofs in most basic dy-

namical systems books, e.g. [6].

Consider an ODE system of dimension d

~u′ = ~f(~u, t), (2.1)

where ~f will usually be assumed to be at least C1. Several of the difficulties

arising in the specific system studied here is that the corresponding ~f is not

C1 everywhere. The phase space Rd is the space of all possible values ~u of

the system. The behavior of solutions in the phase space is dictated by the

function ~f(~u, t). As a solution develops through time, it forms a curve in the

phase space called a trajectory. Phase space analysis focuses on the study

of those trajectories of different solutions, as their behavior determines many

qualitative properties of the system. An important concept in phase-space

analysis is that of equilibrium points or fixed points, i.e., the points

(~u∗, t∗) for which ~f(~u∗, t∗) = 0.

In this work we mostly restrict our attention to the case d = 2, for which

the phase space is called the phase plane. It is then convenient to let u

and v denote the components of that plane, which allows the system to be

written in the form
u′ = f(u, v, t)
v′ = g(u, v, t).

(2.2)

As will be seen later in the section, several important results are valid only

for this case.

It is convenient to examine the autonomous case

u′ = f(u, v)
v′ = g(u, v).

(2.3)

on its own. One reason is that if (u(t), v(t)) is a solution of such a system,

then so is (u(t− t0), v(t− t0)) for any t0. Although the solutions for different
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values of t0 are different, their trajectories are identical. Even more impor-

tantly, we will see later in the section that in the planar autonomous case

trajectories cannot cross each other, a property which is very useful in the

study of qualitative properties of solutions. When the system is autonomous

then (f(u, v), g(u, v)) defines a vector field in the phase plane, i.e. assigns

a vector (f(u, v), g(u, v)) to each point in the plane.

2.1 Fences, Funnels and Antifunnels

The results in this subsection are phrased for planar systems only since, as

we mentioned in the previous subsection, we limit ourself to the case d = 2.

A fence is a curve such that a solution cannot pass from one side of the

curve to the other, possibly in one direction only. Formally:

Definition 2.1. Let I be a t-interval, i.e., some interval for the variable t.

A C1 curve γ is a fence for system (2.3) if (f, g) · ν ≥ 0 everywhere along

the curve for every t ∈ I, where ν is a continuous normal to the curve. The

bounded side is the side towards which the normal points.

Remark: If the normal to a curve is always perpendicular to the vector

field, then both sides are considered as bounded sides. In the autonomous

case this happens precisely when the curve is a solution curve. Hence the

following theorem shows in particular that two trajectories of an autonomous

system cannot cross.

Theorem 2.2. (Fence Theorem) A trajectory on the bounded side of a

fence cannot cross the fence.

One case in which fences are valuable is of a region that is bounded

by fences on two sides. Funnels and antifunnels are both example of such

regions.

Definition 2.3. Let some region F be confined by fences on two sides. If F

is the bounded side for both fences, then it is a funnel.

Definition 2.4. Let some region F be confined by fences with strict inequal-

ities on two sides. If for both fences F is the not the bounded side, then F is

an antifunnel
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Three theorems come in handy when working with funnels and antifun-

nels. As was mentioned in the beginning of the section, their proof can be

found in [6].

Theorem 2.5. (Funnel Theorem) Let I be a u-interval in which the func-

tions α(u) and β(u) determine a funnel for all u ∈ I. Let s = (u, v) be

solutions to (2.3). If for some u∗, s is in the funnel, then s is in the funnel

for all u > u∗ in I for which s is defined.

Theorem 2.6. (Antifunnel Theorem: Existence) Let I be some u-

interval, and let the functions α(u) and β(u) determine an antifunnel for all

u ∈ I. Then there exists a solution to (2.3) that lies in the antifunnel for all

u ∈ I.

In certain conditions we can guarantee the uniqueness of such a solution

Theorem 2.7. (Antifunnel Theorem: Uniqueness) Let I = [u0, u1] be

some u-interval, and let the functions α(u) and β(u) determine an antifunnel

for all u ∈ I in the phase plane of (2.3). If the antifunnel is narrowing, i.e.,

limu→u1 |α(u)− β(u)| = 0, (2.4)

and if f is nonzero, and ∂(g/f)
∂v
≥ 0 in the antifunnel, then there exists one

and only one solution to (2.3) in R2, that stays in the antifunnel.

2.2 Linear Systems and Linearization

The results in the previous subsection were phrased for the autonomous equa-

tion, but are nevertheless valid for the nonautonomous case as well. As was

mentioned before, certain results are only valid for autonomous equation

u′ = f(u) (2.5)

or for its corresponding two dimensional form

u′ = f(u, v)
v′ = g(u, v).

(2.6)
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Examine the system:

u′ = Au, (2.7)

where A is a 2x2 real matrix, and the only fixed point is zero. Let λ1, λ2 be

the two eigenvalues of A. The behavior of solutions around the fixed point is

determined by the signs of the λs and by their types: real or complex. There

are three cases of possible eigenvalues:

1. real and distinct eigenvalues.

2. complex eigenvalues (necessarily distinct since they are complex conju-

gate)

3. a double eigenvalue (real)

We won’t analyze all the available cases, but will be satisfied with those of

distinct and nonzero eigenvalues. In the case of two real distinct eigenvalues,

the corresponding eigenvectors v1 and v2 form a basis of R2. The fixed points

are classified in the following way:

1. Source: 0 < λ1 < λ2. In that case all trajectories except the trivial one

tend to ∞ as t→∞, and to 0 as t→ −∞.

2. Saddle: λ1 < 0 < λ2. In that case there are two trajectories tending to

zero as t → ∞, and two trajectories tending to zero as t → −∞. All the

other nontrivial solutions are superpositions of those motions, and tend to

±∞ as t goes to ±∞ (not necessarily correspondingly).

3. Sink: λ1 < λ2 < 0. In that case all trajectories tend to zero as t → ∞,

and to ±∞ as t→ −∞.

In the complex eigenvalues case, let the two eigenvalues be α± iβ, where

β > 0. The fixed points are classified in the following way:

1. Spiral sink: α < 0. In that case the trajectories spiral into (0, 0).

2. Center: α = 0. In that case the trajectories turn periodically on ellipses,

each of which is centered at (0, 0).

3. Spiral source: α > 0. In that case the trajectories spiral out to ∞.

A graphical representation of the different types of points can be seen in

Figure 2.1.

5



Figure 2.1: Fixed Point Classification

Now consider a nonlinear system having a fixed point u∗. The change of

variable u → u − u∗ moves the fixed point to the origin. The system may

then be written, using a Taylor series expansion, in the form:

d

dt
u = Au+ g(u), (2.8)

where g(u) = O(|u2|) as u → 0. In order to make the nonlinear part g(x)

small compared to the linear part Ax near the origin, We demand that A is

a nonsingular matrix, so that |Au| > c|u|. It turns out that in most cases,

solutions that are close to the origin behave similarly to solutions of the linear

part of (2.8). In specific, this is true as long as the real part of the eigenvalues

is nonzero. Before phrasing this as a theorem, we have to define the terms

’sink’, ’source’ and ’saddle’ for nonlinear case (2.8):

Let u0 be a zero of an autonomous differential equation u′ = f(u) in R2.

1. u0 is a sink if there is a neighborhood U of u0 such that any solution u(t)

with u(t0) ∈ U , remains in U for t ≥ t0, and limt→∞u(t) = u0.

2. u0 is a source if there is a neighborhood U of u0 such that any solution
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u(t) with u(t0) ∈ U , was in U for t ≤ t0, and limt→−∞u(t) = u0.

3. u0 is a saddle if there are precisely two trajectories that tend to u0 as

t→∞, and precisely two trajectories that tend to u0 as t→ −∞.

Theorem 2.8. If the eigenvalues of A in (2.8) both have positive real part,

both have negative real part, or have opposite signs, then zero is a source,

sink or saddle for equation (2.8) correspondingly.

2.3 Poincare-Bendixon Theorem

No introduction to phase-plane analysis will be complete without the famous

Poincare-Bendixon theorem. Before introducing that theorem, it is necessary

to define the concept of ’limit set’.

Definition 2.9. (Limit set) The ω-limit set of a point ~u0 is:

Lω(~u0) := {lim~u(tj, ~u0) | tj →∞}. (2.9)

The corresponding definition for the α-limit set:

Lα(~u0) := {lim~u(tj, ~u0) | tj → −∞}. (2.10)

The names α and ω come from the fact that those are the first and last letters

in the Greek alphabet.

For a trajectory T, Lω(T ) := Lω(~u0) for ~u0 ∈ T . In the same manner:

Lα(T ) := Lα(~u0) for ~u0 ∈ T . Note that both definitions are independent of

the choice of ~u0.

With those definitions in hand, we can now state the two versions of the

Poincare-Bendixon Theorem.

Theorem 2.10. (Poincare Bendixon) Let ~u(t) be a solution to the dif-

ferential equation ~u′ = ~f(~u) in R2, defined and bounded for t ≥ t0. If Lω(~u)

contains no fixed point of ~f then it is a periodic trajectory.

Theorem 2.11. (Strong Poincare Bendixon) Let ~u(t) be a solution to

the differential equation ~u′ = ~f(~u) in R2, defined and bounded for t ≥ t0. Let

~u0 be a point of the solution in the phase plane. If Lω(~u0) is not a periodic

trajectory, then ~f vanishes on Lω(~u∗) and Lα(~u∗) for every ~u∗ ∈ Lω(~u0).
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3 Strictly Anharmonic FPU Lattices

This section introduces work of Rosenau and Schochet concerning solutions of

strictly anharmonic FPU lattices. Every reference to Rosenau and Schochet

here refers to [11] unless written otherwise.

In the summer of 1953 E. Fermi, J. Pasta, and S.M. Ulam conducted a

series of computer simulations of physical systems containing a non-linear

term. Their motivation was based on two main beliefs. The first claimed

that future fundamental theories in physics may involve non-linear operators

and equations. The latter said that a computing machine would be a great

tool in understand asymptotic long-time behavior of solutions. As a first

example was chosen a vibrating string, in which in addition to the usual

linear term, non-linear ones were also included. The conjecture was that for

very long times the influence of the initial state would fade, and the system

would become more or less random. Surprisingly enough, what happened is

that instead of having energy flowing consistently from the initial state, it

was found out that the solution remains more or less close to it. At some

large time the system even got back to almost its initial state. The Fermi-

Pasta-Ulam (FPU) problem is the paradox between the expected solution

and the one we actually got.

The behavior of that last described solution resembles the behavior of

a breather, a term that describes oscillatory solutions which are periodic

in time and localized in space. This term first came up from a particular

solution of the sine-Gordon Equation (SGE). The name was given since the

oscillation, combined with localization and periodicity, gives the solution an

illusion of ‘breathing’. When talking about the discrete case, in which a

system can be viewed as a lattice, a breather is called a discrete breather

but is also periodic in time and localized in space. There are an very large

number of results about discrete breathers, a review of those can be found

in FW [4].

Rosenau and Schochet considered lattices that are strictly anharmonic,

i.e. have no linear interaction term, and have a suitable quartic site potential

appended. When the lattice is dense, the distance between particles becomes
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very small, and they can be modeled using the continuum limit. In this limit

the system is described by a PDE. Rosenau and Schochet focused on the

discovery of discrete breather and breather solutions, both for the discrete

lattice, and for its continuum limit.

The order of the section is as follows: first the problem is introduced in

one dimension (1D). In this dimension we present existence results for almost-

compact breathers (breather that decays to zero faster than exponentially)

in a discrete system, and strictly compact breathers in the continuum limit.

Next, the problem is defined for hexagonal lattices in dimension two (2D),

which supports a compact radial breather in its continuum limit. Full tech-

nical details for the results of that case will be supplied, as they are relevant

for us later in the paper.

3.1 One dimensional lattices

The original system for the 1D case is presented using physical variables.

However, those are not of interest to us, so we begin with the form that the

discrete oscillator chain gets after normalization:

ün + un =

(
un+1−un

h

)3

−

(
un−un−1

h

)3

h
+ u3

n, (3.1)

where h measures how far the system is from being described by the normal-

ized continuum limit equation. This equation is obtained by replacing un(t)

with u(t, nh), and taking the formal limit as h→ 0:

utt + u = ∂[(ux)
3] + u3. (3.2)

Breathers for equations such as (3.1) and (3.2) are solutions that are periodic

in time and localized in space [7]. Using the space-time separability of

both the equations, Rosenau and Schochet calculated the solution of the

continuum case (3.2) explicitly, and showed that such a breather solution

exists for that case.

For the discrete system (3.1) the solution does not seem to have an explicit

formula. However, using a one-parameter shooting method it was possible
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to prove that this equation has two breather solutions. Both of them de-

crease monotonically to zero to the right of their center of symmetry, and

converge everywhere as h tends to zero to the continuum compact wave. Dis-

crete breather spatial variable cannot be compactly supported. However, the

discrete profile decays to zero at a double exponential rate, which is, as we

mentioned before, an almost-compact breather solution.

3.2 Two dimensional lattices

Rosenau and Schochet showed that in the 2D case, a rectangular lattice

induced a non-isotropic limit equation of motion unless the potentials are

quadratic, and a limit equation that contains linear terms when the poten-

tials are quadratic. Since our interest is in purely nonlinear equation of

motions, a hexagonal lattice, i.e., an equilateral triangular lattice for which

the nearest neighbors of each grid point form a regular hexagon, was used.

The underlying discrete Hamiltonian is:

H = Σ

{
1

2
(u̇m,n)2 + Φ(um,n) + ΣP

(
uj,k − un,n

l

)}
. (3.3)

We will be interested in the investigation of the continuum limit equation of

a hexagonal lattice that has purely quartic interactions:

utt + u = ∇ · [(∇u)2∇u] + u3. (3.4)

The rest of this section shows that a compact breather solution exists for this

case as well.

3.3 Separation of variables

The first step towards proving the existence of a compact breather solution

to the continuum hexagonal equation (3.4), is to separate variables. I.e.

represent its solution as:

u(t, x) = φ(t)U(x). (3.5)

Substituting this into (3.4) yields the ODE for the temporal variable:

φ̈+ φ = φ3. (3.6)
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For the spatial part we obtain

∇ · [|∇u|2∇u] + u3 − u = 0. (3.7)

The solutions of (3.6), which can be expressed in terms of elliptic integrals,

are periodic if |φ(0)| < 1, constant if |φ(0)| = 1, and blow up in finite

time if |φ(0)| > 1, assuming that the other initial condition is φ̇ = 0. Hence,

every spatially localized solution u of (3.7) yield breather solution, stationary

solution and blowing-up solution of the continuum hexagonal equation (3.4).

For the spatial equation (3.7), radial solutions satisfy the ODE

[u′(r)3]′ +
d− 1

r
u′(r)3 + u(r)3 − u(r) = 0, (3.8)

where d is the spatial dimension. Our focus in this thesis is on positive

solutions of that equation. Specifically, we look for solutions satisfying the

conditions:

1. u′(0) = 0, and u(0) > 0.

2. u(r∗) = 0 = u′(r∗) for some finite positive r∗ > 0.

3. u(r) > 0 > u′(r) for 0 < r < r∗.

4. (du
dr

)3 is differentiable at r = 0 and r = r∗.

3.4 Existence of multidimensional continuum breathers

This section focuses on the existence result of radial solutions for the spatial

equation for the continuum 2D lattice equation (3.8). The result presented

here is based on Appendix C in Rosenau and Schochet [11]. It should be

noted that a more general existence result for that problem was proved by

FLS [5]. However, just as this thesis uses the dynamical systems approach

to the uniqueness problem, Rosenau and Schochet use that approach to the

existence problem. Most of their proofs are repeated here since the technical

details will be used later on. Some proofs, however, were omitted, and can

be found in the original article.

3.4.1 A transformed system.

Any solution of (3.8) satisfies (3.7) provided that u′(0) = 0 so that the

corresponding solution of (3.7) will be smooth at the origin. Equation (3.8)
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is transfered to a first-order system upon defining v := u′(r)3:

u′ = v
1
3 ,

v′ = −d−1
r
v + u− u3.

(3.9)

The presence of the term v
r

in the second equation of (3.9) implies that v

must vanish at r=0 in order for solutions to be smooth. This, in turn, means

that term v
1
3 appearing in the first equation is not smooth at r = 0. However,

we desire a system whose only singularity at r = 0 is a simple pole like that

in the term v
r
. This will be achieved with rescaling the v variable as

v = −rW, (3.10)

where the minus sign is used to assure W ’s positivity. The spatial variable

is rescaled to

R :=
3

4
r

4
3 . (3.11)

The constant factor in the last equation has been included for convenience

as it simplifies the numerical factors appearing in the resulting equations.

Remark: The name W (big ’w’) was chosen to stay consistent with Rosenau

and Schochet’s paper. There they used the negative variable w, which is

actually w = −W . For our work it is more comfortable to work with a

positive variable, and therefore the theory is presented using W .

Under these changes of variables, system (3.9) transforms to

u′ = −W 1
3 ,

W ′ = 3
4R

[u3 − u− dW ],
(3.12)

where the derivatives are with respect to R. System (3.12) implies a condition

for smoothness, which is obtained from the equation for W :

W (0) =
[u(0)3 − u(0)]

d
. (3.13)

W (0) is different than zero as long as u(0) /∈ −1, 0, 1. Therefore as long as

this happens the term W
1
3 in the first equation will be smooth at R = 0.

12



Local existence near R=0. The equation for W in (3.12) is linear.

Therefore, it can be solved to yield

W (R) =
c

R4d/3
+

4

3R4d/3

∫ R

0

s
4d
3
−1[u(S)3 − u(S)]ds. (3.14)

We look for a solution that remains bounded at R = 0. Therefore, the

constant of integration c in (3.14) must vanish. The equation reduces to

W (R) =
4

3R4d/3

∫ R

0

s
4d
3
−1[u(S)3 − u(S)]ds. (3.15)

This can be plugged into the equation for u′ in (3.12). Integrating yields

u = u0 −

(
4

3

) 1
3 ∫ R

0

1

ρ4d/9

[∫ ρ

0

S
4d
3
−1[u(S)3 − u(S)]dS

]1/3

dρ. (3.16)

Using the contraction-mapping fixed-point theorem in standard fashion, the

integral equations (3.15) and (3.16) can be used to prove the local existence

of solutions to system (3.12) near R = 0.

Theorem 3.1. Take some u0 > 1. Then, there exists a solution to (3.12)

with initial conditions u(0) = u0 and (3.13) on some interval [0, δ].

The details of the proof for that theorem can be found in [11]. In ad-

dition the solutions depend continuously on their initial condition, since by

Proposition 1.2 in [13] the contraction-mapping theorem yields continuous

dependence on parameter, and an initial condition can be considered as an

implicit parameter.

3.5 Existence theorem for multidimensional breathers

In the last subsection we show existence of a breather profile.

Theorem 3.2. Let d > 1. There exists a solution to the ODE (3.8) satisfy-

ing:

1. u′(0) = 0, and u(0) > 0.

2. u(r∗) = 0 = u′(r∗) for some finite positive r∗ > 0.

3. u(r) > 0 > u′(r) for 0 < r < r∗.

4. (du
dr

)3 is differentiable at r = 0 and r = r∗.
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Remark: To see that we indeed achieve a compact breather, one need to

define the function U(x) to equal u(|x|) for |x| < r∗, and to vanish for |x| > r∗.

Then, the properties of u stated in the theorem ensure that U is a compact

breather solution to (3.7).

Equation (3.8) corresponds to (3.9), which in turn corresponds to (3.12).

Therefore, it is sufficient to prove the following theorem:

Theorem 3.3. For some positive R∗ > 0 there exists a solution to system

(3.12) on (0, R∗] that is continuous on [0, R∗] and satisfies:

1. u(0) > 0.

2. u(R),W (R) > 0 on (0, R∗).

3. u(R∗) = 0 = W (R∗)

Remark: The differentiability of (du
dr

)3 with respect to r at r = 0 can be

seen from (3.9) and (3.10) plus the continuity of W (R) at R = 0. Its dif-

ferentiability at r = r∗ can be seen from (3.9) and (3.10) plus the fact that

(3.12) is satisfied at R = R∗.

Proof. Denote by C the portion of the curve (u3−u)
d

lying in the region u > 1.

By Theorem 3.1, for every point P on the curve C, there exists a solution

to (3.12) starting at P at R = 0, for R in some interval [0, δ]. Define Ω

to be the region bounded by the positive W -axis, the line segment [0, 1] on

the u-axis, and the curve C. Since the system (3.9) is smooth in Ω, the

continuation theorem for ODEs shows that solutions continue to exist as

long as they remain in Ω. Furthermore, although the system (3.9) is non-

autonomous, the right side of that system still defines a vector field, albeit a

time-dependent one. For all positive “times” R, that vector field shows that

both u′ and W ′ are negative as long as the solution remains in the region Ω.

Note that the vector field points into Ω along C for R > 0. That and the

direction of u′ and W ′, shows that the solutions exists and remains in Ω until

it reaches either the positive W axis, the origin, or the line segment (0, 1]

on the u-axis. There only remains to show that for some point P on C, the

solution starting at P at “time” R = 0, reaches the origin, and in a finite

time.
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Subtracting 3
4
RW ′ times u′ from 3

4
Ru′ times W ′ gives zero: 3

4
RW ′u′ −

3
4
Ru′W ′ = 0. Plugging this expression into the equations for u′,W ′ from

(3.12), and integrating yields

u′u3 − u′u+ dW 4/3 + 4
3
RW ′W 1/3 = 0⇒

E := RW (R)4/3 + 1
4
u(R)4 − 1

2
u(R)2 =

E − (d− 1)
∫ R

0
W (S)4/3dS,

(3.17)

where E is a constant of integration.

The function E takes negative values on the line segment (0, 1] of the u-

axis, vanishes at the origin, and takes positive values on the positive W axis

for any nonnegative R. By (3.17), E is nonpositive initially for u0 <
√

2 and

decreases with time. But solutions that begin at R = 0 on C with u0 <
√

2,

have negative values of E for positive R. Therefore they cannot approach

the origin (nor the positive W axis).

The next functional aids us in proving that solutions starting on C with

large values of u0 do reach the positive W axis:

F := E − (d− 1)uW. (3.18)

Formula (3.17) shows that E ′ = −(d−1)W 4/3. Combining this with the first

equation of (3.12), shows that

F ′ = −(d− 1)uW ′, (3.19)

which is positive since u is positive and W ′ is negative in the region Ω. The

term added to E to obtain F , namely (d − 1)uW , vanishes on the axes.

Therefore, F is also negative on the line segment (0, 1] of the u-axis, zero at

the origin, and positive on the positive W axis like E . F is increasing, and

therefore if a solution ever has a positive value of F , then it must reach the

positive W axis.

Calculating F on the initial curve C for R = 0 shows that it is negative

there. The next argument shows that for u0 large enough, the value of

F on the corresponding solution eventually becomes positive. First, for R

sufficiently large the functional F is positive on a line W = c > 0. For

example, for R = 1:

F
∣∣∣
W=8

= 16 +
u4

4
− u2

2
− 8u =

(
8

3
− 3

2
u

)2

+

(
11

4
− 1

2
u2

)2

+
191

144
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Since F is increasing in R, this shows that F is positive on the line W = 8

for all R ≥ 1. Any solution for which W > 8 at time one must either reach

the W axis above W = 8 or else, reach the line W = 8. Therefore, any

such solution must eventually have a positive value of F , and so reach the

positive W axis.

Next we’ll show that for u0 sufficiently large, the solution must either

reach the positive W axis, or remain above W = 8 through time R = 1. W

is decreasing and therefore

|u′| ≤ |W (0)|1/3 <

(
u3

0

d

)1/3

=
u0

d1/3

Hence, through time R = 1, u ≥ u0(1 − 1
d1/3 ), and for u0 large enough,

u > 1/
√

3 at that time. Combining this with the fact that u3 − u increases

for u > 1/
√

3, and plugging those estimates in (3.15) shows that through

R = 1

W (R) = 4
3R4d/3

∫ R
0
s

4d
3
−1[u(S)3 − u(S)]ds

≥ 4
3R4d/3

∫ R
0
s

4d
3
−1

{[
u0

(
1− 1

d1/3

)]3

− u0

(
1− 1

d1/3

)}
ds

≥ 1
d

{[
u0

(
1− 1

d1/3

)]3

− u0

(
1− 1

d1/3

)}
,

(3.20)

which is bigger than 8 for u0 sufficiently large.

We showed that some solutions leave Ω along the positive u axis, and

other leave along the positive W axis. This, and the continuity of solutions

on their initial data as was noted after theorem 3.1, allows us to show that

there exists a solution that reaches the origin. This is true even though the

system (3.12) is nonautonomous, so that the projection onto the u−w plane

of trajectories may cross one another.

Consider the infimum u∗ of all k > 1, such that for all u0 > k, the solution

reaches the positive W axis. We have shown above that the set over which

the infimum is taken is nonempty and is bounded from below by a number

greater than one. Hence, u∗ exists and is greater than one. Then there exist

u
(j)
0 → u∗, such that the solutions with initial value u0 reach the positive

16



W axis, and so have E positive on their entire trajectories. The solutions

depend continuously on u0 as was noted after theorem 3.1.

Hence the solution starting at u∗ must also have E ≥ 0. If that solution

had E strictly positive, then it would reach the positive W axis. In that case,

the same continuity argument would show that solutions with slightly smaller

u0 would also reach the positive W axis, which would contradict the fact the

u∗ is the infimum. Hence E must tend to zero, but remain nonnegative on

the solution starting at u∗. This shows that it must tend to the origin.

Finally, we’ll show that a solution that reaches the origin must do it in

a finite time. Since E is nonnegative along a solution tending to the origin,

for u < 1 we have that

RW 4/3 ≥ 1

2
u2[1− 1

2
u2] ≥ 1

4
u2. (3.21)

Solving that equation for W 1/3 yield

W 1/3 ≥ c
u

1
2

R
1
4

. (3.22)

Plugging (3.22) into the first equation of (3.12) and integrating from some

time R1 at which u = u1 ≤ 1 to R yield

2u
1
2 − 2u

1
2
1 ≤ k(R

3
4
1 −R

3
4 ), (3.23)

which shows that u reaches zero at a finite value of R.

3.6 Existing methods for uniqueness problem

Before proving the uniqueness of a solution to (3.7), we discuss in this section

some former work and existing methods for uniqueness proofs of equations

similar to ours. The main equation in this work, equation (3.7) is a special

case of

∆mu+ f(u) = 0, (3.24)

where ∆mu denotes the degeneratem-Laplace operator div(|Du|m−2Du) with

m > 1, and f(u) is a continuously differentiable function defined for 0 < u <

∞. This equation is, in turn, a special case of the more general equation

div(A(|Du|)Du) + f(u) = 0, (3.25)
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where A ∈ C1(0,∞). A uniqueness results to equation (3.25) was achieved,

under certain conditions on f and A, by Pucci and Serrin [10]. The main tool

that they used is a cleverly-chosen function P , a version of which is also used

in Lemma 4.8 of our proof. Section 6 reviews Pucci and Serrin’s solution,

while also pointing out where the dynamical systems approach could have

been used there.

Pucci and Serrin uniqueness result applies in particular to the important

canonical nonlinearity

f(u) = −up + uq, (3.26)

for 0 < p ≤ m∗ − 1, p < q < m∗, and m∗ is

m∗ =

{
(m−1)n+m

n−m if m < n;

∞ if m ≥ n.

The question of uniqueness in the entire range −1 < p < q < m∗ is left

open. Serrin and Tang [12] managed to proof a uniqueness result for the

entire range for the less general equation (3.24), by using the same function

P , which is simpler on that equation, with the aid of a separation theorem.

Berestycki and Lions [1] proved a very general existence theorem for the

semi-linear case (m = 2 of (3.24))

∆u+ f(u) = 0, n > 2, (3.27)

where the nonlinearity (3.26) was treated as a canonical example. They

asked, as a major open problem, which nonlinearities f admit uniqueness of

ground states for the semilinear elliptic equation (3.27) with n > 2. The first

result in this problem was achieved by Coffman [2] for the case p = 3, q = 1

and n = 3. Coffman proof used a series of special identities, which sadly,

as he himself remarked, cannot be extended to other choices of n or other

power of u in f . Later, Mcleod and Serrin [9] improved Coffman’s method

to include more general functions f . Based on that previous work, Kwong

[8] proved uniqueness for (3.26) with p = 1 and 1 < q < (n+ 2)/(n− 2). His

proof was based on a version of Sturmian comparison theorem, which, sadly,

is not valid for other cases than m = 2 (and especially our case, m = 4).
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4 Uniqueness Result Part I: No Intersection

in u > 0 For 2 ≤ d ≤ 4

It is now time to present the main theorem of this thesis, which will be proved

in this section and following one. Keep in mind that the main goal of this

thesis is not only to prove that theorem, but also to do it with the dynamical

systems approach while comparing that to an older existing approach (see

Section 6).

Main Theorem 4.1. Assume 2 ≤ d ≤ 4. There exists a unique solution to

the ODE (3.8) satisfying:

1. u′(0) = 0, and u(0) > 0.

2. u(r∗) = 0 = u′(r∗) for some finite positive r∗ > 0.

3. u(r) > 0 > u′(r) for 0 < r < r∗.

4. (du
dr

)3 is differentiable at r = 0 and r = r∗.

Like in the existence result, equation (3.8) corresponds to (3.9), which in

turn corresponds to (3.12). Therefore, it is sufficient here as well to prove

the following theorem:

Theorem 4.2. For some positive R∗ > 0 there exists a unique solution to

system (3.12) on (0, R∗] that is continuous on [0, R∗] and satisfies:

1. u(0) > 0.

2. u(R),W (R) > 0 on (0, R∗).

3. u(R∗) = 0 = W (R∗)

The existence result for this problem was already proved in Theorem 3.2,

therefore only the uniqueness result is left. The demand for W (R) to be

positive follows from the fact that E from equation (3.17) is a decreasing

function of R, that is negative on the interval (0, 1] of the u axis (where

W = 0) and vanishes at the origin.

Assume that two solutions s1 and s2 reach the origin. There are three

ways for that to happen:

1. The solutions reach the origin at different times.

2. The solutions reach the origin at the same time but are not identical in
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any neighborhood of the origin.

3. At some time R, the solutions consolidated into one curve, which later

reaches the origin. That possibility is eliminated by the uniqueness theorem,

that holds for every R > 0 except at the origin, since the vector field is

smooth there.

This section proves two related results. The first one is that trajectories

(u,W ) of the non-autonomous system (3.12) that begin on the initial curve C

defined above can’t cross each other in the region Ω. Throughout this section

solutions are assumed to begin on the curve C at time zero, so this result

will be phrased in the form “u −W trajectories cannot cross”. Of course,

solutions that do not start at the origin can cross; for example, take two

solutions starting at the same point (u,W ) at different times. The fact that

the solutions under consideration start on the initial curve C enters into the

argument most prominently in formula (4.17).

The second result claims that if two solutions reach the origin, then they

must do so at the same time. In other words, the first case is impossible.

The proof of the theorem will be completed in the next section by showing

that the second case is also impossible.

We work with the system (3.12). Unless specified otherwise, solutions

start on the initial curve W0 =
u3
0−u0

d
with u0 > 1. It was shown in previous

sections that on that curve, the solutions are well defined for a small neigh-

borhood of R ∈ [0, δ] for some δ > 0. We work, as in sections 3.5, in the

region Ω that is confined between the initial curve ,u ≥ 0 and W ≥ 0. In

that region u′ ≤ 0 and W ′ ≤ 0. We handle only cases in which d ≥ 2.

One notation that will be used a lot is of R(u) which is the inverse function

of u(R). The function exists as long as u is inside of Ω (e.g. for u ≤ u0), since

u′ is always negative there. Hence we may also consider W as a function of u

given by W (u) = W (R(u)). In fact, since W is also strictly monotone we can

equally consider u as a function of W . When considering two solutions u1(R)

and u2(R) we will let R1(u) and R2(u) denote the corresponding inverses.

Definition 4.1. Let s1, s2 be two solutions such that u1(0) < u2(0).

1. s2 is above s1 at u for the u−W system (3.12) if W2(u) > W1(u) or if

W1(u) doesn’t exist. The latter case means that u > u1(0) and the definition
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follows since s2 is above s1 at u1(0). Under those conditions s1 is below s2

at u for the u−W system.

2. s1 at u for the u−z system (4.3) if z2(u) > z1(u) or if z1(u) doesn’t exist.

Under those conditions s1 is below s2 at u for the u− z system.

Note that in both systems a change in above/below status of two solutions

means that they intersected each other in the corresponding system.

Suppose that two solutions of the u−W system do cross each other. Then

the order in which those solutions reach the intersection point is dictated by

their initial condition.

Lemma 4.2. Let s1 and s2, u1(0) < u2(0), be two intersecting solutions

of the u − W system, first intersecting at (um,Wm) with um > 0. Then:

R1(um) > R2(um).

Proof. Examine the solutions at the crossing point (um,Wm). Before the

crossing point, s1 is below s2, while after it they change roles. It means, that

at R1(um), R2(um):

W ′
1

u′1
(R1(um)) ≤ W ′

2

u′2
(R2(um)). (4.1)

Plugging into ∂W
∂u

the values of W ′ and u′ yields

∂W

∂u
= −3[u3 − u− dW ]

4RW 1/3
, (4.2)

which is positive and bigger for smaller values of R. Combining all of that

shows that R1(um) ≥ R2(um). Moreover, equality is impossible since the

uniqueness theorem would then show that the two solutions were identical.

Define the variable z = R3d/4W . Plugging that in system (3.12) yields

u′(R) = −R−d/4z(R)1/3

z′(R) = 3
4
R

3d
4
−1[u3 − u]

. (4.3)

R
3d
4
−1 is an increasing function of R for d ≥ 2, while R−d/4 decreases.
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Lemma 4.3. (Intersection for the u−z system precedes intersection

for the u−W system) Let s1, s2 be two intersecting solutions in the u−W
system, such that their first intersection happens at (um,Wm) with um > 0.

Then there is an intersection in the u− z system at (umz , zmz), where umz >

um.

Proof. Assume, without losing generality, that u1(0) < u2(0), and therefore

s1 is below s2 in the u− z coordinates at R = 0.

By Lemma 4.2, R1(um) > R2(um). Since z = R3d/4W this means that

z1(um) > z2(um). By definition 4.1 s1 is above s2 at the u − z system at

um, meaning that there was an intersection at the u − z system at a point

(umz , zmz) where umz > um.

Definition 4.4. Let s1, s2 be two solutions.

1. s1 and s2, with s1 below s2, are in prior to u-equality at u if R1(u) <

R2(u).

2. s1 and s2 are in u-equality at u, if R1(u) = R2(u).

3. s1 and s2 are in W -equality at time R, if W1(R) = W2(R).

Remarks: 1. When using the first definition we have to specify which

system the below status refers to.

2. Every pair of solutions are in prior to u-equality at R = 0.

3. If two solutions are in u-equality, then they are in this status for both

u−W and u− z systems.

4. Note that the first two definitions depend on u, while the last one depends

on R. It is possible to define the ’prior to u-equality’ and u-equality using R

as well. It is not possible to define W -equality using u.

Lemma 4.5. Let s1, s2 be two solutions that are, at some u, in prior to u-

equality status in the u−W system, with s1 below s2.

1. If the solutions cross each other for the first time after passing u at

(um,Wm), then there exists a unique ue in (um, u) at which R1(ue) = R2(ue)

and at least one RW satisfying R2(um) > RW > R1(ue) = R2(ue) > R2(u) at

which W1(RW ) = W2(RW ).

2. If W -equality holds at RW , then there is some R < Rw such that the

solutions are in u-equality at u1(R)(= u2(R)).
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Proof. 1. ue existence: Since the solutions are prior to u-equality, and s1 is

below s2, then R1(u) < R2(u). On the other hand, at um, R1(um) > R2(um)

by Lemma 4.2. By the continuity of R(u) there exists ue < u such that

R1(ue) = R2(ue).

RW existence: note that W1(R2(u)) < W1(R1(u)) < W2(R2(u)) since W

is decreasing, R2(u) > R1(u) by definition of the prior-to-u-equality state,

and s1 is below s2 at u. But W1(R2(um)) > W1(R1(um)) = W2(R2(um))

since W monotonically decreases and R1(um) > R2(um) by Lemma 4.2. W

continuity then shows that RW exists as requested.

ue is unique: assume that s1 is below s2 at u+, in which they are in u-

equality status. The differential equation for u can be written as dR
du

= − 1
W 1/3 ,

which shows that R1(u) > R2(u) on some interval (u+ − δ, u+). Hence if

u− < u+ is the first point of u-equality to the left of u+ then R1(u) > R2(u)

on the entire interval (u−, u+). But if s1 is still below s2 at u−, then the

same ODE shows that R1(u) < R2(u) on some interval (u−, u− + δ). This

contradiction shows that there can be no second u-equality as long as s1

remains below s2.

RW > R1(ue) = R2(ue): assume by contradiction the opposite: RW <

R2(ue). Since RW < R2(um) we know that u2(RW ) must be smaller than

u1(RW ). Otherwise, from simple geometrical reasons, RW would occur after

an intersection point. The continuity of u would then show that there is

another point of u-equality at some time between R1(u) and Rw, which would

contradict ue uniqueness.

2. If that there is a crossing in the u-W axis before RW , then by the first part

of the lemma there is a u-equality before that. If no such crossing occurs then

R2(u1(RW )) < RW = R1(u1(RW )) but R2(u1(0)) > 0 = R1(u1(0)) which by

continuity shows that u-equality occurred for u > u1(RW ).

To get results about order of arrival to an intersection point for the u− z
system, similar to those of Lemma 4.2, the region 0 < u < u0 must be divided

into two parts: u0 > u > 1 and 0 < u < 1. The line u = 1 will be dealt with

later on.
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Lemma 4.6. Assume that two solutions, s1 and s2, cross each other in the

u − z system at (um, zm) with um > 0. Assume that s1 is below s2 for u in

some interval (um, um + δ). Then

If um < 1 then R1(um) < R2(um).

If um > 1 then R1(um) > R2(um).

Proof. Before the crossing point, s1 is below s2, while after it they change

roles. Therefore the following inequality must take place

z′1
u′1

(R1(um)) >
z′2
u′2

(R2(um)). (4.4)

Plugging u′ and z′ in (4.4) yields

z′

u′
(R) =

3(u− u3)

4z1/3
Rd−1. (4.5)

The factor u− u3 is negative for u > 1 and positive for u < 1. Therefore for

(4.4) to be true, R1(um) must be smaller than R2(um) if um < 1, and bigger

than R2(um) is um > 1.

Using the results of Lemma 4.6, it is possible to show that intersection

for u > 0 is not possible in the u − z system if there is no u-equality. That

result is divided into three lemmas, the first of which handles the line u = 1.

Lemma 4.7. (no crossing in u-z system at u = 1) Let s1 and s2 be two

intersecting solutions of the u − z system. Assume that s1 is below s2 for u

in some interval (1, 1 + δ). Then their first intersection point can’t be on the

line u = 1.

Proof. Assume by contradiction that s1 and s2 intersect at u = 1. Examine

the derivative of z by u

dz

du
= −3R(u)d−1[u3 − u]

4z1/3
. (4.6)

In order to get a derivative that does not depend on z, consider the system

with z4/3 instead of z:

dz4/3

du
= −4R(u)d−1[u3 − u]. (4.7)

24



The function from z to z4/3 is an injection in the region z > 0, and therefore

a crossing in the u − z plane is also a crossing in the u − z4/3 plane. s1 is

under s2 before u = 1 in the u − z4/3 plane, and above it after that line.

Therefore there exists some sequence of values u+
j > 1 and u−j < 1 such that

the following inequality holds for all u±j

dz
4/3
1

du1

(u±j ) ≤ dz
4/3
2

du2

(u±j ). (4.8)

If that was not true than z1(u)− z2(u) would be monotonically increasing in

(u− δ, u+ δ) for some δ > 0, therefore contradicting the intersection.

The right side of (4.7) depends only on u and R(u). u3 − u changes sign

at u = 1, and therefore R1(u) ≥ R2(u) on the sequence u+
j to the right of

one, and the opposite holds to the left. This shows from continuity that

R1(1) = R2(1), which contradicts the uniqueness theorem for solutions of

ODEs.

Lemma 4.8. (no crossing in u-z system for u > 1) Let s1 and s2

be two intersecting solutions in the u − z system. If d ≤ 4 then they don’t

intersect in the region u > 1.

Proof. Define

f(u) = u3 − u, (4.9)

and

F (u) = u4/4− u2/2 +
1

4
. (4.10)

Note that F (u) is, up to a constant, integral of f(u) with regard to u.

Define E to be

E =
z4/3

Rd−1
+ F (u). (4.11)

Up to an additive constant, this is the same expression defined to be E in

the previous section, only expressed in terms of z rather than W . Since both

u and z are functions of R, we may also consider E to be a function of R;

differentiating E with respect to R and using (4.3) yields

dE

dR
= (1− d)z4/3R−d. (4.12)
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Note that this calculation, which is essentially the same as the calculation in

(3.17), gives the full derivative even though calculating the partial derivative

with respect to R would yield the same result. Let K(u) = F (u)
f(u)

, and define

the function

P = R3d/4E − dzK(u). (4.13)

Calculate P ’s full derivative with respect to R:

dP
dR

= 3d
4
R

3d
4
−1E +R

3d
4 E ′ − dz′K(u)− dzu′ ∂K(u)

∂u
=

(1− d
4
)R−

d
4 z4/3 + dR−d/4z4/3 ∂K(u)

∂u
= z

4
3R−

d
4L(u) = −zL(u)u′,

(4.14)

where

L(u) = 1− d

4
+ d

∂K(u)

∂u
. (4.15)

L(u) is positive for every u > 1 and every d, since

∂K(u)

∂u
=

1

4
(1 +

1

u2
), (4.16)

which equals 1
2

at u = 1, monotonically decreases for u > 1 and has the limit

at infinity: limu→∞
∂K(u)
∂u

= 1
4
.

Integrating (4.14) in view of the facts that z(0) = 0 and hence also P = 0

at R = 0 yields

P =

∫ R

0

dP

dR
dR = −

∫ u(R)

u0

zL(u)du =

∫ u0

u(R)

zL(u)du. (4.17)

Let s1, s2, such that u1(0) < u2(0), be two solutions that intersect at (u∗, z∗)

with u∗ < 1. Let Pj = P (R, uj, zj). Using (4.17) yields

P (R1, u∗, z∗)− P (R2, u∗, z∗) =

∫ u0

u(R)

(z1 − z2)L(u)du, (4.18)

where z1 is defined to equal zero for u > u1. Since L(u) > 0 and z1(u) < z2(u)

for every u before intersection, the right side of (4.18) is negative.

Plugging the left side into (4.13) yield

P (R1, u∗, z∗)− P (R2, u∗, z∗)

= R
1− d

4
1 z4/3 +R

3d/4
1 F (u)−R1− d

4
2 z4/3 −R3d/4

2 F (u) =

(R
1− d

4
1 −R1− d

4
2 )z4/3 + (R

3d/4
1 −R3d/4

2 )F (u),

(4.19)
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which is positive for every d ≤ 4 since by Lemma 4.6 the fact that u∗ > 1

implies that R1 > R2. This contradiction shows that no intersection is

possible in the region u > 1.

The last lemma is more restricted, since we will assume in it that u-

equality occurs somewhere in the region u > 0.

Lemma 4.9. (no crossing in u-z system for u > 0) Let s1 and s2 be

two solutions of the u−z system with d ≤ 4. If the solutions are in u-equality

at some point ue > 0, then they don’t intersect in the region u > 0.

Proof. Assume by contradiction that s1, s2 intersect for the first time at

(um, zm), and let s1 be below s2 at u1(0) (u1(0) < u2(0)). Since d ≤ 4,

lemmas 4.7 and 4.8 says that there is no intersection in the u− z system for

u ≥ 1, which means that um < 1.

There can be at most one u-equality for u > um: this is true exactly

from the same reasons as the part about u-equality uniqueness in the proof

of lemma 4.5, where the differential equation for W is replaced by that of z.

Lemma 4.6 shows that s1 reaches um before s2. Since there’s at most

one u-equality for u > um, and since after u-equality s1 reach every point u

after s2, we get that s1 reaches um before it reaches u-equality, and therefore

ue < um < 1.

There cannot be a second intersection between um and the point ue of

u-equality closest to um, since that would mean that s1 reaches the second

intersection point first, even though it is above s2 before that, which contra-

dicts lemma 4.6. Therefore, s1 reaches ue when it is above s2 when viewed

in the u-z coordinates.

However, this is impossible since by lemma 4.5 there cannot be any u−W
intersection to the right of ue, and therefore W2(u) > W1(u) and R2(u) >

R1(u) for every u > ue. Combining this with the definition z = R
3d
4 W shows

that z2(u) > z1(u) in that region, and therefore s1 is below s2 when u > ue.

This contradiction shows that there is no intersection point in the u − z

system.

Combining Lemmas 4.3, 4.5, and 4.9 yield two conclusions:
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Corollary 4.10. For 2 ≤ d ≤ 4:

1. If two solutions have u-equality, then they don’t intersect for u > 0 in the

u− z system.

2. There is no intersection of solutions for u > 0 in the u−W system.

Proof. The first conclusion is simply a restatement of Lemma 4.9. By Lem-

mas 4.3 and 4.5, if there exists an intersection in the u −W system, then

there must also exist both a point of u equality and a crossing in the u − z
system, which is impossible.

Theorem 4.11. Let s1 be a solution that reaches the origin at R1. Then,

for 2 ≤ d ≤ 4, any other solution that reaches the origin must do so at the

same time R1.

Proof. Let s2 be another solution that reaches the origin, and does that at

R2 > R1. By corollary 4.10, if u2(0) > u1(0) then s2 is above s1 in the u−W
system at u2(R1) (u position of s2 when s1 reach the origin). On the other

hand if u2(0) < u1(0), then u continuity shows that there is u-equality for

some ue > 0, which means, by corollary 4.10, that s2 is below s1 not only in

the u−W system, but also in the u− z system.

In the first case u2(0) > u1(0) and s2 is above s1 at R1 in the u − W

system. There is no u-equality for 0 < u < u1(0): s2 is above s1 for every

0 < u < u1(0) so the same logic as in the proof of 4.5 shows that there is at

most one u-equality for 0 < u < u1(0). The possibility of a single u-equality

is canceled by the fact u2(0) > u1(0) and u2(R1) > u1(R1). Since there is no

u-equality, then there is also no W -equality for 0 < u < u1(0) by the second

part of Lemma 4.5. Hence R2(W ) > R1(W ) and u2(W ) < u1(W ) for all

0 < W < W1(0).

It is possible to write du
dW

as a product of two functions

du

dW
=

1

3[u(W )− u(W )3 + dW ]
4R(W )W 1/3 = f(W,u(W ))g(W,R(W )),

(4.20)

where

f(W,u) = 1
3[u(W )−u(W )3+dW ]

> 0 ∀R > 0 and (u,W ) ∈ Ω

g(W,R) = 4R(W )W 1/3 > 0 ∀R > 0 and (u,W ) ∈ Ω.
(4.21)
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We want to work in a region in which u(W ) − u(W 3) is an increasing

function, and that happens for u <
√

1/3. Hence, choose W∗ such that

u1(W∗) <
√

1/3 (remember that u1(W ) > u2(W ) for every 0 < W < W1(0)).

Now u1(W ) − u1(W )3 > u2(W ) − u2(W )3 in 0 < W ≤ W∗ , and that

implies that f2(W,u(W )) > f1(W,u(W )). We also have that g2(W,R(W )) >

g1(W,R(W )) since R2(W ) > R1(W ) for every 0 < W ≤ W∗. Using that in
du
dW

yields
du2

dW
>
du1

dW
. (4.22)

Integrate the difference of du2

dW
and du1

dW∫ W∗

0

(
du2

dW
− du1

dW
) du = [u2(W )− u1(W )]− [u2(0)− u1(0)]. (4.23)

We already know that [u2(W ) − u1(W )] < 0 for every 0 < W < W∗, while

(dW2

du
− dW1

du
) > 0 in that region due to (4.22), which shows that [u2(0)−u1(0)]

can’t be zero and s2 cannot reach the origin.

In the second case u2(0) < u1(0) and s2 is below s1 at R1 in both the

u−W and the u− z systems. Remember that the solutions have u-equality

at some ue. Hence R1(u) < R2(u) for 0 < u < ue. Since s2 is below s1

for every 0 < u ≤ u2(R1), then z1(u) > z2(u) for u < u2(R1). Choose

u∗ = min{ue, u2(R1), 1} since we want the above inequalities for Rj(u) and

zj(u) to hold, and also for u− u3 to be non-negative.

Examine dz
du

:

dz

du
=

3R(u)d−1[u− u3]

z(u)1/3
. (4.24)

The relations for R,Z that we found show that dz1
du

< dz2
du

.

Integrate the difference between dz2
du

and dz1
du

to get∫ u∗

0

(
dz2

du
− dz1

du
) = [z2(u)− z1(u)]− [z2(0)− z1(0)]. (4.25)

This time [z2(u) − z1(u)] is negative for every 0 < u < u∗, while (dz2
du
− dz1

du
)

is non negative. This shows that [z2(0) − z1(0)] does not equal zero and s2

doesn’t reach the origin.
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Finally, let s3 be a solution that reaches the origin at R3 < R1. Then

as was shown in this proof s1 cannot reach the origin at R1, which is a

contradiction to the theorem assertion.

5 Uniqueness Result Part II: Uniqueness of

solutions reaching the origin at a given time

In this section we prove that only one solution can reach the origin at a given

time. Combining this result with Theorem 4.11 of the previous section proves

Theorem 4.2 which is, as we already noted, equivalent to Theorem 4.1. It is

very important to emphasize that the result presented in this section is a local

one, i.e. no assumptions are made about the solution except at the origin.

The proof itself is also local, and based on analysis of a neighborhood of the

origin. This is a big difference from a global existence result, that takes into

consideration the initial values of solution, or of proof that analyses solutions’

values all over the plane. Such a result and proof can be found in Pucii and

Serrin solution that is presented in the next section.

Let R∗ be the time in which a solution reaches the origin. Define t =

R−R∗ to transfer system (3.12) to

u′ = −W 1
3

W ′ = 3
4(t+R∗)

[u3 − u− dW ]
. (5.1)

This shifts the time at which the solution reaches the origin to t = 0; note

that we are then interested in times t ≤ 0.

In order to find estimations on the sizes of u,W , we switch to the u− z
system (4.3) from the previous section. Using the t variable z becomes z =

(t+R∗)
3d
4 W , and the system in this variable is

u′ = −(t+R∗)
− d

4 z
1
3

z′ = 3
4
(t+R∗)

3d
4
−1[u3 − u]

. (5.2)

Using (5.2) and z’s monotonity, which holds for t close enough to zero so

that u < 1, it is possible to estimate u in a bounded area of the origin by

|u′| ≤ A|z
1
3 | → |u(t)| ≤ A|

∫ t

0

z
1
3 (s)|ds ≤ At|z(t)|

1
3 . (5.3)
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This result can be used in z’s equation to obtain

|z′| = |3
4
(t+R∗)

3d
4
−1[u− u3]| ≤ B|u− u3| ≤ B|u| ≤ ABt|z| 13 ⇒

⇒ |(z 2
3 )′| ≤ 2

3
|z′||z− 1

3 | ≤ ABt⇒ |z| 23 ≤ Ct2 ⇒ |z| ≤ Ct3
. (5.4)

Equations (5.3) and (5.4) imply that |z| ≤ Ct3 and |u| ≤ Ct2. A similar

bound can be achieved for W , Since z = (t+R∗)
3d
4 W

|z| = |(t+R∗)
3d
4 W | ≤ Ct3 ⇒ |W | ≤ (t+R∗)

− 3d
4 Ct3 ≤ Dt3, (5.5)

in every bounded region of the origin.

These bounds for u and W leads us to define

u = t2P (t)
W = −t3Q(t).

(5.6)

Remember that t ≤ 0, u,W ≥ 0 and hence 0 < P,Q ≤ C for −R∗ < t < 0

(not necessarily the same C as before). Plug this into (5.1)

2tP + t2P ′ = tQ
1
3 ⇒ P ′ = 1

t
[Q

1
3 − 2P ]

3t2Q+ t3Q′ = 3
4(t+R∗)

[t2P − t6P 3 − dt3Q]

⇒ Q′ = 1
t
[ 3P
4(t+R∗)

− 3Q]− 3
4(t+R∗)

[dQ+ t3P 3].

(5.7)

It is more convenient to write the Q’ equation differently:

Q′ = 1
t
[ 3P
4R∗
− 3Q]− 3

4(t+R∗)
[dQ+ t3P 3] + 3P

t
[ 1
4(t+R∗)

− 1
4R∗

] =
3
t
[MP −Q]− 3

4(t+R∗)
[dQ− 4MP + t3P 3],

(5.8)

where M = 1
4R∗

. This system can be written in vector form upon defining

A =

(
Q

1
3 − 2P

−3Q+ 3MP

)
,

B = B(t, P,Q) =

(
0

− 3
4(t+R∗)

[dQ− 4MP + t3P 3]

)
.

(5.9)

Note that B = O(P +Q).

Using those vectors system (5.7) becomes(
P
Q

)′
=

1

t
A+B, (5.10)
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where A and B are both bounded in some neighborhood of the origin. It is

convenient to make the change of variables

θ = − ln(−t)⇒ t = −e−θ. (5.11)

The following transformation is taking place

−t
(
P
Q

)′
= −A− tB ⇒

(
P
Q

)′
= −A+ B̃, (5.12)

where the derivative is now taken with respect to θ, and

B̃ = e−θB(−e−θ, P,Q). (5.13)

Note that θ → +∞ when t goes to 0− and that the transformed system tends

to an autonomous system as θ → +∞. Note that B̃ = O(e−θ(P + Q)), so

limθ→∞B̃ = 0.

From this point and in the rest of the section we will be working on

equation (5.12).

Remember that 0 < P,Q ≤ C for all θ in some interval (θ0,∞). A has

two rest points in the first quadrant: the origin, and Q∗ = (M
2

)
3
2 , P∗ =

√
M

2
√

2
.

Lemma 5.1. If 0 < P,Q < C holds for all θ in an interval (θ0,∞), then

(P,Q) tends either to the origin or to (P∗, Q∗) as θ →∞.

Proof. For convenience, denote by D the square 0 < P < C, 0 < Q < C.

Divide D into four regions:

1. R1 = D ∩ {P > 1
2
Q

1
3 , Q < MP}, in which P ′ > 0.

2. R2 = D ∩ {P < 1
2
Q

1
3 , Q > MP}, in which P ′ < 0.

3. R3 = D ∩ {P > 1
2
Q

1
3 , Q > MP}, in which P ′ > 0.

4. R4 = D ∩ {P < 1
2
Q

1
3 , Q < MP}, in which P ′ < 0.

Finally, define

R̃i := Ri \ S for 1 ≤ i ≤ 4,

where S is a small neighborhood of (P∗, Q∗) to be defined later.

Only one component, namely, the lower component (vertical component)

of the vector B̃(−e−θ, P,Q), is nonzero. Hence the sign of P ′ mentioned

above is not influenced by B̃ and is fixed for each of the regions.
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Figure 5.1: Phase plane of First Quadrant of P-Q

We would like to choose a region S that isolates (P∗, Q∗), i.e., such that

solutions that start outside S won’t enter it, and such that in addition the

sign of Q′ is guaranteed to be the same as that of −AQ, where AQ is the

lower component of A, on the portion of the curve Q = MP 3 lying outside

of S. For that we need a function, δ = δ(θ), large enough such that Q′ < 0

in R1 ∩ {Q ≤ Q∗ − δ(θ)}, Q′ > 0 in R2 ∩ {Q ≥ Q∗ + δ(θ)}, and yet satisfies

δ → 0 as θ →∞.

In the region R1∩{Q ≤ Q∗−δ} it is sufficient to check that Q′ is negative

on a set R1 ∩ {Q∗ − δ1 ≤ Q ≤ Q∗ − δ(θ)} for some fixed 0 < δ1 < Q∗. This

is sufficient since in R1 ∩ {δ2 ≤ Q ≤ Q∗ − δ1} the function −AQ is bounded

away from zero, which implies that Q′ is negative for θ sufficiently large,

while we show later on that for δ2 sufficiently small, Q′ is also negative on

R1 ∩ {Q ≤ δ2}.
Before doing so, denote by MB̃ = MB̃(θ) the maximum of B̃(θ, P,Q) in

P,Q ∈ D, which exists since D is bounded and B̃ continuous. Remember

that limθ→∞B̃(θ, P, )→ 0, so MB̃(θ) also goes to zero as θ →∞.

On the set R1 ∩ {Q∗ − δ1 ≤ Q ≤ Q∗ − δ(θ)}, the maximum of −AQ
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occurs on the line Q = Q∗ − δ(θ). Hence it is sufficient to check that Q′ =

−AQ + MB̃ < 0 on that line. −AQ is a decreasing function of P that is

negative in R1, so its maximum on the line is achieved at the intersection

point of Q = 8P 3 and Q = Q∗ − δ. Plug Q∗ − δ into the equation of

Q = 8P 3 to achieve 8P 3 = Q∗ − δ ⇒ P = 1
2
(Q∗ − δ)1/3, which means that

the intersection point is at N := (1
2
(Q∗− δ)1/3, Q∗− δ). Plug N into −AQ to

get: −AQ(N) = −c(δ) where c(δ) = 3M
2

(Q∗− δ)1/3− 3(Q∗− δ). Differentiate

c(δ) to obtain c′(δ) = 3 − M
2(Q∗−δ)2/3 . c(0) = 0 and c′(0) > 0, which imply

that c is positive and invertible in some interval (0, δ0).

Now we can finally define δ, and we’ll do that by choosing ’good’ values

of c.

Choose δ(θ) := δ(c(θ) = 2MB(θ)). By construction this function satisfies

our requirement of Q′ on R1 ∩ {Q ≤ Q∗ − δ(θ)}. To see that limθ→∞δ → 0

note that limθ→∞2MB(θ)→ 0, and δ(c = 0) = 0.

Doing the exact same process for R2 and Q∗ + δ(θ), and choosing the

maximum of both δ(θ)’s for every θ gives the desired function.

Using δ(θ), define a region, S, around (P∗, Q∗) to be a rectangle with

it’s bottom left corner and upper right corner on the line Q = 8P 3, and the

upper left corner and bottom right corner to lay on the lines Q∗ + δ(θ) and

Q∗ − δ(θ) correspondingly (see figure 5.1). We claim that solutions can’t

enter from R̃i, 1 ≤ i ≤ 4 to S.

On both vertical boundaries P ′ points away from S, and since B̃ doesn’t

have a horizontal component solutions can’t enter S across those boundaries.

Only the vertical boundaries of S intersect regions R̃3, R̃4, so solutions can’t

enter S from those regions. However, regions R̃1, R̃2 intersect also the hori-

zontal boundaries of S, but by the construction of S the vector field points

out of it along those horizontal boundaries, and therefore the whole vector

field points out of S in those regions.

We now determine the regions R̃j and R̃k for which the solution cannot

move from R̃j to R̃k. First, for sufficiently large θ solutions cannot move from

R̃1 to R̃4. To see this, note that the vertical component of −A is negative

on the boundary between those two regions and tends to zero either as P

does, or as we P,Q move towards (P∗, Q∗) as θ → ∞. The latter case is
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canceled by the above construction of S, that guarantees that we cannot

move towards (P∗, Q∗) quickly enough from within R̃1 to have Q′ change

sign. Remembering that P ′ > 0 in R̃1, it is suffices to show that solutions

cannot cross the curve near the origin.

This crossing doesn’t happen due to the fact that the on the curve Q =

8P 3, the vertical component of A is less than −c1P for some c1, and for θ

big enough its sign is not influenced by B̃, since |B̃| ≤ ce−θ(|P |+ |Q|), which

is less than c1P/2 for θ sufficiently large.

A similar analysis, without the part about a neighborhood of the origin,

shows that solutions cannot move from R̃2 to R̃3.

The vector field points out of the first quadrant along the boundary of the

first quadrant(except the origin). Hence solutions that reach the boundary

leave the first quadrant and are not in D for all time. Solutions in region R2

and R4 can reach the origin at finite time or tend to the origin as θ → ∞.

Otherwise they either leave to R1, reach the boundary, or leave D from within

R2.

The fact that solutions cannot move from R̃1 to R̃4 nor from R̃2 to R̃3

implies that any solution that remains in D but not in S (which would imply

convergence to (P∗, Q∗)), eventually stays either in the union of R̃1 and R̃3

(plus their boundary) or else within the union of R̃2 and R̃4, In the former

region P ′ > 0 so the solutions cannot tend to the origin and must leave D

in a finite time, while in the latter region P ′ ≤ 0 and is bounded away from

zero except in any neighborhood of the origin, so the solutions must either

tend to the origin or else leave D in finite time.

To conclude it all, we showed that a solution can only stay in the square

0 < P < C, 0 < Q < C for all time if it tends to the origin at θ → ∞ or

stays forever in region S. But this region shrinks to the fixed point (P∗, Q∗)

as θ →∞, which concludes the proof.

Next, we will show that any solution in the region P > 0, Q > 0, that

tends to the origin must in fact reach the origin at a finite value of θ. This

shows that it is not a solution that reaches the origin at t=0.
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Begin with the simpler equation:(
P
Q

)′
= −A. (5.14)

The next few lemmas discuss properties of that equation for a solution that

tends to the origin as θ →∞.

Lemma 5.2. A solution of (5.14) that lies in the first quadrant and tends

to the origin as θ →∞, must satisfy: Q′ < 0, P ′ < 0, and stay in the region:

8P 3 < Q < MP .

Proof. We use the definitions of Ri, 1 ≤ i ≤ 4 from the previous proof,

and note that in the simpler system the sign of Q′ is fixed as well in each

region. Namely, Q′ > 0 in R2, R3 and Q′ < 0 in R1, R4. Since we discuss

only solutions that tend to the origin, we may assume that the solution lies

in the union of R1, R2, R4 plus the boundaries separating them.

In region R1, P ′ > 0 and therefore solutions can’t reach the origin. In

region R2, Q′ > 0 and hence solutions don’t reach the origin as well. There-

fore, the only possibility for a solution to tend to the origin as θ →∞ is that

it lies in region R4, which means that: 8P 3 < Q < MP .

Define: S1 = Q
P

.

Lemma 5.3. A solution of (5.14) that lies in the first quadrant and tends

to the origin must satisfy Q ≤ (3M)
3
4P

3
2 .

Proof. Calculate S ′1:

S ′1 =
Q′

P
− P ′Q

P 2
= 3S1 − 3M − 2S1 +

Q
4
3

P 2
= S1 + S2

1Q
− 2

3 − 3M. (5.15)

If

S2
1Q
− 2

3 > 3M, (5.16)

then S ′1 > S1 > 0. From S ′1 > 0 and Q′ < 0, it is possible to see that if (5.16)

takes place at some θ1, it will take place for all θ > θ1.

If S ′1 > S1 at some θ1, then it will hold for all θ > θ1, and S1 → ∞
as θ → ∞. But, by Lemma 5.2, for every solution that goes to the origin,

S1 < M This means that (5.16) never takes place. Replacing S1 for Q
P

in

(5.16), and isolating Q, gives the desired result.
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Define: S2 = Q

P
3
2

.

Lemma 5.4. For any solution of (5.14) that lies in the first quadrant and

tends to the origin, ∃K > 0 such that S2 > K.

Proof. It suffices to obtain the conclusion when P is smaller than some ar-

bitrary positive value ε, since for P larger than that value the result follows

from Lemma 5.2. Now

S ′2 = Q′

P
3
2
− 3

2
1

P
5
2
P ′Q = 3Q

P
3
2
− 3M

P
1
2
− 3Q

2P
3
2

+ 3
2

1

P
5
2
Q

4
3

= 3Q

2P
3
2

+ 1

P
1
2

[3
2
( Q

P
3
2

)
4
3 − 3M ] < 3

2
(3M)3/4 + 1

P
1
2

[3
2
S

4
3
2 − 3M ]

, (5.17)

where we have used Lemma 5.3.

Assume, by contradiction, that the assertion of the theorem is false. Then

in particular S2 < (2M)
3
4 at some time θ1. This means that the expression in

brackets in the last line in (5.17) is negative. Since we may assume that P is

as small as we want at that time, we can obtain that S ′2 < δ < 0 at θ1. Since

P is decreasing, as long as S ′2 is negative the bound on the right of (5.17) is

decreasing, which shows that S ′2 < δ < 0 for all θ ≥ θ1. This implies that S2

becomes negative after a finite time, which contradicts the non-negativity of

P and Q.

Define: S3 = P +Q
2
3 . The bounds from Lemmas 5.3 and 5.4 imply that

c1Q
2
3 < P < c2Q

2
3 . Which means that the terms in S3 are of comparable

size. We’ll use S3 to show that the solution reaches the origin at a finite

value of θ.

Lemma 5.5. A solution for system (5.14) that lies in the first quadrant and

reaches the origin, does it in a finite value of θ.

Proof.

S ′3 = P ′+
2

3
Q−

1
3Q′ = 2P−Q

1
3 +2Q

2
3−2MPQ−

1
3 < 2P+2Q

2
3−Q

1
3−2MC1Q

1
3 .

(5.18)

The last inequality follows the fact that c1Q
2
3 < P . Q

1
3 is of a bigger magni-

tude than P,Q
2
3 , which means that eventually S ′3 < −dQ

1
3 .
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Examine the expression (S
1
2
3 )′

(S
1
2
3 )′ =

1

2
S
− 1

2
3 S ′3 <

−dQ 1
3

2(P +Q
2
3 )

1
2

≤ −dQ 1
3

2[(c1 + 1)Q
2
3 ]

1
2

= − d

2(c1 + 1)
1
2

. (5.19)

The last inequality follows again, from the fact the c1Q
2
3 < P . Therefore:

(S
1
2
3 )′ < −δ for some δ > 0. This shows that S3, and hence both P and Q,

reach zero at a finite value of theta.

Theorem 5.6. A solution of (5.12) that that lies in the first quadrant and

tends to the origin, reaches the origin at a finite time.

Proof. Since the only change from equations (5.12) to (5.14) is in Q’, and

the change is bounded by for ε(P +Q) some arbitrary small ε, the equation

for Q’ can be written as:

Q′ = c1(θ)Q− c2(θ)P,

where 3 − ε < c1(θ) < 3 + ε, 3M − ε < c2(θ) < 3M + ε. The case with just

the original A corresponds to taking c1(θ) = 3 and c2(θ) = 3M , while the

full case including B̃ is included by an appropriate choice of the cj.

It is possible to re-evaluate the estimation of Lemmas 5.2 to 5.5, using

cj notation this time. In Theorem 5.2 the bounds change to: 8P 3 < Q <

maxθ>θ0{
c2(θ)
c1(θ)
}P . We used the maximum over time of c2(θ)

c1(θ)
, because bounding

only with c2(θ)
c1(θ)

possesses a problem since c1 and c2 depend on θ. Then if c2(θ)
c1(θ)

increases then a solution may be in the region where Q > c2(θ)
c1(θ)

P at some

time and then in the region where Q < c2(θ)
c1(θ)

P at a later time, even though

the motion of the solution tends to take it in the other direction, provided

that the boundary moves faster than the solution. Since a solution can of

course also move from the latter region to the former, it may move back and

forth, and so would not have to satisfy the above bound even eventually.

In Lemma 5.3, the assertion will now be: Q ≤ (maxθ>θ0 c2(θ))
3
4P

3
2 , with

similar adjustments in the other lemmas. The proof of that lemma, and also

the proofs of Lemmas 5.4 and 5.5 remain valid, since they merely use the

fact that a bound exists, not its exact value.

Choosing c1, c2 appropriately, shows that a solution of (5.12) that tends

to the origin, reaches the origin at a finite time.
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Corollary 5.7. If a solution (P,Q) of (5.12) remains in the region 0 <

P,Q < C for θ0 ≤ θ <∞ then (P,Q) tends to (P∗, Q∗) as θ →∞.

Theorem 5.8. There’s a unique solution of (3.12) that reaches the origin at

R∗

Proof. Equation (3.12) corresponds to (5.1), which corresponds to (5.7) which

in turn corresponds to (5.12). Therefore it is sufficient to prove uniqueness

to (5.12).

Define: dP = P − P∗, dQ = Q − Q∗. Let J denote the Jacobian of the

mapping (P,Q)→ A at the point (P∗, Q∗). J is

(
−2 2

3M

3M −3

)
. J’s eigenval-

ues, and their corresponding eigenvectors are: λ1 = −1, L1 =

(
3M

1

)
and

λ2 = −4, L2 =

(
−3M

2

1

)
.

We can write the system (5.12) in the terms of dP, dQ as:(
dP
dQ

)′
+ J

(
dP
dQ

)
= F (θ, dP, dQ), (5.20)

where F (θ, dP, dQ) = B̃(θ, P∗ + dP,Q∗ + dQ) − A(P∗ + dP,Q∗ + dQ) +

J

(
dP
dQ

)
.

Define the iteration

(
oldP
oldQ

)
→
(
dP
dQ

)
by

(
dP
dQ

)′
+ J

(
dP
dQ

)
= F (θ, oldP, oldQ), (5.21)

together with the condition that dP, dQ→ 0 as θ →∞.

Multiply both side by J’s eigenvector, LTj . Multiply the result by eλJθ,

where λj is the corresponding eigenvalue, to get:(
LTj e

λJθ

(
dP
dQ

))′
= LTj e

λJθF (θ, oldP, oldQ). (5.22)

We would like to integrate (5.22) from a variable point θ to infinity. The

integral under consideration will converge whenever:∫ ∞
θ

LTj e
λJΘF (Θ, oldP, oldQ)dΘ <∞. (5.23)
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Examine F as θ → ∞. Since J is A’s Jacobian at (P∗, Q∗): −A(P∗ +

oldP,Q∗ + oldQ) − J

(
oldP
oldQ

)
= O

(
oldP 2

oldQ2

)
, where the O

(
oldP 2

oldQ2

)
term is

(
0

−2
9
Q
− 5

3
∗ Q2

)
. Taking that with |B̃(θ, P∗+dP,Q∗+dQ)| = Ce−θ+

O(e−θ(oldP + oldQ)) at (P∗, Q∗), concludes in F = C1e
−θ + O(e−θ(oldP +

oldQ) + (oldP 2 +oldQ2)). λj < 0 for both j = 1, 2, which means that LTj e
λJθ

converges, and the whole expression inside the integral of (5.23), goes to zero

at least as fast as O(e(λj−1)θ + eλjθ(oldP 2 + oldQ2)). Therefore, (5.23) holds.

Integrate (5.22), Divide the result by eλjθ to achieve:(
LTj

dP
dQ

)
= −e−λJθ

∫ ∞
θ

LTj e
λJΘF (Θ, oldP, oldQ)dΘ. (5.24)

Define the norm: ||f ||θ = maxs≥θ |f(s)|. From now on, when using the

norm notation, we will mean || · ||θ.
In order to show that the process for (dP,dQ) is a contraction mapping,

we will use the next lemma:

Lemma 5.9. Let G(θ, P,Q) be a function that goes to zero as θ →∞. Then,

for λ > 0:

O(

∫ ∞
θ

e−λΘG(Θ, P,Q)dΘ) = O(e−λΘ)O(||G(θ, P,Q)||θ). (5.25)

Proof. G goes to zero as θ →∞, so it is bounded, and its bound is its norm.

Use that in the integral to get

O(
∫∞
θ
e−λΘG(Θ, P,Q)dΘ) ≤ O(||G(θ, P,Q)||θ

∫∞
θ
e−λΘdΘ) =

O(||G(θ, P,Q)||θ 1
λ
e−λθ) = O(e−λθ)O(||G(θ, P,Q)||θ)

Let N be a matrix whose rows are Lj, j = 1, 2: N =

(
3M 1
−3M

2
1

)
, and

N−1 =

(
2

9M
− 2

9M
1
3

2
3

)
. We can represent (dP, dQ) iterative equation by:

(
dP
dQ

)
= −N−1

(
e−λ1θ

∫∞
x
LT1 e

λ1ΘF (Θ, oldP, oldQ)dΘ
e−λ2θ

∫∞
x
LT2 e

λ2ΘF (Θ, oldP, oldQ)dΘ

)
. (5.26)
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Define: T̃i(θ, oldP, oldQ) = e−λiθ
∫∞
x
LTi e

λiΘF (Θ, oldP, oldQ)dΘ. Three

remarks follows that definition:

1. T̃i = C1e
−θ +O(e−θ(oldP + oldQ) +O(oldP 2 + oldQ2) by Lemma 5.9.

2. Using that definition, the iteration is represented as:(
dP
dQ

)
= −

(
N11T̃1 +N12T̃1

N21T̃2 +N22T̃2

)
. (5.27)

3. It is also possible to estimate the iteration norm:∣∣∣∣∣
∣∣∣∣∣ dPdQ

∣∣∣∣∣
∣∣∣∣∣ =

∣∣∣∣∣
∣∣∣∣∣ N11T̃1 +N12T̃1

N21T̃2 +N22T̃2

∣∣∣∣∣
∣∣∣∣∣ ≤ 4D||T̃imax||, (5.28)

where D = Max{Nij}, 1 ≤ i, j ≤ 2, and T̃imax = max{T̃1, T̃2}.
Define S[θ, δ] to be the set of continuous functions defined on [θ,∞), that

converge to zero as θ → ∞, and takes their values in [0, δ]. Every solution

(dP, dQ) that converges to zero at infinity will be in S[θ, δ] for some θ and

δ. Also, if a solution is in one S[θ1, δ1] then it is obviously also in S[θ2, δ2]

for all θ2 ≥ θ1 and δ2 ≥ δ1. Since we can choose θ0 in (5.12) (and hence

also in (5.20)) to be as large as we want, then we can consider only solutions

that are in some specific S[θ, δ] that we are free to choose. All of those show

that uniqueness of the solution in every S[θ, δ] with θ sufficiently large and

δ sufficiently small implies uniqueness of all solutions (dP, dQ) of (5.20) that

converges to zero at infinity.

In order to prove that the process is a contraction mapping for every θ

sufficiently large and δ sufficiently small, and therefore has a unique solution,

we need to show that it is a mapping from some set S[θ∗, δ∗] into itself, and

that it is contracting.

Mapping from S into itself. Using estimate (5.28)∣∣∣∣∣
∣∣∣∣∣ dPdQ

∣∣∣∣∣
∣∣∣∣∣ ≤ 4D||T̃imax|| ≤ 4D||C1(e−θ + C2(oldP 2 + oldQ2)||. (5.29)

Since (oldP, oldQ)→ 0, there exists θ1a and δ1 > 0 such that ||DC2(oldP 2 +

oldQ2)|| < 1
8
||oldP (θ1a)||, ||oldQ(θ1a)|| for every (oldP, oldQ) ∈ S[θ1, δ1)].

Choose θ1 ≥ θ1a such that C1e
−θ < 1

8
||oldP (θ1a)||, ||oldQ(θ1a)|| for every
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θ > θ1. Adding those together shows that the process maps S[θ1, δ1)] into

itself.

Contraction mapping. Before we’ll get an estimation on the size of a

difference of two T̃i, it’s worth to get one on the size of a difference of two F

functions:

F (θ, oldP1, oldQ1)− F (θ, oldP2, oldQ2) =

e−θ[B(θ, oldP1, OldQ1)−B(θ, oldP2, OldQ2)]− A(P1 − P2, Q1 −Q2)− J
(

oldP1 − oldP2

oldQ1 −OldQ2

)
=

O(e−θ((oldP1 − oldP2) + (oldQ1 − oldQ2)) + (oldP1 − oldP2)2 + (oldQ1 − oldQ2)2).
(5.30)

This result is useful when calculating the order of a difference of two T̃i:

||[T̃i(oldP1, oldQ1)− T̃i(oldP2, oldQ2)|| =
||e−λiθ

∫∞
x
LTi e

λiΘ[F (Θ, oldP1, oldQ1)− F (Θ, oldP2, oldQ2)]dΘ|| =
||O(e−θ((oldP1 − oldP2) + (oldQ1 − oldQ2)) + (oldP1 − oldP2)2 + (oldQ1 − oldQ2)2)|| ≤
≤ C||(e−θ(oldP1 − oldP2 + oldQ1 − oldQ2) + (oldP1 − oldP2)2 + (oldQ1 − oldQ2)2||,

(5.31)

for some C > 0. The difference of the iteration on two points is:∣∣∣∣∣
∣∣∣∣∣
(

dP1

dQ1

)
−

(
dP2

dQ2

)∣∣∣∣∣
∣∣∣∣∣ ≤∑

i=1,2.j=1,2 ||Nij(T̃i(oldP1, oldQ1)− T̃i(oldP2, oldQ2))|| ≤
2D
∑

i=1,2 ||(T̃i(oldP1, oldQ1)− T̃i(oldP2, oldQ2))|| ≤
4DC||(e−θ(oldP1 − oldP2 + oldQ1 − oldQ2) + (oldP 2

1 − oldP 2
2 + oldQ2

1 − oldQ2
2)||,

(5.32)

where D is again where D = Max{Nij}, 1 ≤ i, j ≤ 2. Since (oldP, oldQ)→
0, then for some 0 < H < 1, there exists δ2 > 0, and θ2 > 0 such that:

4DC||(e−θ(oldP1 − oldP1 + oldQ1 − oldQ1) + (oldP 2
1 − oldP 2

2 + oldQ2
1 − oldQ2

2)|| <

H

∣∣∣∣∣
∣∣∣∣∣
(

oldP1

oldQ1

)
−

(
oldP2

oldQ2

)∣∣∣∣∣
∣∣∣∣∣ ,

(5.33)

for every (oldP, oldQ) ∈ S[θ2, δ2)].

Let δ∗ = min{δ1, δ2}, and θ∗ = max{θ1, θ2}. Then the process is a

contraction mapping in S[θ∗, δ∗)]. This shows that there is a unique solution

that tends to the (P∗, Q∗) as θ → ∞, which, in turn, shows that there’s a

unique solution of (3.12) that reaches the origin at R∗.
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6 Pucci-Serrin Method

This section introduces the solution of Pucci & Serrin (PS) [10] for the

uniqueness of radial ground states of the general problem

div(A|Du|)Du) + f(u) = 0, (6.1)

which are the radially symmetric solutions of class C1(Rn) such that

u ≥ 0, u 6= 0, u(x) → 0 as |x| → ∞. The proof presented in this section is

a little bit different that the original work of PS, and uses various notations

and results from the dynamical systems approach that was presented in the

previous sections.

To make the section more readable, define for ρ > 0

Ω(ρ) = ρA(ρ), G(ρ) =

∫ ρ

0

Ω(ρ)dρ.

The proof is valid under some restrictions on the operator A and function f .

The following conditions are supposed on the operator A ∈ C1(0,∞):

1. Ω′(ρ) > 0 for ρ > 0; Ω(ρ)→ 0 as ρ→ 0,

2. Ω(ρ) ≤ Const., and Ω(ρ) ≤ Ω′(ρ) for ρ near 0,

3. ρΩ(ρ)
G(ρ)

is (non-strictly) increasing for ρ > 0.

The function f(u), 0 ≤ u ≤ ∞ satisfies the following set of conditions:

(a) f is continuous on [0,∞), and f(0) = 0,

(b) f is continuously differentiable on (0,∞) ,

(c) there exists a > 0 such that f(a) = 0 and

f(u) < 0 for 0 < u < a,
f(u) > 0 for a < u <∞.

Define the following critical constant

m = inf
ρ>0

ρΩ(ρ)

G(ρ)
, (6.2)
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which will later be used to apply more restrictions on f . It can be seen easily

that G(ρ) < ρΩ(ρ) for ρ > 0, since Ω is an increasing function. That in turn

means that m ≥ 1.

Radial solutions u(r) of (6.1) satisfy the ordinary differential equation

(A(|u′|)u′)′ + d− 1

r
A(|u′|)u′ + f(u) = 0, (6.3)

for r > 0 and u′(0) = 0. Equivalently, the last equation can be written as

[rd−1A(|u′|)u′]′ + rd−1f(u) = 0. (6.4)

d here, can be considered a real parameter, with d > 1. In terms of our work

from the previous chapters this means that the dimension don’t have to be

a natural number.

For the rest of the proof ρ will be regarded as in the next definition

Definition 6.1. ρ(r) = |u′(r)|

Using that definition, and assuming that u′ < 0, which will be shown

later, equation (6.4) can be written as

[rd−1Ω(ρ)]′ = rd−1f(u). (6.5)

Another definition that would be helpful of us is that of H(ρ)

H(ρ) = ρΩ(ρ)−G(ρ), ρ ≥ 0.

It is convenient to define Ω(0) = G(0) = 0 so that H(0) = 0 as well. PS [10]

notes that in an earlier paper they proved that solutions u of (6.3) satisfy

d

dr
[H(ρ) + F (u)] = −(d− 1)

ρΩ(ρ)

r
, (6.6)

where

F (u) =

∫ u

0

f(t)dt.

Note that this is a generalization of (3.17) in section 3.

In order to better see the relationship between the method of PS and the

dynamical systems approach, set v = A(|u′|)u′. This transfers the equation

(6.3) into
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u′ = −Ω−1(−v)
v′ + d−1

r
v + f(u) = 0.

(6.7)

Setting v = −rW in that equation yields

u′ = −Ω−1(rW )
W ′ = 1

r
[f(u)− dW ],

(6.8)

The equation for W in (6.8) shows that a necessary condition for smoothness

is

W (0) =
f(u(0))

d
, (6.9)

or otherwise W ′ would be singular at r = 0.

To bound the size of u(0) one must turn to the operator H(ρ) + F (u).

That decreasing operator, as can be see from (6.6), vanishes at the origin

and therefore must be positive at r = 0. H is zero at r = 0, and hence the

possible values for u are those at which F (u) > 0. Since f(u) < 0 for u < a,

it is obvious that F (u) is also negative (at least) in u ≤ a. Hence u(0) > a,

and (6.9) shows that W (0) > 0. To see that a ground state solution must

stay above the W -axis, we note that H(ρ) + F (u) is negative on the line

segment (0, a] of the u-axis, so a solution that reaches that segment cannot

be a ground state. On the rest of the u axis, (a,∞], W (r)′ is positive for all

r, so a solution can’t cross it.

We conclude that ground states must start at r = 0 on the curve W =
f(u(0))

d
with u(0) > a, and remain, for all time, at the region bounded by that

line, the positive W -axis and the segment (0, a] of the u-axis. The fact that

the region is bounded by the W -axis, i.e. u > 0, is a matter of definition -

namely that a ground state is non-negative.

The claim that u′ is indeed negative follows from the equation u′ =

−Ω−1(rW ), after noticing that r > 0, W has been shown to remain pos-

itive until the solution reaches the origin, and Ω maps positive values to

positive values. Note that in order to show the same conclusion on the sign

of u′, PS turned to FLS which uses a different approach.

The next definition is equivalent to Definition 4.4 of the special case. It

comes in handy when phrasing the PS results in dynamical systems terms.
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Definition 6.2. Let s1, s2 be two solutions of (6.7) such that s1 is below s2.

1. The solutions are said to be in ’prior to u-equality’ at u, if r1(u) < r2(u),

or r2(u) doesn’t exist.

2. The solutions are said to be in ’u-equality’ at u if r1(u) = r2(u).

Note that solutions begins at prior to u-equality state at r = 0. It is

convenient for the rest of the chapter to define α = min{u1(0), u2(0)}.
Remark: A ground state, s = (u, v), of (6.7) is a ground state to (6.3)

and hence also a radial ground state to (6.1). Those claims work in the other

direction as well, so every definition that we make for ground state s of (6.7)

can be seen as a definition for radial ground state u of (6.1). This equivalence

is being used in proofs later on.

The key for the proof of PS is the function

P (r, u, ρ) = rd[H(ρ) + F (u)]− drd−1Ω(ρ)K(u), (6.10)

defined for r ≥ 0, ρ ≥ 0, u > 0( 6= a), where

K(u) =
F (u)

f(u)
and F (u) =

∫ u

0

f(τ)dτ.

The following is Proposition 1. from PS [10]. For the special case when

A(ρ) = ρm−2 it was proved earlier by Erbe and Tang [3]. The case of the

main problem of this thesis is m = 4.

Proposition 6.1. Let u = u(r) be a non-negative solution of (6.4) with

u′(r) ≤ 0. Then

d

dr
P (r, u(r), ρ(r)) = drd−1ρΩ(ρ)

{
dK(u)

du
− G(ρ)

ρΩ(ρ)
+

1

d

}
,

for all r > 0 such that u(r) 6= 0, a.

PS proved that proposition by direct calculation.

A special case of P was defined in (4.13) and was used in the proof of

Lemma 4.8.

The main focus of this section is the proof of
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Theorem 6.1. Assume that the above assumptions on A and f hold, and

that
d

du

[
F (u)

f(u)

]
≥ d−m

dm
for u > 0, u 6= a. (6.11)

Then Equation (6.1) with m define by (6.2), admits at most one radial ground

state.

The proof for the theorem is given in two parts in subsections 6.2 and

6.3. The first of which, subsection 6.2 proves the following series of lemmas

which end with the result that there is no u-equlity for 0 < u ≤ a, r > 0. All

the lemmas in this part are used in later on in the second part to prove the

uniqueness result. As full technical details for the second part are not pro-

vided, we encourage the reader to refer to PS original paper to see where the

lemmas are used in. In order to stay consistent with the rest of this paper,

the lemmas are phrased in dynamical systems terminology, even though orig-

inally PS used a different one. In specific, PS calls u-equality ’intersection’

since it is intersection in the u− r plane, whereas in the dynamical systems

approach intersection refers to intersection in the phase plane.

We use in those lemmas the inverse function r(u) of u(r), defined for

0 < u < α.

Lemma 6.2.1. Let u1(r), u2(r) be two radial ground states of (6.1). Define

the ratio of the derivative in the RHS of (6.5) for u1, u2 to be

T12(u) =

(
r1(u)

r2(u)

)d−1
Ω1(u)

Ω2(u)
, 0 < u < α.

Then for a < u < α we have (with ′ = d/du)

T ′12(u) > 0 if and only if r′2(u) < r′1(u),

while for 0 < u < a

T ′12(u) > 0 if and only if r′2(u) > r′1(u).

Lemma 6.2.2. Let u(r) be a radial ground state of (6.1). Then

limr→∞r
d−1Ω(ρ) = finite limit λ ≥ 0 (6.12)
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lim inf
r→∞

rd[H(ρ) + F (u)] = 0. (6.13)

Lemma 6.2.3. Let u1(r), u2(r) be two radial ground states of (6.1). If r2(u)−
r1(u) > 0 on an interval I ⊂ (0, α), then r2(u)− r1(u) can have at most one

critical point on I. If such a point occurs, it must be a strict maximum.

Moreover, if I = (0, n), n ≤ a, then r′2(u)− r′1(u) < 0 on I.

Lemma 6.2.4. Let u1(r), u2(r) be two different ground states for (6.1). Then

the ground states don’t have u-equality in the set 0 < u ≤ a, r > 0.

Subsection 6.3 completes the proof of the theorem. It is first shown there

that there is no u-equality for any 0 < u < α. Then this result is used to

prove Theorem 6.1.

6.1 Dynamical Systems Approach

This section discusses some general theorems which are easily phrased and

proved under the dynamical systems terms. Those theorems will be used

in our version of Pucci and Serrin proof, so as to show the strength of the

dynamical systems approach.

Definition 6.1.1. Let s1, s2 be two ground states of (6.7) starting on the

curve v(0) = 0. s1 is below s2 at u in u − v system (6.7) if v1(u) < v2(u)

or if v2(u) does not exist. The latter case means that u > u2(0) and the

definition follows since s1 is below s2 at u2(0) (remember that v is negative).

Under those conditions s2 is above s1 at u.

Those definitions are valid for every system (i.e. u − W system (6.8))

with a change of v in Definition 6.1.1 to the relevant variable. They are also

equivalent to Definition 4.1 of the special case.

The first Lemma is equivalent to Lemma 4.2 of the special case.

Lemma 6.1.2. Let s1(r), s2(r) be two different ground states of (6.7). If

they intersect in the u − v system at (u∗, v∗) for u∗ > 0, and s1 is below s2

before u∗, then r1(u∗) < r2(u∗).
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Proof. The proof is very similar to those of Lemma 4.2, even though v′ is

not necessarily monotonic like W ′ was there.

s1 is below s2 before u∗, and above it afterwards. In order for that to

happen, regardless to the question if v′ is positive or negative, the following

has to take place:
v′1
u′1

(r1(u∗)) <
v′2
u′2

(r2(u∗)). Dividing v′ by u′ in (6.7) yields

v′

u′
=

(1− n)v

r(u)Ω−1(v)
− f(u)

Ω−1(v)
.

which is an increasing function of r. Combining with
v′1
u′1

(r1(u∗)) <
v′2
u′2

(r2(u∗))

proves that r1(u∗) < r2(u∗).

The following lemma is similar to Lemma 4.5 of the special case. We have

adjusted its conditions and conclusions so that we are better equipped later

in this chapter.

Lemma 6.1.3. Let s1(r), s2(r) be two different ground states of (6.7) inter-

secting in the u−v system at (u∗, v∗). Set u∗∗ to be with the minimum u > u∗

in which there is an intersection point. If no such point exist, i.e. u∗ is the

first intersection point of the ground states, then set u∗∗ = α. Under those

definitions there is exactly one ue, u∗ < ue < u∗∗, in which the solutions are

in u-equality.

Proof. The ground states are prior to u-equality at u∗. Assume, without

losing generality, that s1 is above s2 between u∗ and u∗∗. Then r1(u∗) < r2(u∗)

by Lemma 6.1.2. This is true by definition of ’below’ state even if u∗ = α.

On the other hand at u∗∗, r1(u∗∗) > r2(u∗∗) by Lemma 6.1.2. The continuity

of u and v shows that there exists u∗ < uc < u∗∗ such that the ground states

are at u-equality at it.

To see that uc is unique, remember that s1 is above s2 at uc. Then since

Ω−1 is an increasing function, the differential equation for u shows that while

s1 is above s2 there must exist an interval (uc, uc + δ] with δ > 0, such that

r1(u) > r2(u) for u in that interval. But r1(u) < r2(u) for every u after uc,

which means that for a second u-equality to occur s1 has to be below s2.

This can happen only after intersection, meaning: after u∗.
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6.2 Proof of Theorem 6.1. Part I

This subsection focuses on proving that there is no u-equality for 0 < u < a.

Our goal in this subsection is mostly to involve dynamical systems methods

in the proof of the lemmas. The lemmas were already stated in the first

subsection of this chapter. Below are given their proofs.

Proof of Lemma 6.2.1. Using the formula for the derivative of a logarithm

yields

1
T
dT
du

= d
du
logT = d

du
log(r1(u)d−1Ω1(u))− d

du
log(r2(u)d−1Ω2(u))

= 1
rd−1Ω(ρ)

d
dr

[rd−1Ω(ρ)] dr
du

∣∣∣∣∣
ρ=ρ1(r),r=r1(u)

ρ=ρ2(r),r=r2(u)

= 1
ρΩ(ρ)

∣∣∣∣∣
ρ=ρ2(r2(u))

ρ=ρ1(r1(u))

· f(u).

(6.14)

We know that whenever 0 < u < α, we have that u′(r) < 0. This together

with equation (6.4) will give us the last step.

Note that ρΩ(ρ) is an increasing function by assumption (1), and that

ρ2(r2(u)) = − 1

r′2(u)
, ρ2(r1(u)) = − 1

r′1(u)
,

which is true since u′(r) < 0 and ρ(r) = |u′(r)| = −u′(r). Therefore

ρ2(r2(u)) > ρ1(r1(u)) if and only if r′2(u) > r′1(u), and this means that dT/du

has the same sign as f(u) if and only if r′2(u) < r′1(u). Now the conditions

that f(u) > 0 for a < u < α and f(u) < 0 for 0 < u < a complete the

proof.

Proof of Lemma 6.2.2. (6.12) can be proved from writing (6.4) in dynamical

systems terms by setting z = rd−1Ω(ρ)

u′ = Ω−1(r1−d)
z′ = −rd−1f(u).

z′ is negative for r0 large enough for which u(r0) < a. Therefore z is non-

increasing in (r0,∞). The definition of z plus condition (1) on the operator A

shows that z is non-negative. Combining all of those together proves (6.12).
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The second part is proven in PS and we will not bother to repeat the

proof here.

Proof of Lemma 6.2.3. First we note that a critical point of r2(u)− r1(u) is

an intersection point of the u− v system. This is true since r′2(u) = r′1(u) iff

u′2(r2(u)) = u′1(r1(u)), which by (6.7) holds iff v2 = v1 when u2 = u = u1.

The first part of the theorem says, in dynamical systems terms, that there

is at most one intersection between two u-equalities. The second part says,

in dynamical systems terms again, that for two ground states there is no

intersection between the origin and the u-equality point. The first claim is a

direct result of Lemma 6.1.3.

The second claim follows from noticing that if s2 is below s1, and r2(u) >

r1(u) then intersection is impossible as it will contradicts Lemma 6.1.2. A

ground state s2 cannot reach the origin and be below s1 in the neighborhood

of the origin due to the same reason as in the proof in Theorem 4.11. Hence

a ground state that reaches the origin must be above s1 for all times in which

there is no u-equality. If s2 is above s1 then by definition of ’above’ state

v2(u) > v1(u). The definition of v combined with the fact that Ω′(ρ) > 0 by

condition (1) on Ω shows that u′2(u) > u′1(u). Taking that with r′(u) = 1
u′(r)

shows that r′2(u) < r′1(u) as in the second claim.

This proof is essentially different from Pucci and Serrin’s proof, which

invokes Lemmas 3.3.1 and 3.6.5 of [FLS] to prove the theorem.

Lemma 6.2.4 is Lemma 3.4 from [10]. It’s proof will not be supplied here

as it doesn’t use special dynamical systems tools.

remark: Theorem 4.11 essentially shows the same as Lemma 6.2.4. Since

if the only option for two ground states is that they both reach the origin at

the same time, then there can’t be u-equality at any point 0 < u < α, and

in specific in 0 < u ≤ a.

6.3 Proof of Theorem 6.1. Part II

This subsection finishes the proof of Theorem 6.1. Again, note that Pucci

and Serrin call u-equality ’intersection’.
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Invoking a few propositions from [FLS], with conditions (a),(b),(c) and

(1),(2),(3), Pucci and Serrin showed that if u1, u2 are two different radial

ground states, with u1(0) = α1, u2(0) = α2, then α1 6= α2.

remark: Although the above result only claims that only one ground

state can start at any given point on the initial curve, the proof in [FLS]

seems to show that there is a unique solution starting from any point on the

initial curve, whether it is a ground state or not. This was shown in section

3 for the particular case considered in sections 3-5.

In the rest of the subsection we always assume that α1 < α2, with, as

usual, α1 > a.

We saw in part I that there can be no u-quality at (R,U) for which

R ≥ 0, 0 < U ≤ a. In this part we first show that there can be at most one

u-quality (R,U) where U > a. Say that there were two such points (rI , uI)

and (rII , uII). Let rI < rII , uI > uII and

u1(rI) = u2(rI) = uI , u1(rII) = u2(rII) = uII .

By definition s1 is above s2 for u > α. Since there is no u-quality for α > u >

uI , s1 must remain above s2 in that area. Again, by definition of above/below

state, this means that 0 > v1(u) > v2(u) in α > u > uI , and in addition

system (6.7) shows u′1(u) > u′2(u). Hence

r′1(u) < r′2(u) for uI < u < α. (6.15)

Lemma 6.1.3 shows that there is exactly one point uc > a, i.e. the u-quality

point in u− v system, such that r′1(uc) = r′2(uc) and

r′2(u)− r′1(u) > 0 for uc < u < uI
r′2(u)− r′1(u) < 0 for uII < u < uc.

combining with (6.15) shows that

r′2(u) > r′1(u) for uc < u < α. (6.16)

Let C = T12(uc). By (b) we have f(u) > 0 for u ≥ uc. Then from (6.16) and

Lemma 3.1 we see that T ′12(u) < 0 for uc < u < α. Therefore

C > T12(u), uc < u < α. (6.17)

52



The last part of the proof invokes Proposition 6.1 twice, each time showing

that the expression

P (R1, u1(R1), ρ1(R1))− Const ∗ P (R2, u2, ρ1(R2))

is non-positive by that proposition, but must be positive by definition (6.10)

of P . The first usage, in which R1 and R2 were chosen to be R1c, R2c cor-

respondingly, shows that there can be at most one u-equality in the region

r ≥ 0, u > 0, and that this can occur only when u > a.

In the second usage R1 and R2 are chosen to be the times in which each

radial ground state reach the point u = ε for ε < 0 arbitrary small. This case

in specific involves a difficulty because of the singularity of P (r, u, ρ) at u = a.

However, this singularity is shown to be removable, and a contradiction is

achieved as before. This implies that there is no u-equality for r ≥ 0, u > 0,

and hence

r2(u) > r1(u), 0 < u < α.

This in turn is impossible since it means by Lemma 6.2.3 that

r′2(u)− r′1(u) < 0 0 < u < α.

But this cannot happen since it was mentioned before that r′1(u) → ∞ as

u→ α−, while r′2(α) is infinite. This completes the proof the Theorem 6.1.

Remark: The last part here can also be seen as a shorter way to get the

result of section 5. However, it is not a local result as it uses the initial

conditions of the solutions, and therefore is a less general result than the

proof in section 5.

As a last note we must mention that Pucci and Serrin also proved, in

Theorem 2 in their article, that functions of the form f(u) = −up + uq, with

certain limits on p and q, satisfy the conditions of Theorem 6.1, and therefore

have a unique radial ground state. Therefore, there is a unique radial ground

state for our problem with q = 3, p = 1 and A(ρ) = ρ2.
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