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Abstract

In this thesis we show how the concept of Pyragas control can be adapted to equivariant
dynamical systems near Hopf bifurcation. We introduce a control term which uses the
spatio-temporal symmetry of the unstable periodic orbit. We give explicit necessary
and sufficient conditions for the stabilization of the periodic orbit near equivariant Hopf
bifurcation. For the remaining eigenvalues, we can find necessary conditions for the
stabilization. We also give two variations of the original control scheme, aiming at a
larger control region. In a detailed case study, we show how to apply equivariant Pyragas
control.
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Chapter 1

Introduction

In 1992, Pyragas [1] suggested a new method for the stabilization of unstable periodic
orbits. This method, which is now known as Pyragas control, is a time-delayed feedback
control. It is non-invasive on the periodic orbit itself, i.e. the control vanishes on the
periodic orbit. This implies that the trajectory of the controlled periodic orbit is not
altered due to Pyragas control, in contrast to its (linear) stability.

For example, if z∗(t) is an unstable periodic solution of the dynamical system ż = F (z),
z ∈ Rn, and B ∈ Rn×n is a control matrix, consider the following form of control [1]:

ż(t) = F (z(t)) +B (−z(t) + z(t− τ)) (1.1)

The periodic orbit z∗(t) also solves the controlled system (1.1) using a time delay τ = np,
i.e. an integer multiple n of the minimal period p of z∗(t). Then a stabilization of the
unchanged periodic orbit might be possible if the control matrix B is chosen suitably.

The main advantage of Pyragas control is that it needs no knowledge of the system,
specifically we do not need to know the periodic orbit. In the past 20 years, more than
1500 publications concerning Pyragas control have been published.

Fiedler et al. have proven that Pyragas control succeeds in dynamical systems near Hopf
bifurcation [2, 3, 4].

We now want to study the effects of Pyragas control on periodic orbits with spatio-
temporal symmetry emerging from equivariant Hopf bifurcation. Therefore, we consider
G-equivariant dynamical systems near Hopf bifurcation, where G is the symmetry group.

Throughout this thesis, we consider a compact Lie group G which acts orthogonally on
Rn by a linear representation, i.e. there is a group homomorphism

ρ : G→ O(n)

g 7→ ρ(g).

In a G-equivariant system ż = F (z) with a linear group action z 7→ ρ(g)z, g ∈ G, we
find that ρ(g)z(t) is a solution whenever z(t) is a solution, for all elements g of the
equivariance group G. We often abbreviate gz := ρ(g)z.
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Following Fiedler [5], we describe the symmetry of a periodic orbit z∗(t) of aG-equivariant
system ż = F (z) by triplets (H,K,Θ). Here H is a subgroup of G which leaves the
periodic orbit {z∗(t)| t ∈ R} fixed as a set, while K ≤ H ≤ G leaves z∗(t) fixed for each
t pointwise. The group homomorphism Θ: H → S1 = R/Z is defined uniquely by time
shift

hz(t) = z(t+ Θ(h) p), (1.2)

for all t. By definition, K is the kernel of Θ, Θ(K) = 0. Θ is well-defined by the
homomorphism theorem. In local settings this construction has first been introduced by
Golubitsky and Stewart; see for example [6]. We call (1.2) the spatio-temporal symmetry
of the periodic orbit.

The equivariant Hopf bifurcation theorem [6] (see appendix) states under which con-
ditions periodic orbits with spatio-temporal symmetries such as (1.2) bifurcate from
equilibria. It gives us a setting in which the effects of time-delayed feedback control
such as Pyragas control can be analytically analysed.

The main question of this master thesis is the following: How should one adapt the idea of
delayed feedback control to selectively stabilize periodic orbits of prescribed symmetry type
(H,K,Θ)? In short: How can we achieve non-invasive but pattern-selective feedback
stabilization? This question arised in [7], where a partial answer has been given.

In this present work we now attempt a more general answer: We show how Pyragas
control can be adapted to equivariant dynamical systems and that the control indeed
succeeds for systems near Hopf bifurcation. We discuss several possible control schemes
which arise due to the different ways of describing the spatio-temporal symmetry of the
periodic orbit.

We previously studied Pyragas control of equivariant systems near Hopf bifurcation [7, 8]
in a system of three coupled Stuart-Landau oscillators. Postlethwaite et al. [9] considered
equivariant systems near Hopf bifurcation in the center manifold. Additionally to [9],
we also consider the remaining eigenvalues, possibly with positive real part, as well as
two variations of the control scheme. Furthermore, we are now able to state explicit
stabilization regions.

This thesis is structured as follows: We state and prove our main new theorems for
Pyragas control near equivariant Hopf bifurcation in chapter 2, giving precise necessary
and sufficient conditions for the stabilization of unstable periodic orbits. In chapter 3,
we discuss two possible variations of the original control scheme and compare them to
our original control scheme. The simplest interesting example – three symmetrically
coupled Stuart-Landau oscillators – is discussed in a detailed case study in chapter 4,
extending significantly the former results in [7, 8]. In chapter 5, we summarize our results
and methods, compare them to previous results and discuss open questions concerning
equivariant Pyragas control.



Chapter 2

Equivariant Pyragas control

As an answer to the main question of this thesis, we present in this chapter what we
call equivariant Pyragas control:

ż(t) = F (λ, z(t)) + b (−z(t) + hz(t−Θ(h) p)) (2.1)

Here z ∈ Cn ∼= R2n and λ ∈ R is a bifurcation parameter. In this chapter, b ∈ C is a
complex control parameter. Instead, we can also use a complex control matrix B ∈ Cn×n

to achieve larger control regions. The effects of linearly transformed feedback will be
discussed in chapter 3.

Throughout, we assume that F is G-equivariant, i.e. F (λ, gz) = gF (λ, z) for all g ∈ G.
We pay special attention to group elements g of the form g = (h,Θ(h)), h ∈ H, Θ(h) ∈
S1. H is a subgroup of G which leaves the periodic orbit fixed as a set, i.e.

H :=
{
h ∈ G

∣∣ ∃ Θ = Θ(h) ∈ S1 s. t. z(t) = hz(t−Θ(h) p)
}
.

Similar to standard Pyragas control, the control term is noninvasive on the periodic
orbit itself, using the identity

z(t) = hz(t−Θ(h) p) (2.2)

which holds on the periodic orbit. It describes its spatio-temporal symmetry given by
the triplet (H,K,Θ). We often use Stab(e2πiΘ(h)h) = {z(t)|z(t) = hz(t−Θ(h) p)}.

In standard Pyragas control, h = Id and Θ(Id) = 1 are used, which reflects the perio-
dicity of the orbit: z(t) = z(t− p).

Of course, it is possible to include more than one group element h in the control term.
For example, we can construct control terms which are linear combinations of single
control terms. In particular, in chapter 3, we will consider

ż(t) = F (λ, z(t)) + b

(
−z(t) +

∫
H

hz(t−Θ(h) p) dh

)
,

where the integral over the group H denotes the Haar measure of the group H.
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We will introduce equivariant Pyragas control in such a way that exactly one periodic
orbit is left invariant by the control term. As each periodic orbit is uniquely identifiable
by its symmetry, the equivariant Pyragas control therefore selects the periodic orbit.

In other words, if two or more periodic orbits with the same period exist, equivariant
Pyragas control is noninvasive only on the periodic orbit of the prescribed symmetry
type. This is in contrast to “standard” Pyragas control which is by construction nonin-
vasive on all periodic orbits with the same period. It is therefore justified to interpret
equivariant Pyragas control as a selective stabilization of periodic orbits by a suitable
choice of h and Θ.

In this chapter we ask the question if we can find a combination of a group element
h (with corresponding Θ(h)) and complex control parameter b such that the control is
successful and the unstable periodic orbit becomes stable.

In the first part of this chapter, consisting of sections 2.1 – 2.4, we investigate the effects
of equivariant Pyragas control close to Hopf bifurcation. In section 2.1, we state our
new results, using the control form (2.1). Methods of the proof are given in section 2.2,
while the first part of the proof is presented in section 2.3. The proof of stabilization is
completed in section 2.4.

In the second part of this chapter, which consists of section 2.5, we extend those results
for dynamical systems for which not all eigenvalues are close to Hopf bifurcation, e.g.
networks of coupled cells.

2.1 Control close to Hopf bifurcation

The setting in which we will investigate equivariant Pyragas control is given by the
equivariant Hopf bifurcation Theorem ([6] and Theorem 8 in the appendix). The only
additional assumption is that the equivariant Pyragas control is noninvasive on exactly
one periodic orbit which emerges at the equivariant Hopf bifurcation. This plays a vital
role in the proof of our claims.

This setting allows us to give explicit analytic conditions for the stabilization. For
mathematical convenience, we also normalize the Hopf frequency to unity. This can
always be achieved by rescaling time.

This section is divided into the sub- and the supercritical case, referring to the original
Hopf bifurcation in the system without control.

We will see that if the Hopf bifurcation is originally supercritical, we always find an open
and infinite region of control parameters for which the periodic orbit is stable. For the
non-equivariant case, this result would be trivial. In the equivariant case, however, the
stability of a periodic orbit is not given by its supercriticality alone [6], therefore this
result indeed requires proof.

In the subcritical case we need an additional condition on the parameters of the uncon-
trolled system to guarantee the existence of an open (finite) control region. This is not
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surprising, since also in the non-equivariant case, a subcritical periodic orbit is unstable
and a control region cannot always be found [2, 3].

The following theorem is the main result in the supercritical case, stating the existence
of an open control region for equivariant Pyragas control (2.1).

Theorem 1 (Supercritical case) Consider the differential equation

ż(t) = F (λ, z(t))

with G-equivariant F and F (λ, 0) ≡ 0, where F is k-times real differentiable, k ≥ 2.
Let z ∈ Cn ∼= R2n and λ ∈ R be a bifurcation parameter. Let A(λ) := DzF (λ, 0) be the
linearization with specA(λ) = λ± i.

Let there occur an equivariant Hopf bifurcation at λ = 0, where a periodic orbit with
spatio-temporal symmetry

z(t) = hz(t−Θ(h)p),

h ∈ H, Θ(h) ∈ S1 bifurcates with dimR(Stab(e2πiΘ(h)h)) = 2.

Assume that the bifurcation is supercritical.

Then there exists a unique open and infinite region of control parameters b in the complex
plane such that a control of the form

ż(t) = F (λ, z(t)) + b(−z(t) + hz(t−Θ(h)p))

selectively stabilizes the periodic orbit with the above symmetry near Hopf bifurcation.

Note that the existence of the control region in b is guaranteed for all possible choices
of the group element h and corresponding Θ(h).

The following two corollaries give us more information about the control region, they
do not need any additional proof.

Corollary 1 (Control region versus minimal period) If −(1 + 2πΘ Re b)/ Im b <
0 then the inequality

−1 + 2πΘ Re b

Im b
< Θ p′(0)

holds for all b, Im b 6= 0 which stabilize the unstable periodic orbit near Hopf bifurcation.
On the other hand, if −(1 + 2πΘ Re b)/ Im b > 0, then the inequality

−1 + 2πΘ Re b

Im b
> Θ p′(0)

holds for all control parameters b, Im b 6= 0 which stabilize the unstable periodic orbit
near Hopf bifurcation.

Corollary 2 (Real control parameters) In the supercritical case, real control pa-
rameters b suffice. In particular, all real and strictly positive control parameters are
suitable for the stabilization.
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In the subcritical case the main theorem takes a very similar form to Theorem 1. Note
however that there is a crucial difference, since this theorem needs an additional as-
sumption to guarantee the existence of an open stabilization region.

Theorem 2 (Subcritical case) Consider the differential equation

ż(t) = F (λ, z(t))

with G-equivariant F and F (λ, 0) ≡ 0, where F is k-times real differentiable, k ≥ 2.
Let z ∈ Cn ∼= R2n and λ ∈ R be a bifurcation parameter. Let A(λ) := DzF (λ, 0) be the
linearization with specA(λ) = λ± i.

Let there occur an equivariant Hopf bifurcation at λ = 0 where a periodic orbit with
spatio-temporal symmetry

z(t) = hz(t−Θ(h)p),

h ∈ H, Θ(h) ∈ S1 bifurcates with dimR(Stab(e2πiΘ(h)h)) = 2.

Assume that the bifurcation is subcritical.

Then there exists a constant C ∈ R such that if either

p′(λ)|λ=0 > C > 0, (2.3)

or
p′(λ)|λ=0 < C < 0, (2.4)

then there exists a unique open and finite region of control parameters b in the complex
plane such that a control of the form

ż(t) = F (λ, z(t)) + b(−z(t) + hz(t−Θ(h)p))

selectively stabilizes the periodic orbit with the above symmetry near Hopf bifurcation.

Remark: Due to the conditions (2.3), (2.4), i.e. p′(0) bounded away from zero, real
control parameters are excluded in the subcritical case, see details of the proof.

2.2 Stabilization mechanism and outline of the proof

If equivariant Pyragas control is introduced, exactly one of the bifurcating periodic orbits
is selected by its symmetry. The control term in noninvasive only on the corresponding
periodic orbit.

Therefore the original center manifold at λ = 0 splits and only the selected periodic
orbit still bifurcates at λ = 0.

We emphasize that this is the most important observation, since we can now invoke
standard exchange of stability in a two dimensional center manifold.

In other words, we have reduced the problem to standard Hopf bifurcation for which
it is comparatively easy to determine the stability of the bifurcating periodic orbit.
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Therefore it is necessary and sufficient for stabilization that the trivial equilibrium is
stable and the Hopf bifurcation turns supercritical, see also [12].

This proof uses many ideas from [4], but needs new insights to work for equivariant
dynamical systems. In section 2.3 we seek the domain for which the trivial equilibrium
is stable at the Hopf bifurcation point. In section 2.4 we complete the proof of Theorems
1 and 2, respectively.

2.3 Domains of stability

Due to the equivariance of the linearization of the system (2.1) with respect to the group
G, the assumptions of Schur’s Lemma (see appendix) are fulfilled and the linearization
of the system diagonalizes in the coordinates of the group representation of G.

Without loss of generality we assume that the system is given in those coordinates and
that the selected Hopf bifurcation occurs in the first component z1 of
z = (z1, . . . , zn) ∈ Cn.

Furthermore, we also know that in these coordinates the group acts canonically, i.e.
zk 7→ e2πiMkzk for each coordinate zk, k = 1, . . . , n, where 0 ≤Mk ≤ 1.

For notational convenience, we define mk := Mk −Θ.

The stability of the trivial equilibrium is governed by the eigenvalues of the linearization
A(λ) of the system with control (2.1) at z ≡ 0. The structure of the system is sub-
stantially altered by introducing time-delayed feedback control. Without control, the
system is (complex) n-dimensional. Adding the feedback term makes the system infinite
dimensional, yielding infinitely many eigenvalues, additionally depending on the control
parameter b.

We will therefore not calculate the eigenvalues directly, but we aim at finding out for
which complex control parameters b we can find stability changes of the trivial equili-
brium. Let E(b) denote the strict unstable dimension of the trivial equilibrium z ≡ 0
at the Hopf bifurcation point λ = 0 with time delay τ = pΘ = 2πΘ, i.e. E(b) counts
the total number of eigenvalues η with strictly positive real part.
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Proposition 1 (Changes of stability) Under the assumptions of Theorem 1, the un-
stable dimension E(b) changes by two if, and only if, the control parameter b crosses
one of the curves

bk(ω) =
iω

−1 + exp(2πimk − 2πiΘω)
(2.5)

= −1
2
ω (cot(πmk − πΘω) + i) (2.6)

for k = 1, . . . , n. Specifically, in the subspace where the selected Hopf bifurcation occurs,
we obtain

b1(ω) =
iω

−1 + exp(2πiΘω)

= −1
2
ω (cot(πΘω) + i).

E(b) never changes by one. Furthermore E(0) = 0.

First note that the assumptions of Theorem 1 are also assumptions of Theorem 2, thus
the claims of Proposition 1 are valid in both settings. Further note that E(0) = 0 holds
by assumption since we assume that the system without control, i.e. b = 0, has only
purely imaginary eigenvalues at the Hopf bifurcation point.

As the linearization of the system diagonalizes, we can calculate the characteristic equa-
tion χ(η) = 0 of the eigenvalue η. We use exponentials z(t) = eηt(z1, . . . , zn) and obtain
n separate factors. Therefore, we obtain a set of n characteristic equations χk(η):

χk(η) = λ+ i + b (−1 + exp(2πiMk − τη))− η, k = 1, . . . , n (2.7)

From the characteristic equations, we can easily obtain the curves bk, k = 1, . . . , n, at
the Hopf bifurcation point λ = 0, τ = 2πΘ. We look for purely imaginary eigenvalues
η = i(1 + ω), where the curves are parametrized by ω ∈ R.

Since we calculate purely imaginary eigenvalues, we obtain stability changes by Hopf
bifurcation, i.e. the unstable dimension E(b) changes by two.

By direct calculation, we find that η = 0 can only occur for Mk ∈ {0, 1}, it occurs as a
double eigenvalue zero and lies on the already determined Hopf curve.

For k = 1, by assumption of noninvasive control, we obtain that Mk = Θ and therefore
mk = 0, yielding the correct expression.

For better understanding of the following, it is useful to draw the curves b1, . . . , bn in
the plane of the complex control parameter b.

Note that the curve b1, which corresponds to the selected Hopf bifurcation, is symmetric
with respect to the real axis, crossing it only at b1(0) = 1/(2πΘ).

Furthermore note that all the other curves b2, . . . , bn go through the origin. Intuitively,
this is obvious because we have chosen the equivariant Pyragas control such that it
is noninvasive only on one selected periodic orbit. Thus, the stability of the trivial
equilibrium changes for nonzero control which reflects the fact that the Hopf curves go
through the origin. The curves b1, . . . , bn follow a U-turn with horizontal asymptotics.
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Figure 2.1: Sketch of the complex control region Λ in b. The curve b1 is drawn in red,
note that it is symmetric with respect to the Re b-axis. Only one of the curves b2, . . . , bn
is sketched for simplicity (blue). Note that it goes through the origin. All curves are
oriented downwards, the region with stable equilibrium at the Hopf point is shaded
yellow.

All the curves b1, . . . , bn are complex differentiable (with exception of the poles) and
therefore preserve complex orientation. Hence, we only need to know the orientation
of the curves, because then we know that the region with smaller value of E(b) can be
found to the left of each curve.

The curves b1, . . . , bn are oriented downwards for increasing ω, due to the imaginary
part which is given by −1

2
ωi for all curves b1, . . . , bn.

E(0) = 0 by assumption. For the parameter b1 we know that the region containing the
origin has E(b1) = 0. The curves b2, . . . , bn cross the origin, therefore we can conclude
that there exists an open nonempty region to the right of the origin has E(bk) = 0,
k = 1, . . . , n. The real line is included in all the regions E(bk) = 0, k = 1, . . . , n.

The region where E(b) = 0 consists of the overlap of all single regions E(bk) = 0,
k = 1, . . . n. For further analysis, we will call the region where E(b) = 0 holds Λ. It
lies to the right of the origin and includes the real positive axis. In particular, it is not
empty.

We have now achieved linear stability E(b) = 0 at the Hopf point λ = 0, τ = 2πΘ itself,
for b ∈ Λ .
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2.4 Proof of the main theorems

In this section we finish the proof of our main Theorems 1 and 2. We fix the complex
control parameter b = b0 exp(iβ) in the region Λ where the characteristic equations (2.7)
produce only eigenvalues with strictly negative real part, at λ = 0, τ = pΘ = 2πΘ (with
exception of the pair of purely imaginary eigenvalues of the selected Hopf bifurcation).

We now must guarantee that we only encounter standard supercritical Hopf bifurcation
at the Hopf point. Standard Hopf bifurcation for nonzero control amplitude is ensured
by assuming that dimR(Stab(e2πiΘ(h)h)) = 2.

It remains to show that the bifurcation is supercritical, i.e. that the selected periodic
orbit lies at the side of the Hopf bifurcation where the trivial equilibrium has unstable
dimension two.

We therefore count unstable dimensions in the (λ, τ)-plane. Then we compare them to
the Pyragas curve, which determines the position of the periodic orbit, with the Hopf
curves, which tells us where the stability of the trivial equilibrium changes.

The Pyragas curve τP (λ) is given by

τP (λ) := Θ p(λ)

and thus depends on the group homomorphism and on the particular function F (λ, z).
The Pyragas curve τP does not depend on the control parameter b. By the normalized
Hopf frequency, we know that p(0) = 2π. Furthermore the continuation of the Pyragas
curve is differentiable at λ = 0. We denote

τ ′P (λ)|λ=0 = Θ p′(0).

We also determine the Hopf bifurcation curves τk(λ), k = 1, . . . , n, at b = b0 exp(iβ)
where χk(η) = 0 for purely imaginary eigenvalues η = iω̄:

τk(λ) =
± arccos (cos β − λ/b0) + β + 2πMk + 2πN

1− b0 sin β ∓
√
b2

0 sin2 β + λ(2b0 cos β − λ)

for k = 1, . . . , n, with integer N . This formula is obtained by separating the charac-
teristic equations χk(iω̄) = 0 into real and imaginary part:

0 = λ+ b0

(
cos(β + 2πMk − ω̄τ)− cos β

)
(2.8)

ω̄ − 1 = b0

(
sin(β + 2πMk − ω̄τ)− sin β

)
(2.9)

By rearranging the equations above, and taking the square, we obtain:

(cos β − λ/b0)2 = cos2(β + 2πMk − ω̄τ)

(sin β + (ω̄ − 1)/b0)2 = sin2(β + 2πMk − ω̄τ)

Adding up both equations gives a quadratic equation in ω̄, which can be solved explicitly:

ω̄ = 1− b0 sin β ±
√
b2

0 sin2 β + λ(2b0 cos β − λ)
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The result can be substituted into (2.8), yielding the above expression.

In contrast to the Pyragas curve τP , the Hopf curves τk depend on the control parameter
b, but they do not depend on any nonlinearity of the original system.

For further calculations, we linearize

χk(η) = λ+ i + b (−1 + exp(2πiMk − τη))− η, k = 1, . . . , n,

with respect to λ = 0 + λ̄, η = 0 + iω̄, and τ = Θ2π + τ̄ . Of particular interest is the
linearization of the above equation for k = 1, i.e. M1 = Θ. In this case, we obtain:

λ̄ = − Im b (2πΘω̄ + τ̄)

0 = Re b (2πΘω̄ + τ̄) + ω̄

Rearranging yields

τ̄ = −1 + 2πΘ Re b

Re b
ω̄ and λ̄ =

Im b

Re b
ω̄.

Therefore we can conclude that

τ ′1(λ)|λ=0 = −1 + 2πΘ Re b

Im b
.

By orientation considerations we can determine the resulting total unstable dimensions
E(λ, τ) of the trivial equilibrium z = 0 in the domains complementary to the Hopf
curves:

We consider once more the characteristic equations (2.7) and linearize with respect to
τ and λ:

ϕ(λ, τ) = λ− η τ b exp(2πiMk − τη) = ξ

and also with respect to η:

ψ(η) = 1 + η τ b exp(2πiMk − τη) = ξ.

Now it is possible to write
(λ, τ) = (ϕ−1 ◦ ψ)(η),

where ψ is orientation preserving because it is holomorphic. Furthermore we need to
calculate the determinant (detϕ) at η = iω, ω = 1, λ = 0, τ = 2πΘ to find its
orientation behaviour:

detϕ = − Im
(
η b exp(2πiMk − τη)

)
The only curve which is relevant here is the one with k = 1, i.e. the one corresponding
to the selected Hopf bifurcation. For this curve, it is possible to simplify the above
expression for the determinant and we obtain

detϕ = −Re b. (2.10)
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Since we have fixed the control parameter b in a region where its real part is always
positive, we can now conclude that ϕ is orientation reversing. Hence it follows that
the region with E(λ, τ) = 2 can be found at the left side of the Hopf-curve τ1 in the
(λ, τ)-plane. The τ1-curve is oriented downwards.

Supercritical case: The Pyragas curve exists for λ > 0. If τ ′1(0) < 0 then we will find
that τP enters the region with unstable dimension 2 whenever

−1 + 2πΘ Re b

Im b
< Θ p′(0).

On the other hand, if τ ′1(0) > 0 then we will find that it enters the region with unstable
dimension 2 whenever

−1 + 2πΘ Re b

Im b
> Θ p′(0).

Note that the real axis can always be used for control. Indeed, if the control parameter
b is chosen on the real line, then the Hopf curve is oriented vertically downwards and
we can stabilize for all possible values of p′(0). Also note that we have hereby proven
Corollaries 1 and 2.

Subcritical case: The Pyragas curve exists for negative λ. In this case, if τ ′1(0) < 0
then we will find that τP enters the region with E(λ, τ) = 2 whenever

−1 + 2πΘ Re b

Im b
> Θ p′(0),

note that the inequality sign changes compared to the supercritical case. On the other
hand, if τ ′1(0) > 0 then we will find that τP enters the region with unstable dimension 2
whenever

−1 + 2πΘ Re b

Im b
< Θ p′(0).

In contrast to the supercritical case, we cannot guarantee the existence of control para-
meters b for which the stabilization is possible. This is due to the fact that there might
be no choices for b which are in the region determined in section 2.4 and satisfy the
above inequalities at the same time. The constant C is then given by the respective
minimum/ maximum-value which τ ′1(0) can take for b ∈ Λ. For example, real control
parameters b are excluded in the subcritical case.

This proves Theorems 1 and 2. 2

In summary, the assumption that dimR(Stab(e2πiΘ(h)h)) = 2 of Theorems 1 and 2 gua-
rantees that we only encounter a standard Hopf bifurcation, when we restrict the time
delay to the Pyragas curve τP (λ). The unique bifurcating Hopf branch then consists of
exactly the selected periodic orbit unchanged by the control term. Because E(b) = 0
and because we have proven that under the above conditions standard Hopf bifurcation
is always supercritical along the Pyragas curve, we can invoke standard exchange of
stability. Therefore we have proven that, near the Hopf bifurcation point λ = 0, the
selected periodic orbit can be stabilized.
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Figure 2.2: Upper threshold value A of the real part of the remaining eigenvalues (z-axis)
for ck = 1, depending on Mk and Θ

2.5 Control of the remaining eigenvalues

In physical or biological applications, we can often find more eigenvalues than the purely
imaginary ones at the Hopf bifurcation point. If these eigenvalues have positive real
part, their instability is inherited by the bifurcating Hopf-branches, thus making them
unstable. The question whether Pyragas control can still succeed in this case is therefore
an important one.

This question is motivated by [4, 7, 8, 10, 13], where two and three symmetrically and
diffusively coupled oscillators are discussed. In both cases, an upper threshold on the
coupling strength was found, which is linearly correlated with the real part of the positive
eigenvalue.

Whether Pyragas control still succeeds in the presence of additional eigenvalues with
positive real part depends crucially on the particular system. Therefore we do not
attempt to give a general and yet precise answer. However, we are able to give upper
threshold values, in other words, necessary conditions for the stabilization. Interestingly
enough, these depend not only on the largest eigenvalue itself, but also on the choice of
the group element h and correspondingly on the time-delay Θ(h)p used for control.
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Figure 2.3: Figure 2.2 as seen from above. Only values of A which satisfy 0 ≤ A ≤ 1
are included. Note the periodicity in Mk-direction.

Theorem 3 (Upper threshold on the remaining eigenvalues) Consider the diffe-
rential equation

ż(t) = F (λ, z(t))

with G-equivariant F and F (λ, 0) ≡ 0, where F is k-times real differentiable, k ≥ 2.
Let z ∈ Cd ∼= R2d and λ ∈ R be a bifurcation parameter. Let

żk = (λ+ ak + i ck) zk

be the linearization of the system with ak = 0 for k = 1, . . . , n and ak 6= 0 for
k = n+ 1, . . . , d.

Let there occur an equivariant Hopf bifurcation at λ = 0, where a periodic orbit with
spatio-temporal symmetry

z(t) = hz(t−Θ(h)p),

h ∈ H, Θ(h) ∈ S1 bifurcates with dimR(Stab(e2πiΘ(h)h)) = 2. Consider a control term
of the form

ż(t) = F (λ, z(t)) + b(−z(t) + hz(t−Θ(h)p)).

If for some (ak, ck), k = n+ 1, . . . , d, we have ak > A where (A, ω) is the solution of

sinN cosN = ωπΘ

sin2N = AπΘ,
(2.11)

with N = π(Mk −Θ(ck + ω)), Θ = Θ(h), then there is no stabilization possible for this
particular control scheme (h,Θ(h)) near equivariant Hopf bifurcation.
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This implies the following Corollary:

Corollary 3 (A is unbounded) There is no general limit on the maximal real part
of the remaining eigenvalues which equivariant Pyragas control can stabilize. In other
words, A is unbounded if Θ and h can be varied.

Remark 1: We emphasize once again that the above thresholds only constitute
necessary conditions. We will see in chapter 3 that we are able to give a variation of
equivariant Pyragas control such that the conditions in Theorem 3 are both necessary
and sufficient.

Remark 2: Corollary 3 follows directly from the new Theorem 3 above. However, in
[10], we can already find an example which demonstrates Corollary 3, without proving
Theorem 3.

We briefly resume the example in [10]: Here Θ(h)−Mk = 1
2
. We find a solution (A, 0)

of equation (2.11) with

A =
1

Θ(h)π
.

Therefore, if Θ(h) is chosen arbitrarily small, which is indeed possible in the example
in [10], the maximal eigenvalue A can be chosen arbitrarily large.

It follows that A is unbounded on Θ ∈ [0, 1], Mk ∈ [0, 1] and the Corollary follows
directly.

Proof:

As before, we start our investigations with determining the changes of stability in the
plane of the complex control parameter b:

bk(ω) =
iω − A

−1 + exp(2πiMk − 2πickΘ− 2πiΘω)

If A = 0 (and ck = 1), we find the equations for the center manifold calculated in section
2.3 with normalized Hopf frequency.

However these new equations are not always complex differentiable, and at this non-
differentiable point a loop appears for decreasing A. This can be verified by directly
analysing the curves, which take a simple twisted cotangent-form, chapter 4. Within
this loop, the unstable dimension at the Hopf point is zero (only for each characteristic
equation separately). At the origin, the unstable dimension is 2, for positive A. If the
loop disappears for increasing A then also the region with E(bk) = 0 disappears and no
stabilization of the equilibrium is possible.

Therefore we seek for the point where the complex derivative of bk(ω) vanishes. By
defining N := π(Mk −Θ(ck + ω)), we find that

Re bk(ω) = −1
2

(ω cotN − A)

Im bk(ω) = −1
2

(ω + A cotN )
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By differentiating with respect to A, ω and rearranging the equations we obtain the two
equations

sinN cosN = ωπΘ

sin2N = AπΘ,

as claimed in Theorem 3. If ak > A for some k, no loop exists and therefore no stabi-
lization is possible near the Hopf bifurcation. The instability of the trivial equilibrium
is inherited by the bifurcation Hopf branch, i.e. the selected periodic orbit.

This completes the proof of Theorem 3. 2

Note that we only consider each characteristic equation separately, we do not know if
there is an overlap of all control regions. Therefore we cannot guarantee stabilization.
However, for concrete examples, it is possible to either guarantee or exclude stabilization
numerically.

Remark 3: Note that Theorem 3 also tells us in which cases standard Pyragas control
does not work. We fix for example ck = 1 ∀k. Then there is a zero A = 0 of equation
(2.11) at (Θ,Mk) = (1, 1) which corresponds to standard Pyragas control. Now con-
sider n identical Stuart-Landau oscillators, symmetrically and diffusively coupled in a
bidirectional ring:

żk = (λ+ i + γ|zk|2)zk + a(zk1 − 2zk + zk+1)

Assume that the coupling constant a is positive. There is a spatially homogeneous Hopf
bifurcation at λ = 0 and all other Hopf bifurcations are equivariant and occur for λ > 0.
In [2], it has been proven that the homogeneous Hopf bifurcation can be stabilized by
standard Pyragas control. Theorem 3 now tells us that we cannot stabilize any of the
periodic orbits emerging from equivariant Hopf bifurcation.



Chapter 3

Two variations of equivariant
Pyragas control

In this chapter, we introduce two variations of the control scheme proposed in chapter
2. In the first part, we study linearly transformed feedback, i.e. we use a control matrix
B ∈ Cn×n instead of a scalar control parameter b ∈ Cn as in chapter 2:

ż(t) = F (λ, z(t)) +B (−z(t) + hz(t−Θ(h) p))

In the second part of this chapter, we consider controls of the form

ż(t) = F (λ, z(t)) + b

(
−z(t) +

∫
H

hz(t−Θ(h) p) dh

)
,

where the integral over the group H denotes the Haar measure of the group H.

3.1 Pyragas control with linearly transformed feed-

back

The method introduced in this section aims at lifting several restrictions which exist for
the control in chapter 2. It is a generalization of the method introduced by Matthias
Bosewitz [10] for two diffusively coupled oscillators in Hopf normal form.

In this section, we extend his method to general (complex) n-dimensional dynamical
systems near Hopf bifurcation. We aim, similar as in [10], at decoupling the charac-
teristic equations completely. The main idea is to use different control parameters
bk, k = 1, . . . , n, for each factor of the characteristic equation.

As a consequence, the condition of zero eigenvalues with real part strictly greater than
zero only needs to be fulfilled for each factor of the characteristic equation separately.
It is clear that this is a great relaxation of the conditions. In particular, it means that
there is no condition on the nonlinear term except for a nondegeneracy condition. It
also implies that Theorem 3 gives not only a necessary but also a sufficient condition
for stabilization.
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Theorem 4 (Linearly transformed feedback) Consider the differential equation

ż(t) = F (λ, z(t))

with G-equivariant F and F (λ, 0) ≡ 0, where F is k-times real differentiable, k ≥ 2.
Let z ∈ Cn ∼= R2n and λ ∈ R be a bifurcation parameter. Let A(λ) := DzF (λ, 0) be the
linearization with specA(λ) = λ± i.

Let there occur an equivariant Hopf bifurcation at λ = 0 where a periodic orbit with
spatio-temporal symmetry

z(t) = hz(t−Θ(h)p),

h ∈ H, Θ(h) ∈ S1 bifurcates with dimR(Stab(e2πiΘ(h)h)) = 2.

Consider a control of the form

ż(t) = F (λ, z(t)) +B(−z(t) + hz(t−Θ(h)p))

where B ∈ Cn×n. Suppose that B commutes with the group action h, i.e. hB = Bh. Then
there exists an open region of control matrices B such that a control of the above form
selectively stabilizes the periodic orbit with the above symmetry near Hopf bifurcation.

Note that the use of a control matrix B guarantees the existence of a stabilizing feed-
back control in the super- as well as the subcritical case. The idea of decoupling the
characteristic equations completely is “hidden” in the condition that B and h commute.
Therefore, they can be simultaneously diagonalized [14] and the characteristic equation
can be factorized into n separate equations.

Proof:

The proof is again divided into two parts: Finding a control region and guaranteeing
supercritical bifurcation.

In contrast to theorems 1 and 2, we have now used a complex control matrix B instead
of a complex control parameter b. We have assumed that hB = Bh and therefore
[14] we can simultaneously diagonalize the linearization of the controlled system. As a
consequence (compare with section 2.3) we find n factors of the characteristic equation

χk(η) = λ+ i + b̃k (−1 + exp(2πiMk − τη))− η, k = 1, . . . , n, (3.1)

where b̃k ∈ C are the diagonal elements of the diagonalized matrix B.

We can now conclude stability in almost the same way as in chapter 2: If for each of the
characteristic equations we have zero eigenvalues with positive real part, the unstable
dimension of the Hopf point at λ = 0 is zero. We can use the same curves which
give the changes of stability (2.5). Note however, that we can use different b̃k for each
characteristic equation because B is a matrix. As a result we do not require the b̃k to
lie in the overlap of the simple control regions. If we choose all b̃k 6= 0 and we require
dimR(Stab(e2πiΘ(h)h)) = 2, we have a simple Hopf bifurcation at λ = 0.

The fact that we can use different control parameters b̃k for each characteristic equation
is particularly useful for proving that the b̃k can be chosen such that the bifurcation is
supercritical.
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In particular, we can now choose b̃1 independent of b̃2, . . . , b̃n, which allows us to choose
b1 with negative real part. In the case that b̃1 is chosen with positive real part, we
can continue the proof as in chapter 2, ending up with the same conditions on the
supercriticality as before.

In the case that Re b̃1 < 0, however, we know that the τ1-curve is orientation preserving
(2.10), and that the region with E(B) = 2 can now be found at the right side of the
Hopf-curve τ1 in the (λ, τ)-plane.

In the supercritical case, the Pyragas curve exists for λ > 0. If τ ′1(0) > 0 then we will
find that τP enters the region with E(λ, τ) = 2 whenever

−1 + 2πΘ Re b̃1

Im b̃1

< Θ p′(0),

i.e. we can take the absolute value of Re b̃1 and reverse the direction of the inequality,
which gives us the same condition as before. On the other hand, if τ ′1(0) < 0 then we
will find that τP enters the region with unstable dimension 2 whenever

−1 + 2πΘ Re b̃1

Im b̃1

> Θ p′(0).

In the subcritical case, the Pyragas curve exists for negative λ. In this case, if τ ′1(0) < 0
then we will find that τP enters the region with unstable dimension 2 whenever

−1 + 2πΘ Re b̃1

Im b̃1

< Θ p′(0).

On the other hand, if τ ′1(0) > 0 then we will find that it enters the region E(λ, τ) = 2
whenever

−1 + 2πΘ Re b̃1

Im b̃1

> Θ p′(0).

This completes the proof of Theorem 4. 2

Remark: In the case of additional unstable eigenvalues ak, k = n+1, . . . , d in a complex
d-dimensional system, it is now possible to stabilize the selected unstable periodic orbit
whenever additionally the following condition is fulfilled: If for all ak, k = n+ 1, . . . , d,
we have ak < A where (A, ω) is the solution of

sinN cosN = ωπΘ

sin2N = AπΘ,

with N = π(Mk − Θ(ck + ω)), Θ = Θ(h), then there exists an open region of control
matrices B such that the periodic orbit with the above symmetry near Hopf bifurcation
can be stabilized.
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3.2 Pyragas control with multiple time delays

The second variation of equivariant Pyragas control was brought to my attention by
Prof. Fiedler. Until now, a proof of stabilization is still missing in the literature. In this
master thesis, we attempt the proof of stabilization near equivariant Hopf bifurcation.

The main idea is to include all elements of the isotropy subgroup H into the control
term, and not only a single one as in equation (2.1).

Specifically, we propose a new control term of the form:

ż(t) = F (λ, z(t)) + b

(
−z(t) +

∫
H

hz(t−Θ(h)p) dh

)
This new control term raises the following question: Can we guarantee the existence of
a stabilization region?

Once again, we find that the situation is different in the subcritical and in the super-
critical case. The results can be found in Theorems 5 and 6 below. As before, we can
guarantee the existence of a stabilization region in the supercritical case. In the subcri-
tical case, we once again need an additional condition to guarantee stabilization – which
is the same as for one control term; compare with chapter 2, Theorem 2. One difference
of the results therefore lies in the shape of the stabilization region, compare figure 3.1
with figure 2.1.

Furthermore, we can now apply equivariant Pyragas control also in the case where
dimR(Stab(e2πiΘ(h)h)) 6= 2. This is due to the assumption of equivariant Hopf bifurca-
tion – the dimension fixed point subspace of the isotropy subgroup H must be 2, see
appendix.

Theorem 5 (Multiple time delays – supercritical case) Consider the differential
equation

ż(t) = F (λ, z(t))

with G-equivariant F and F (λ, 0) ≡ 0, where F is k-times real differentiable, k ≥ 2.
Let z ∈ Cn ∼= R2n and λ ∈ R be a bifurcation parameter. Let A(λ) := DzF (λ, 0) be the
linearization with specA(λ) = λ± i.

Let there occur an equivariant Hopf bifurcation at λ = 0 where a periodic orbit with
spatio-temporal symmetry

z(t) = hz(t−Θ(h)p),

h ∈ H, Θ(h) ∈ S1 bifurcates supercritically.

Then there exists an open region of control parameters b in the complex plane such that
a control of the form

ż(t) = F (λ, z(t)) + b

(
−z(t) +

∫
H

hz(t−Θ(h)p) dh

)
selectively stabilizes the periodic orbit with the above symmetry near Hopf bifurcation.
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Theorem 6 (Multiple time delays – subcritical case) Consider the differential
equation

ż(t) = F (λ, z(t))

with G-equivariant F and F (λ, 0) ≡ 0, where F is k-times real differentiable, k ≥ 2.
Let z ∈ Cn ∼= R2n and λ ∈ R be a bifurcation parameter. Let A(λ) := DzF (λ, 0) be the
linearization with specA(λ) = λ± i.

Let there occur an equivariant Hopf bifurcation at λ = 0 where a periodic orbit with
spatio-temporal symmetry

z(t) = hz(t−Θ(h)p),

h ∈ H, Θ(h) ∈ S1 bifurcates subcritically.

Then there exists a constant C ∈ R such that if either

p′(λ)|λ=0 > C > 0,

or
p′(λ)|λ=0 < C < 0,

then there exists an open region of control parameters b in the complex plane such that
a control of the form

ż(t) = F (λ, z(t)) + b

(
−z(t) +

∫
H

hz(t−Θ(h)p) dh

)
selectively stabilizes the periodic orbit with the above symmetry near Hopf bifurcation.

Again, real control parameters are excluded in the subcritical case.

The Proof of Theorems 5 and 6 uses the same ideas as before, therefore we only draw
attention to the points which differ from the original proof of Theorems 1 and 2.

First we calculate the characteristic equations for the complex eigenvalues η at the trivial
equilibrium z0:

ηz0 = z0(λ+ i) + b

(
−z0 +

∫
H

exp
(
−Θ(h)τη

)
hz0 dh

)
In the subspace of the selected Hopf bifurcation, which is again without loss of generality
given by z1, we have hz0 = exp(2πiΘ(h))z0, therefore we can eliminate z0, obtaining:

η = λ+ i + b

(
−1 +

∫
H

exp
(
−Θ(h)(τη + 2πi)

)
dh

)
(3.2)

We calculate the b1-curve in the complex plane of the control parameter b for purely
imaginary eigenvalues η = i(1 + ω):

b1(ω) =
iω

−1 +
∫
H

exp(−2πiΘω) dh
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Figure 3.1: Example of a control region for O(2)-symmetry if we use the integral over
all group elements for control. In the yellow region, the selected periodic orbit is born
stable. Once again, the blue curve, corresponding to a non-selected Hopf bifurcation
goes through the origin, while the red one, which lies in the subspace of the selected
Hopf bifurcation, does not go through the origin, compare to figure 2.1.

We do not calculate the curves b2, . . . , bn. Note however, that they go through the origin,
since the equivariant Pyragas control is noninvasive only on the selected periodic orbit.

We can linearize the characteristic equation (3.2) with respect to λ, ω and τ , obtaining

0 = λ− b
∫
H

2πiωΘ(h) dh− iω − b
∫
H

iτ Θ(h) dh.

This we can simplify to

0 = λ− iω + b (2πiω + iτ)

∫
H

Θ(h) dh.

Since the Haar measure is normalized to unity, i.e.
∫
H

Θ(h) dh = 1, we now have:

0 = λ− iω + b (2πiω + iτ)

From here on, we can continue the proof in the same way as the proof of Theorems 1
and 2 as in chapter 2. 2

In figure 3.1 we find an example of the region where the selected periodic orbit is born
stable, here we considered O2 × S1-symmetry in a 4-dimensional center-manifold.



Chapter 4

A case study: Coupled oscillators in
a triangular symmetry

In this chapter, we reconsider the example of three symmetrically coupled oscillators,
which has already been addressed in [7, 8]. We give a review and we show additionally
how the choice of the group element influences the control region and how the two
variations discussed in chapter 3 can be applied for this particular example.

4.1 Model and periodic solutions

Throughout this chapter we consider the following model system of three symmetrically
and diffusively coupled Stuart-Landau oscillators:

ż1 = f(z1) + a(z2 − z1) + a(z3 − z1)

ż2 = f(z2) + a(z1 − z2) + a(z3 − z2)

ż3 = f(z3) + a(z1 − z3) + a(z2 − z3)

(4.1)

Figure 4.1: Schematic sketch of the network structure of system (4.1).
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where
f(zk) = (λ+ i + γ|zk|2)zk, k = 1, 2, 3. (4.2)

Stuart-Landau oscillators are widely used as models for oscillating systems in physics
and biology and they correspond to the Hopf normal form truncated at third order.

The system is D3 × S1-equivariant, where D3 is the dihedral group including all possi-
ble permutations of three elements, and S1 is the rotational symmetry of every single
oscillator.

As in the previous chapters, λ ∈ R is used as the bifurcation parameter. The Hopf-
frequency is normalized to unity, this can always be achieved through rescaling of time.
γ is a fixed complex number and the coupling parameter a is positive.

Spatially homogeneous Hopf bifurcation with z1 ≡ z2 ≡ z3 occurs at λ = 0, i.e. all
oscillators have the same frequency, amplitude and phase.

At λ = 3a, there occurs an equivariant Hopf bifurcation of two discrete rotating waves.
Here the oscillators are phase-shifted by one third of the minimal period p with respect
to each other, the two waves can only be distinguished in the numbering of oscillators:

zk(t) = zk+1

(
t− p

3

)
and (4.3)

zk(t) = zk−1

(
t− p

3

)
(4.4)

for k mod 3, with minimal period p > 0, see proposition 2 and [7].

Proposition 2 (Discrete rotating waves, [7]) Consider the coupled oscillator tri-
angle (4.1), (4.2). Equivariant Hopf bifurcation of discrete rotating waves (4.3), (4.4)
occurs at the parameter value λ = 3a. The rotating waves are harmonic,

zk(t) = r exp

(
2πi

(
t

p
+
k

3

))
and

zk(t) = r exp

(
2πi

(
t

p
+ 2

k

3

))
,

for k = 1, 2, 3, respectively, and are phase shifted by p/3 between oscillators. Amplitude
r and minimal period p are given explicitly by

r2 =
3a− λ
Re γ

,

p =
2π

1 + r2 Im γ
.

In particular the Hopf bifurcation is supercritical, i.e. towards λ > 3a, for Re γ < 0,
and subcritical for Re γ > 0. The minimal period p grows with amplitude (soft spring)
if Im γ < 0 and decreases (hard spring) if Im γ > 0.

By direct calculation, this proposition can be verified easily, therefore we skip its proof.

For planar Hopf normal form (see appendix) the periodic orbit is unstable if the bifurca-
tion is subcritical, and stable in the supercritical case. For the three coupled oscillators
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however, the discrete rotating waves are unstable both in the sub- and the supercritical
case. They inherit their instability from the spatially homogeneous Hopf bifurcation at
λ = 0.

In this chapter we select one of the discrete rotating waves (4.3) and stabilize its periodic
orbit.

4.2 Equivariant Pyragas control with one time delay

In this section we choose the discrete rotating wave of the form (4.3) and apply equi-
variant Pyragas control as proposed in (2.1):

żk(t) =
(
λ+ i + γ|zk(t)|2

)
zk(t) + b

(
− zk(t) + zk+1 (t− p/3)

)
k = 1, 2, 3

Here, the group element h1 describing the spatial symmetry is given by h1zk = zk+1,
i.e. an index shift between the oscillators. The time delay τ is given by τ = Θ(h1)p = p/3.
Θ(h1) describes the temporal symmetry, which is a time shift by one third of the period.

By Theorems 1 and 2, we can find the conditions for the stabilization within the center
manifold. Additionally, we can use Theorem 3 to find the largest possible coupling
parameter a for which a stabilization is possible. We will see that for the oscillator
triangle the necessary condition given in Theorem 3 is also sufficient.

In a first step it is useful to decouple the linearization of the system (4.1), (4.2) at the
trivial equilibrium z ≡ 0 which is possible due to Schur’s Lemma (see appendix). The
new coordinates are given by:

x1 = 1
3
(z1 + z2 + z3)

x2 = 1
3
(z1 + e+2πi/3z2 + e−2πi/3z3)

x3 = 1
3
(z1 + e−2πi/3z2 + e+2πi/3z3)

(4.5)

The diagonal form of the linearization, in these new coordinates (4.5), including the
control term as given above, is then

ẋ1(t) = (λ + i)x1(t) + b (−x1(t) + x1(t− τ))

ẋ2(t) = (λ− 3a+ i)x2(t) + b
(
−x2(t) + e−2πi/3x2(t− τ)

)
ẋ3(t) = (λ− 3a+ i)x3(t) + b

(
−x3(t) + e+2πi/3x3(t− τ)

)
.

Note that without control, i.e. b = 0, the linearization of the second and the third
coordinate coincide, both giving a Hopf bifurcation at λ = 3a, which corresponds to
the equivariant Hopf bifurcation of discrete rotating waves as discussed before. With
control, i.e. b 6= 0, however, the linearization of the second and the third coordinate
do not coincide anymore. This reflects the fact that equivariant Pyragas control, as
introduced above, is noninvasive only on exactly one periodic orbit (4.3), corresponding
to the coordinate x3.
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Figure 4.2: b-curves in the complex plane for a = 0.1. The numbers in parentheses
give the values E(b). The region with zero eigenvalues with positive real part is shaded
yellow.

The characteristic equation χ(η) = 0 for exponentials x(t) = eηt(x1, x2, x3) decouples
into a product of three factors, χ = χ1 · χ2 · χ3 = 0 which are given by

χ1(η) = λ + i + b
(
−1 + e−τη

)
− η

χ2(η) = λ− 3a+ i + b
(
−1 + e−2πi/3−τη)− η

χ3(η) = λ− 3a+ i + b
(
−1 + e+2πi/3−τη)− η.

From these characteristic equations, it is now easy to calculate the stability changes in
the complex plane of the control parameter b, compare with Proposition 1:

b1(ω) = −3
2

(
a− iω − (ω + ia) cot

(
π
(
ω + 1

3

)))
(green)

b2(ω) = −3
2
ω
(
cot
(
π
(
ω + 2

3

))
+ i
)

(blue)

b3(ω) = −3
2
ω (cot (πω) + i) (red).

Two examples of the b-curves in the complex plane are shown in figures 4.2 (a = 0.1)
and 4.3 (a = 0.035), the region with zero eigenvalues with real part greater than zero,
i.e. the region where the controlled discrete rotating wave (4.3) is born stable, is marked
(0) and shaded yellow.

We can observe that the yellow region shrinks if the coupling parameter a is increased,
compare figure 4.2 with 4.3. The yellow region disappears if 3a is increased beyond
the solution of (2.11), in agreement with Theorem 3. The b-curves preserve complex
orientation, the orientation of the curves is indicated by arrows in figures 4.2 and 4.3.
Also note that only the green curve, corresponding to coordinate x1, depends on the
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Figure 4.3: b-curves in the complex plane for a = 0.035. The numbers in parentheses
give the values E(b). The region with zero eigenvalues with positive real part is shaded
yellow.

coupling parameter a. The red and the blue curve, which give the equivariant Hopf
bifurcation in the uncontrolled system, show exactly the behaviour sketched in figure
2.1.

Furthermore, we can give an explicit value for the condition for supercriticality: In the
case of the soft spring Im γ > 0, we can define the function β(a) as

β(a) := min

{
−Re b+ 1/(2πΘ)

Im b

∣∣∣∣ b ∈ Λ, Im b > 0

}
.

In the subcritical case, we can then guarantee the existence of a stabilization region if
the condition

|Im γ| > β(a) Re γ > 0

is fulfilled. In the hard spring case Im γ < 0, we define

β(a) := min

{
Re b+ 1/(2πΘ)

Im b

∣∣∣∣ b ∈ Λ, Im b < 0

}
.

Note that in this case, as explained in [7, 8], β(a) = β̄ is a constant. Here, we can
guarantee the existence of a stabilization region if the condition

Im γ > β̄ Re γ > 0

can be fulfilled.
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Figure 4.4: Left: Sketch of the function β(a) in the soft spring case Im γ < 0 if the
group element h1zk = zk+1 is used, or in the hard spring case Im γ > 0 for the group
element h2zk = zk−1. Right: Sketch of the function β(a) in the soft spring case Im γ < 0
if the group element h2zk = zk−1 is used or in the hard spring case Im γ > 0 for the
group element h1zk = zk+1.

4.3 Choice of the group element

In the previous section, we chose the group element h1zk = zk+1 to be the index shift
by one oscillator with corresponding time delay τ = Θ(h1)p = p

3
. It is also possible to

choose the index shift by two oscillators h2zk = zk+2 = zk−1, resulting in a time delay
of τ = Θ(h2)p = 2p

3
. We can then compare the characteristic equations and the region

of stabilization, see figure 4.5 for a = 0.01.

Note that the choice of group element does not only influence the shape of the stabi-
lization region, but also its existence, particularly in the subcritical case.

Since Λ depends on the group elements h1, h2, as well as Θ, we can see that the function
β(a) can behave differently for different h1, h2. In the best case, it can be a constant,
in the worst case it diverges for a→ A where A is the value where the loop disappears.
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Figure 4.5: Choice of the group element h2zk = zk+2, Θ(h2) = 2/3: b-curves in the
complex plane for a = 0.01. The numbers in parentheses give the values E(b). The
region with zero eigenvalues with positive real part is shaded yellow. Note the different
scaling of the Im b-axis in comparison with figures 4.2 and 4.3.

4.4 Controlling with the sum over all group

elements

In the previous section, we have seen that the choice of group elements greatly influences
the shape and the existence of a control region. Now we want to examine what happens,
if we include all group elements to the coupling, i.e. we introduce a control of the form

żk(t) =
(
λ+ i + γ|zk(t)|2

)
zk(t)

+ b

(
−zk(t) +

1

3

(
zk(t) + zk+1

(
t− p

3

)
+ zk+2

(
t− 2p

3

)))
for k = 1, 2, 3. We can again use the coordinate transformation (4.5), and we obtain the
characteristic equations

χ1(η) = λ + i +
b

3

(
− 2 + e−τη + e−2τη

)
− η

χ2(η) = λ− 3a+ i +
b

3

(
− 2 + e−2πi/3−τη + e+2πi/3−2τη

)
− η

χ3(η) = λ− 3a+ i +
b

3

(
− 2 + e+2πi/3−τη + e−2πi/3−2τη

)
− η.

The corresponding b-curves where the stability changes, are drawn in figure 4.6 for
a = 0.1. Note that their shape changes.
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Figure 4.6: Sum over all group elements: b-curves in the complex plane for a = 0.1.
The numbers in parentheses give the values E(b). The region with zero eigenvalues with
positive real part is shaded yellow.

Also the existence of the yellow region corresponding to E(b) = 0 is now given for
a . 0.350, as compared to a . 0.296 for the use of group element h1 alone and a . 0.148
compared to h2.

4.5 Combining a control matrix and a single delay

term

At the end of this case study, let us shortly consider the case of a control matrix B
instead of a complex control parameter b. Matrices which commute with the group
element h1zk = zk+1 take the form

B =

b1 b2 b3

b3 b1 b2

b2 b3 b1


where b1, b2 and b3 are complex each and can be chosen independently. This can be
checked directly since we can write h1 in its matrix form:

h1 =

0 1 0
0 0 1
1 0 0
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The characteristic equations are

χ1(η) = λ + i + b1

(
e−τη − 1

)
− η

χ2(η) = λ− 3a+ i + b2

(
e−2πi/3−τη − 1

)
− η

χ3(η) = λ− 3a+ i + b3

(
e+2πi/3−τη − 1

)
− η.

As described in section 3.1, the three equations are now completely decoupled, meaning
that we can now find a control region in the parameter b1 independent from the regions
in b2 and b3 and vice versa. Therefore, the control region is larger than just the overlap
of the three regions, as required for one single complex control parameter b. This gives
us much more freedom for the choice of control.

Furthermore, the condition for a supercritical bifurcation must only be fulfilled in the b3

parameter, not for b1 or b2, as investigated in section 3.1. Therefore the only condition
which remains for the existence of a stabilization region, even in the subcritical case, is
a . 0.296, in agreement with Theorem 3 with a1 = 3a.



Chapter 5

Summary and Discussion

Summary

In the present thesis, we modified the well-known Pyragas control to include the spatio-
temporal symmetry of the unstable periodic orbit as follows:

ż(t) = F (λ, z(t)) + b (−z(t) + hz(t−Θ(h) p)) (5.1)

The method, which we call equivariant Pyragas control, can be applied to all periodic
orbits with a two-dimensional fixed-point space of the isotropy group. In particular,
we applied it near G-equivariant Hopf bifurcation, where G is the symmetry group,
and gave explicit necessary and sufficient conditions for the stabilization. It is most
important that the modified Pyragas control only leaves a two-dimensional dynamical
subspace invariant. This subspace includes the selected periodic orbit.

We were able to give an explicit region of control parameters b where the stabilization is
successful. The proof of stabilization of the selected periodic orbit goes via stabilization
of the trivial equilibrium and establishing supercriticality of the Hopf-bifurcation.

For the remaining eigenvalues with positive real part, we found upper thresholds de-
pending on the element which describes the spatio-temporal symmetry in the control
term.

We also discussed two variations of equivariant Pyragas control: In the first variation,
we used a control matrix B versus a control parameter b. Apart from a nondegeneracy
condition, the existence of a control region can now always be guaranteed. In the second
variation, we considered control terms of the form

ż(t) = F (λ, z(t)) + b

(
−z(t) +

∫
H

hz(t−Θ(h) p) dh

)
. (5.2)

This results in different and sometimes larger stabilization regions compared to the form
of control discussed above.

As a detailed case study, we considered three diffusively coupled Stuart-Landau oscilla-
tors coupled in a symmetric triangle, i.e. a system with D3×S1-symmetry. We were able
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to apply equivariant Pyragas control and show that the concrete results are in complete
agreement with the general results developed in chapters 2 and 3. Additionally we also
discussed the choice of the group element for equivariant Pyragas control, a question
which can up to date not be answered in general.

Discussion

The introduction of equivariant Pyragas control (5.1) and (5.2) raises several questions,
especially in comparison to standard Pyragas control.

The main advantage of Pyragas control is that it is model-independent – it can be
applied to practically any periodic orbit without specific knowledge of the dynamical
system. Equivariant Pyragas control requires more knowledge – the knowledge of a
spatio-temporal pattern. However there is a new advantage: We are now able to select
unstable periodic orbits and stabilize them.

This example is realized in our case study in chapter 4 – three diffusively coupled Stuart-
Landau oscillators. There, two discrete rotating waves of the same period and the same
radius bifurcate at the same bifurcation point. In fact, they are only distinguishable in
the numbering of oscillators. Only with equivariant Pyragas control we can select one
of the two waves and stabilize it. This is in contrast to standard Pyragas control which
would be noninvasive on both periodic orbits.

But also in the case where we do not need to select a periodic orbit, because it is
already sufficiently described by its period, Pyragas control might fail where equivariant
Pyragas control succeeds. For example, think of two diffusively coupled Stuart-Landau
oscillators, as considered formerly in [4, 10, 13]. Here a time delay of half a period
was used, because a stabilization region does not exist for standard Pyragas control.
This is in agreement with Theorem 3. The same phenomenon occurs in rings of coupled
oscillators with positive diffusive coupling. This is an indication that equivariant Pyragas
control can be applied in coupled oscillator systems where Pyragas control fails.

A similar problem to the one in this thesis has been discussed by Postlethwaite et al.
[9]. The authors establish only the existence of a stabilization region within the center
manifold. In our thesis, we are now able to give explicit regions of stabilization. Ad-
ditionally, we have also overcome the condition dimR(Stab(e2πiΘ(h)h)) = 2 for a specific
group element by introducing a control of the form (5.2).

The control of the form (5.1) or (5.2) can be introduced to general equivariant dynamical
systems. In this thesis we have considered unstable periodic orbits close to equivariant
Hopf bifurcation. However, equivariant Pyragas control does not require any knowledge
of the particular system except for the spatio-temporal symmetry of the periodic orbit.
Hence, it should in principle also be possible to apply the control of the form (5.1) to
any periodic orbit with symmetry.



Appendix A

Schur’s Lemma

Theorem 7 (Schur’s Lemma, [6]) Let ρ be an irreducible complex representation of
a group G on X where X is a vector space. Let A : X → X be linear and equivariant,
i.e. A commutes with all ρ(g), g ∈ G.

Then there exists λ ∈ C such that
A = λ Id .

Equivariant Hopf bifurcation

Theorem 8 (Equivariant Hopf bifurcation, [6]) Consider the differential equation

ż(t) = F (λ, z(t)) (A.1)

with F (λ, 0) ≡ 0, where F ∈ Ck(R × Rn,Rn), k ≥ 2. Let F be G-equivariant. Let
A(λ) := DzF (λ, 0).

Assume furthermore:

• ±i ∈ specA(0), and its algebraic multiplicity equals its geometric multiplicity

• the real dimension of the fixed point subspace of the group HΘ

HΘ :=
{

(h,Θ) ∈ H × S1 | Θ = Θ(h) (∀h ∈ H)
}

H :=
{
h ∈ G | ∃Θ = Θ(h) ∈ S1 s. t. hz(t) = z (t+ pΘ) (∀t)

}
,

p > 0 minimal period, in Eig(±i, A(0)) is two

• ±ni /∈ specA(0)

• the continuation µ(λ) ∈ specA(λ) of µ(0) = ±i crosses the imaginary axis transver-
sally at λ = 0, i.e.

d

dλ

∣∣∣∣
λ=0

Reµ(λ) 6= 0
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Then follows the local bifurcation of a branch of periodic solutions

s 7→ (λ(s), p(s), z(t, s))

of equation (A.1) in λ = 0, z = 0 with symmetry HΘ and λ(0) = 0, p(0) = 2π, z(t, 0) =
0 and d

ds

∣∣
s=0

z(t, s) ∈ Eig(±i, A(0))\{0}.
The minimal period of t 7→ z(t, s) for s > 0 is p(s).

Planar Hopf normal form

One oscillator in Hopf normal form, also known as Stuart-Landau oscillator in physics,
is given by

ż = f(z) = (λ+ i + γ|z|2)z.

Here z ∈ C, λ ∈ R, γ ∈ C. This system can be rewritten into polar coordinates
z(t) = r(t) eiϕ(t):

ṙ = (λ+ Re γ r2) r

ϕ̇ = 1 + Im γ r2.

We see that there is an equilibrium for r ≡ 0 (equivalently z ≡ 0). It is useful to linearize
the system at z = 0 to find out the local stability of the equilibrium:

ż = (λ+ i)z.

For λ > 0 we have therefore two eigenvalues with positive real part and the equili-
brium is strictly unstable. We say that the unstable dimension, counting the number of
eigenvalues with strictly positive real part, is two. For λ < 0 we have two eigenvalues
with negative real part, resulting in asymptotic stability of the equilibrium and unstable
dimension zero. The standard Hopf bifurcation occurs at λ = 0. Here a pair of complex
conjugated eigenvalues ±i crosses the imaginary axis and a periodic orbit emerges from
the trivial equilibrium. For (λRe γ) < 0 there exists a periodic orbit z(t) = r exp(2πit

p
),

whose radius r and minimal period p are given by

r2 =
−λ
Re γ

p =
2π

1 + r2 Im γ
.

Note that the radius as well as the period depend on the bifurcation parameter λ. We
call the bifurcation subcritical if the periodic orbit exists for λ < 0 and supercritical if
it exists for λ > 0. In this special case, the periodic orbit is unstable if the bifurcation
is subcritical, and stable in the supercritical case.

A soft spring is given if the minimal period p increases with growing amplitude, in
contrast to the hard spring where p decreases with amplitude.
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