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Abstract We give an introduction to the control triple method, a new type of nonin-
vasive spatio-temporal feedback control. The notion of a control triple defines how
we transform the output signal, space, and time in the control term. This Ansatz,
especially well suited for the control of partial differential equations, does not exist
in the literature so far. It incorporates the spatio-temporal patterns of the equilibria
and periodic orbits into the control term. We give linear examples to demonstrate
the success of the control triple method.

Dedicated to Bernold Fiedler on the occasion of his sixtieth birthday

1 Introduction

In this this chapter we give a short introduction to a recent extension of noninvasive
time-delayed feedback control for partial differential equations: the control triple
method.

The control triple method is based on Pyragas control [1] which is nowadays one
of the most successful methods to control the stability of periodic orbits or equilibria
in dynamical systems.

Consider an ordinary differential equation ż(t) = f (z(t)), z ∈Rn. Then the equa-
tion including Pyragas control is described by

ż(t) = f (z(t))+ k
(
z(t)− z(t− τ)

)
. (1)

The weight k ∈ Rn×n of the control term is called the feedback gain. The control
term introduced by Kestutis Pyragas uses the difference between a delayed state
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z(t−τ) and the current state z(t) of the system. If a periodic orbit z∗(t) is stabilized,
the time delay τ is chosen to be an integer multiple of its minimal period p. In
this case, the control vanishes on the orbit itself, and z∗(t) is also a solution of
the equation including Pyragas control (1). Thus, the control does not change the
periodic orbit itself, it only changes its stability properties. We call such a control
term noninvasive. For the stabilization of equilibria, the time delay τ can be chosen
arbitrarily.

In summary, Pyragas control is used to make unstable objects visible without
changing them.

The Pyragas control method is one of the most used feedback control schemes
today. The original paper from 1992 [1] has been cited more than 3500 times (as
of February 2017). Its main advantage is given by the fact that one does not need
to know anything about the periodic orbit besides its period. In particular, Pyragas
control is a model-independent control scheme and no expensive calculations are
needed for its implementation.

Even though many applications and extensions of Pyragas control have been pro-
posed since 1992, surprisingly few publications consider the spatial properties of
partial differential equations for control. A first attempt to use space as well as time
was proposed by Lu et al. in 1996 [2], but there and in subsequent publications [3, 4]
spatial modifications and time delay are only used separately.

Combinations of spatial and temporal delay have only been introduced recently,
in form of the control triple method. These new noninvasive and spatio-temporal
control terms have been developed and applied to scalar reaction-diffusion equations
in the author’s PhD thesis [5].

We give an introduction to the control triple method in this chapter with the
purpose of illustrating the main concepts and why stabilization via the control triple
method is successful. We follow [5].

This chapter is outlined as follows: In Section 2 we describe the setting in which
we want to apply the control triple method. we propose our main goal and introduce
the control triple. In Section 3 we introduce the concept of the control triple method
and the corresponding control terms. Section 4 presents the main result of this chap-
ter. Section 5 is devoted to an illustration of the method and the main theorem,
showing how the control triple method works for the linear examples. In Section 6
we give a brief exposition on more general control triples and possible extensions.
We conclude and discuss in Section 7.

2 Setting

In this chapter the main area of application of the new control terms are scalar
reaction-diffusion equations including a linear advection term cux,

ut = uxx + f (u)− cux, (2)
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u ∈ R, x ∈ S1 ∼= R/2πZ, t > 0, with periodic boundary conditions:

u(0, t) = u(2π, t), ux(0, t) = ux(2π, t) for all t > 0. (3)

The function f : R→R is real analytic and dissipative. These assumptions on f are
not essential for control, but we restrict f in order not to lose ourselves in technical
difficulties. The real parameter c is called the wave speed.

Note that the nonlinearity f does not depend explicitly on the space variable
x. Therefore, equation (2) is is S1-equivariant with respect to a shift Rθ in the x-
variable,

Rθ : X→ X, (Rθ u0)(x) := u0(x+θ), (4)

θ ∈ S1.
Equilibria U (x, t) of (2) are characterized by Ut ≡ 0. Hence, they are 2π-

periodic solutions of the ordinary differential equation

0 = Uxx + f (U )− cUx. (5)

Those equilibria which additionally fulfill Rθ U =U for all θ ∈ S1 are called homo-
geneous equilibria. All other equilibria U are called non-homogeneous equilibria
or frozen waves. Note that frozen waves can only occur if the wave speed c = 0.

Moreover, we find relative equilibria U (x, t) with respect to the group action
of the equivariance group S1. These relative equilibria are called rotating waves of
speed c 6= 0 and they satisfy U (x− ct) = (R−ct U )(x). Rotating waves U (x− ct)
are 2π-periodic solutions of the ordinary differential equation

0 = Uzz + f (U ), (6)

in co-rotating coordinates z = x− ct. Note that the same equation also holds in the
case c = 0, i.e., for frozen waves. Equation (6) is Hamiltonian, and we can therefore
describe U as the motion of a point in a potential field with energy conservation. In
theory, we can find the solutions with fixed energy E analytically via the relation

Uz =±
√

2(E−F(U )), (7)

where F is the potential, F ′(U ) = f (U ). Only for certain energy values E we find
indeed periodic solutions with period 2π (where 2π is not necessarily the minimal
period). A sketch of an arbitrary potential F and energy values which yield 2π/n-
periodic solutions, and hence rotating or frozen waves, can be found in Figure 1.

The rotating waves are periodic orbits unless the wave speed is c = 0, in which
case they correspond to frozen waves, i.e., to a non-homogeneous equilibrium. Both
rotating and frozen waves occur in circles given by the group orbits {Rθ U |θ ∈ S1}.

It was proven by Angenent and Fiedler [6] and by Matano [7] that all periodic
orbits of (2) are indeed rotating waves. Moreover, all rotating waves are unstable
[6]. We assume that the frozen or rotating waves are hyperbolic, in the sense that
there exists no Floquet multiplier on the unit circle but the trivial one.
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Fig. 1 (a) Hamiltonian potential F(U ) (black) for an odd nonlinearity f (U ) = − f (−U ) with
energy levels corresponding to a 2π-periodic solution (red), a π-periodic solution (blue), and a
2π/3-periodic solution (dashed violet). (b) Corresponding solutions in the phase-space (U ,Uz).
This is a zoom-in to the interesting region of the hamiltonian potential; the higher order terms
yielding dissipativity cannot be seen. This Figure has been published previously in [5].

Let us now consider odd nonlinearities f , i.e., f (U ) = − f (−U ) and rotat-
ing waves of minimal period 2π/n, n ∈ N. In this case, the potential F(U ), with
F ′(U ) = f (U ), is an even function. Therefore, if U (z) is a solution of equation
(6), then −U (z) is also a solution of equation (6). These solutions may coincide as
sets. If so, these solutions are phase-shifted by half the minimal period, i.e., we find
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Fig. 2 Solutions U (z) from Fig. 1 (b), same color scheme. Note the rotational shift-symmetry
for 2π/n-periodic solutions, n = 1, 2, 3: U (z) = −U (z−π/n). This Figure has been published
previously in [5].

solutions of the form U (z) = −U (z− π/n). See Figure 2 for example solutions
with such rotational shift-symmetries.

In the following section we find new noninvasive control terms for the frozen and
rotating waves, following the control triple method.

3 The control triple method

In this section, we introduce the control triple method, which is a new concept of
noninvasive spatio-temporal feedback control for partial differential equations. The
control triple method has been developed as a consequence of the failure of Pyragas
control for the scalar reaction-diffusion equations [5]. Using the new concept of
the control triple which we will describe below, we succeed in stabilizing certain
periodic orbits and equilibria of the equation (2).

The general idea of the control triple method, as already used by Pyragas [1],
is to use differences between output signals and “transformed” output signals. The
resulting control must be noninvasive, i.e., vanish on the desired orbit. In the case
of Pyragas control, “transformed” means “time-delayed”. Thus Pyragas uses the
system parameter time for control. In the context of partial differential equations
we can use the system parameter space x as well as time t for the construction of
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the new control terms. Also the output signal u of the system is an easily accessi-
ble system parameter, as it has been used previously in the context of equivariant
Pyragas control [8, 9, 10, 11].

In total, we propose to introduce the notion of control triples to describe the
transformation of the output signal:(

output signal, space, time
)

We then construct the spatio-temporal feedback control as follows: We consider
noninvasive differences of the current output signal u(x, t) and the “transformed”
output signal ũ(x̃, t̃ ). The control triple indicates the precise transformation of each
of the three system parameters: output signal u 7→ ũ, space x 7→ x̃, and time t 7→ t̃.

We define a control term as a fixed control triple and a variable feedback gain k,
where k is either a scalar or a matrix. A scalar feedback gain, as used here, decides
the sign as well as the amplitude of the control.

Let us now find specific control terms for our model equation

ut = uxx + f (u)− cux, (8)

following the control triple method.
In this introduction, we focus on the control schemes of rotation type: They com-

bine a scalar multiplication of the output signal, rotations in space, and a time
delay. We interpret the rotations in space as a spatial delay, and the controlled equa-
tion takes the form

ut = uxx + f (u)− cux + k
(
u−Ψu(x−ξ , t− τ)

)
, (9)

where k,Ψ ,∈ R, ξ ∈ S1, and τ > 0. As indicated above, we call the parameter ξ

the spatial delay, and τ the temporal delay. All three parameters Ψ , ξ and τ are
fixed and should be chosen a priori. The feedback gain is a variable parameter, it is
chosen a posteriori to guarantee stabilization for a fixed control triple (Ψ ,ξ ,τ).

Let us now discuss the precise parameters for several special cases: In the pre-
vious section, we saw that all periodic orbits are indeed rotating waves of the form
u(x, t) = U (x− ct). A time shift by −τ has then the same effect on the wave as a
spatial rotation by +cτ , and the controlled equation is of the form

ut = uxx + f (u)− cux + k
(
u−u(x− cτ, t− τ)

)
. (10)

Here we use an arbitrary temporal delay τ > 0, and (only if the speed c of the wave
is nonzero) a spatial delay ξ = cτ . Furthermore, no transformation of the output is
needed, i.e., Ψ = 1. The control term is clearly noninvasive on all rotating waves of
speed c ∈ R.

Note that control term proposed in equation (10) in fact contains the control of
Pyragas type as a special case: The control terms of Pyragas and the control term as
in (10) are equal if and only if cτ = 2πn, n ∈ N.
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Consider next f odd and rotating or frozen waves with odd symmetry U (z) =
−U (z−mπ/n), m ∈ Z is odd, and where 2π/n is the minimal spatial period. For
such odd waves, the controlled equation can take the form

ut = uxx + f (u)− cux + k
(
u− (−1)u(x−ξ , t− τ)

)
, (11)

with the following condition relating the spatial delay ξ and the temporal delay τ:

ξ − cτ = mπ/n, m ∈ Z odd. (12)

Here we introduce the parameter m ∈ Z. It is clear that m needs to be odd, if the
transformation of the output signal should be given by Ψ =−1. We will discuss this
control term in detail in Section 5.

Next, consider homogeneous equilibria: For the application of the control triple
method, we distinguish between those equilibria which take a fixed, non-zero value
and those equilibria which take the value zero.

In the case of homogeneous non-zero equilibria, controlled equations are of the
general form

ut = uxx + f (u)− cux + k
(
u−u(x−ξ , t− τ)

)
. (13)

The control-term is noninvasive on any homogeneous equilibrium for arbitrary spa-
tial delay ξ and arbitrary temporal delay τ . The parameter Ψ is 1, similar to the case
of rotating waves.

Homogeneous zero equilibria allow more general control triples: Any real pa-
rameter Ψ can be chosen for a noninvasive control, in addition to arbitrary spatial
delay ξ and arbitrary temporal delay τ:

ut = uxx + f (u)− cux + k
(
u−Ψu(x−ξ , t− τ)

)
. (14)

In this chapter, we focus on the control terms as given in equations (11), (12).
The results concerning equations (10), (13), and (14) can be found in [5].

4 Main result

In this section we present our main result on the control equilibria and waves in
scalar reaction-diffusion equations.

Theorem 1 (Successful stabilization of odd rotating and frozen waves, [5]). Con-
sider a rotating or frozen wave U (x−ct) =U (z) with minimal spatial period 2π/n
of the scalar reaction-diffusion equation ut = uxx+ f (u)−cux, with periodic bound-
ary conditions. Additionally, assume f (u) =− f (−u) and suppose that the rotating
or frozen wave is odd, U (z) =−U (z−π/n), with unstable dimension 2n−1.

Then there exists a feedback gain k∗ ∈ R such that the following holds:
For all k < k∗, there exists a time delay τ∗ = τ∗(k) such that the rotating or frozen

wave U (x− ct) = U (z) is stable in the controlled equation
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ut = uxx + f (u)− cux + k
(
u− (−1)u(x−ξ , t− τ)

)
, (15)

where the spatial delay ξ and the temporal delay τ < τ∗ are related via

ξ − cτ = mπ/n, (16)

where m is odd and co-prime to n.

In this chapter, our aim is to illustrate the conditions and the regions of stabilization
as described in the theorem. We will do this by considering the simplest interesting
examples, linear f (u) = n2u, n ∈ N. We will then be able to understand why the
spatial delay ξ and the temporal delay τ < τ∗ are related via ξ − cτ = mπ/n, and
also why m needs to be odd and co-prime to n. We will also briefly see why it is
advantageous to use small time delays and see the region of stability in the feedback
parameter k.

However, we do not prove this result, the complete mathematical details are far
beyond the scope of this introductory chapter. Any interested reader will find the
proof, as well as many related and more detailed results, in [5].

5 An illustration of the control triple method

In this section we illustrate the success and the main conditions on the control triple
method, using the linear examples as a toy model. In Subsection 5.1, we present the
example equations on which we will use the control triple method to stabilize its
frozen waves. Next, we introduce the control triple method in Subsection 5.2. We
start our investigation of stability for the case of zero time delay in Subsection 5.3.
The case with time delay is divided into two parts: We calculate the real eigenvalues
in Subsection 5.4 and find conditions on the complex conjugated eigenvalues in
Subsection 5.5.

5.1 Linear reaction-diffusion equations

Let us consider the following linear reaction-diffusion equations:

ut = uxx +n2u. (17)

Throughout this section n ∈ N is fixed but arbitrary. No rotating waves exist since
the waves speed c = 0. All frozen waves fulfill the ordinary differential equation

0 = uxx +n2u, (18)

with 2π-periodic boundary conditions, and they are therefore of the form U (x) =
Asin(nx+θ), θ ∈ S1, A ∈ R.
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Linearizing around the frozen waves yields again equation (17), since that equa-
tion is already linear. Let us solve that equation by separation of variables and an
exponential Ansatz in time: u(x, t) = g(x)eλ t . We obtain the ordinary differential
equation

λg = gxx +n2g. (19)

The 2π-periodic solutions of the linear equation (19) are called the eigenfunctions,
λ ∈C the corresponding eigenvalues. We calculate the eigenfunctions and eigenval-
ues using the exponential ansatz g(x) = eηx, η ∈C. The function g is 2π-periodic if
and only if η =±iN. We obtain 2π-periodic solutions for λ = n2−N2, for N ∈ N,
where the eigenvalue is simple for N = 0 and double for N ≥ 1. Note that we obtain
exactly 2n−1 positive eigenvalues, fulfilling the assumption of our main theorem.

5.2 Using the control triple method

Let us now invoke the control triple method to stabilize the frozen waves U (x):

ut = uxx +n2u+ k
(
u− (−1)u(x−mπ/n, t− τ)

)
, (20)

where we use m odd and co-prime to n, and arbitrary time delay τ ≥ 0. It is straight-
forward to check that this control triple (Ψ = 1,ξ = mπ/n,τ) is indeed noninvasive
on all frozen waves U (x) = Asin(nx+θ), θ ∈ S1, A ∈ R.

To understand the stabilization mechanism, let us compute the stability of these
frozen waves in equation (20).

Again no linearization is needed, and we can solve equation (20) directly via
separation of variables and an exponential Ansatz u(x, t) = g(x)eλ t . We then obtain
the following delay differential equation:

λg = gxx +n2g+ k
(

g+ e−λτ g(x−mπ/n)
)
. (21)

Note that the spatial and the temporal delay behave differently: The temporal delay
gives an exponential term in λ . In contrast, the spatial delay results in a delay in
equation (21).

Since equation (21) is again linear, we solve it via an exponential Ansatz, g(x) =
eηx, η ∈C. We search for periodic solutions of (not necessarily minimal) period 2π ,
since these solutions give us the eigenfunctions. We are interested in the question
for which λ ∈ C there exist such 2π-periodic solutions, since the corresponding
eigenvalues λ determine the stability of the frozen waves.

Solutions of period 2π exist if and only if η =±iN. As characteristic equations
we obtain

λ =−N2 +n2 + k
(

1+ e−λτ±imπN/n
)
, N ∈ N (22)

We can split equation (22) into real and imaginary part, where we use the notation
λ = µ + iν :
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µ = −N2 +n2 + k
(
1+ e−µτ cos(ντ±mπN/n)

)
, N ∈ N (23)

ν = k e−µτ sin(ντ±mπN/n), N ∈ N. (24)

In the following three subsections, we will investigate these equations in detail to
find the stabilization regions and understand the control mechanisms.

5.3 Stabilization for zero time delay

Let us consider zero time delay τ = 0, first:

µ = −N2 +n2 + k (1+ cos(mπN/n)) , N ∈ N, (25)
ν = ±k sin(mπN/n), N ∈ N. (26)

In this case it is easy to check whether all eigenvalues have negative real part from
equation (25):

0 <−N2 +n2 + k (1+ cos(mπN/n)) , N ∈ N. (27)

This condition is fulfilled for all feedback gains k < k∗ where

k∗ = min
{

N2−n2

1+ cos(mπN/n)

∣∣∣∣N ∈ N, 0≤ N < n
}
. (28)

First, note that k∗ is always negative. Second, note that k∗ takes a finite value (i.e.,
control succeeds for all k < k∗) if and only if m is co-prime to n. This explains the
condition on m in our main theorem (m is required to be odd because the control is
supposed to be noninvasive).

Already at this stage, we can conclude successful stabilization for zero time de-
lay.

5.4 Stabilization for nonzero time delay - Real eigenvalues

Let us next suppose τ > 0. Here we distinguish between the real eigenvalues and
the complex conjugated eigenvalues.

Let us start investigating the real eigenvalues. First, note that real eigenvalues
only occur for such N ∈ N where sin(mπN/n) = 0. Then either cos(mπN/n) = +1
or cos(mπN/n) =−1.

In both cases, we determine the real eigenvalues from the equation

µ =−N2 +n2 + k
(
1+ e−µτ cos(mπN/n)

)
, N ∈ N, (29)

where we can solve for the feedback gain k, since it only occurs linearly.
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Fig. 3 The values of the feedback gain k (vertical axis), plotted versus the real eigenvalues µ (hor-
izontal axis). The time delay is τ = 0.5. Note that for k < −0.5 all nontrivial real eigenvalues are
strictly negative. The curve for N = 0 is red, while all curves for N ≥ 1 are blue. Curves correspond-
ing to even N are dashed, to emphasize the difference between the two cases cos(mπN/n) = +1
(dashed) and cos(mπN/n) =−1 (solid). This Figure has been published previously in [5].

In the case cos(mπN/n) = +1 we obtain

kN(µ) =
µ−n2 +N2

1+ e−µτ
. (30)

Note that this case only occurs for N = 2`n, ` ∈ N. This formula gives us the feed-
back gain k which has to be applied such that a real eigenvalue µ is reached, where
we see N as a parameter. We conclude that the zero crossings of the real eigenvalues
occur at

kN(µ) =
(
µ−n2 +N2)/2 if cos(mπN/n) = +1, (31)

and thus does not depend on the time delay. The direction of the eigenvalue crossing
is examined in detail in [5].

In the other case, cos(mπN/n) = +1, we obtain

kN(µ) =
µ−n2 +N2

1− e−µτ
. (32)

We conclude that no zero crossings, induced by the control, can occur. The eigen-
value curves (31) and (32) can be found in Figure 3 for the case n = 1.
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Fig. 4 Control triple method, success: Positions of the eigenvalues (green dots) for a fixed feedback
gain k =−2. Here Q = 1. The control triple is defined by Ψ =−1, ϕ = ξ − cτ = π , and τ = 0.5.
The curve µ(ν) is drawn in black, while ν(µ) is drawn in red for N = 0 and in blue for all N > 0.
Curves for even N are dashed, curves for odd N are solid. This Figure has been published previously
in [5].

Since none of the zero crossings depends on the time delay, we can directly
conclude that the results from the case τ = 0 also hold for the real eigenvalues with
τ > 0. It remains to check the complex conjugated eigenvalues for nonzero time
delay to verify stabilization.
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Fig. 5 Time delay τ∗ versus feedback gain k for parameters n = 1, Ψ = −1, and ξ = π for
N = 0,1,2,3 (the curves are red for N = 0 and blue for N = 1,2,3). If the time delay τ is zero
and k < k∗ = −1/2, then control succeeds: In the yellow region in the background, all complex
conjugated eigenvalues have negative real part, since τ < τ∗(k). The vertical lines correspond to
real eigenvalues, crossing zero at a specific feedback gain, they do not depend on the time delay.

5.5 Stabilization for nonzero time delay - Complex eigenvalues

From equations (23) and (24) it is straightforward to calculate that the complex
conjugated eigenvalues are implicitly given by the crossings of the two curves

ν(µ) = ±1
τ

arccos
(
−µ +Q+ k−N2

kΨe−µτ

)
∓ ϕN−2πn

τ
, n ∈ N0, (33)

µ(±ν) = −1
τ

log
(

ν

kΨ sin(ντ±ϕN)

)
, (34)

in the complex plane (see [5] for the complete calculations). See also Figure 4.
We interested in the time delay τ∗(k) where the complex conjugated eigenvalues

cross the imaginary axis, i.e., at the time delay where stability is lost (remember that
stabilization is given for zero time delay). To this aim, let us look only for purely
imaginary eigenvalues λ = iν :

0 = −N2 +n2 + k+ k cos(ντ∓mπN/n), (35)
ν = −k sin(ντ∓mπN/n). (36)

We square both equations, add them, and rearrange in the way that we obtain a
quadratic equation in the imaginary part ν of the eigenvalues λ :

ν
2 = k2− (−N2 +n2 + k)2. (37)

Going back to the first equation (35), we solve for τ:(
N2−n2− k

)
/k = cos(ντ∓mπN/n), (38)

arccos
((

N2−n2− k
)
/k
)
= ντ∓mπN/n, (39)
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and finally

τ
∗(k) =

arccos
((

N2−n2− k
)
/k
)
±mπN/n√

k2− (−N2 +n2 + k)2
. (40)

We can therefore conclude that control via the control triple method succeeds if
m is co-prime to n, the feedback gain is chosen k < k∗, and additionally the time
delay does not exceed the value calculate above, which is precisely the statement of
the main result, if applied to a linear reaction diffusion equation.

6 More control triples

This chapter is intended as a gentle introduction to the control triple method. There-
fore, we have so far focused on one specific form of the control triple for one particu-
lar type of equation, the reaction-diffusion equation. Since the control triple method
is not limited to these specific control triples nor to this type of equation, we give a
short overview on general control triples.

As a first example, consider an arbitrary equilibrium of some arbitrary partial
differential equation. For such time-independent solutions, it is feasible to use dif-
ferences of output signals at different moments of time. The transformations in the
output signal u and the space x simplify to the identity transformation. Then

k
(
u(x, t)−u(x, t− τ)

)
, (41)

is a noninvasive control term for all time delays τ > 0. However, note that we are
not limited to a fixed time delay τ; also state-dependent delay is a possibility here.
In the case of time periodic orbits with minimal period p, the time delay is fixed to
an integer multiple of the period p. While control terms of this type are the obvious
application of Pyragas control to partial differential equations, it has recently been
proven that they do not succeed in the case of scalar-reaction diffusion equations
[5].

If the equilibrium has any additional structure, we can incorporate it into the
control triple. For example, consider any spatially periodic equilibrium with period
Φ and noninvasive control terms of the form

k
(
u(x, t)−u(x−Φ , t− τ)

)
. (42)

Next, consider the homogeneous zero equilibrium and noninvasive control terms of
the form

k
(
u(x, t)−Ψ(u(Φ(x), t− τ))

)
, (43)

with arbitrary Ψ : Rn → Rn, Ψ(0) = 0, and arbitrary Φ : Ω → Ω , where Ω is the
domain.

A nontrivial example is given by plane waves of the form u(x, t) = Aexp(iκ ·x−
ict), where x ∈ Rm, A ∈ R is the amplitude, κ ∈ Rm is the wave vector and c ∈ R is



An introduction to the control triple method for partial differential equations 15

the wave speed. Then

k
(
u(x, t)− exp(iκ ·ξ − icτ)u(x−ξ , t− τ)

)
, (44)

a ∈ Rn, is a noninvasive control term with a control triple

(Ψ = exp(iκ ·ξ − icτ),ξ = ξ ,τ = τ) . (45)

Many other examples such as spiral waves and traveling waves could be added to
this list and be treated similarly.

A large class of systems to which the control triple method can be applied are
the equivariant systems, where we find elaborate spatio-temporal patterns. Equiv-
ariance is usually described in terms of groups. Therefore, as a first step towards the
construction of suitable control terms, it is necessary to find a description of the pat-
tern in terms of group theory [12, 13, 14]. The transformations of the output signal,
space, and time are interpreted as (linear) group actions in the equivariant setting.

We emphasize that all the described constructions of the control triple above do
not depend on specific equations, they are model independent.

Nevertheless, let us go back to the scalar reaction-diffusion equations and see
which other control triples could be used in addition to those which we have dis-
cussed already.

The control schemes of reflection type combine a scalar multiplication of the
output signal and reflections in space with time delay. For such control terms, we
only stabilize equilibria and we therefore restrict to the case c = 0.

More precisely, consider equilibria with the even reflection-symmetry U (x +
x̂) = U (−x+ x̂) around a reference point x̂ (standing waves). We assume, without
loss of generality, x̂ = 0. Then the controlled equation is of the general form

ut = uxx + f (u)+ k
(
u−u(−x, t− τ)

)
, (46)

i.e., we use a control triple of the form (Ψ = 1,x 7→ −x,τ ≥ 0).
Moreover, consider twisted standing waves, i.e., equilibria with odd reflection

symmetry U (x) =−U (−x). In this case, the controlled equation is of the form

ut = uxx + f (u)+ k
(
u−Ψu(−x, t− τ)

)
, (47)

with Ψ = −1. If however, we want to stabilize the zero equilibrium (note that it is
also a twisted standing wave), Ψ ∈R can take any real value. Detailed results on the
control of both standing waves and twisted standing waves can be found in [5].

For control schemes of reflection type, we do not consider rotating waves, since
they would imply controls which combine rotations and reflections in space. Such
control schemes of mixed type would then be of the form

ut = uxx + f (u)− cux + k
(
u−Ψ1Ψ2u(−x−ξ , t− τ)

)
, (48)

where both
ut = uxx + f (u)− cux + k

(
u−Ψ1u(x−ξ , t− τ)

)
, (49)
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and
ut = uxx + f (u)− cux + k

(
u−Ψ2u(−x, t− τ)

)
, (50)

are valid equations of rotation and reflection type, respectively. At present, there are
no results for control triples of mixed type.

Results which so far demonstrate the success of the control triple method are
restricted to odd rotating waves. This is due to the fact that a non-identity transfor-
mation in the output signal is necessary for successful control. A great number of
results could be obtained by using non-constant transformations of the output sig-
nal. We therefore propose to extend the control triple method by control schemes
of co-rotating type:

ut = uxx + f (u)− cux + k
(
u−Ψ(x− ct)u(x−ξ , t− τ)

)
. (51)

Here both the spatial delay ξ and the time delay τ take arbitrary values and they do
not need to be related in any way. Then Ψ is not necessarily a unique 2π-periodic
function which guarantees noninvasiveness of the control triple.

In real life applications, distributed delays are a common feature. Therefore,
we propose to include this phenomenon into the control triple method by control
schemes of distributed type: We consider additive control terms of the form

k
(

u− 1
2πT

∫ T

0

∫ 2π

0
Ξ(ξ )Θ(τ)Ψ(ξ ,τ)u(x−ξ , t− τ)dξ dτ

)
. (52)

Note that we distribute the control both over space, with corresponding kernel Ξ(ξ ),
as well as over time, with kernel Θ(τ) and maximum time delay 0 ≤ T ≤ ∞. Fur-
thermore, note that the output transformations Ψ(ξ ,τ) depend on the spatial delay
ξ and the temporal delay τ . The kernels satisfy

1
2π

∫ 2π

0
Ξ(ξ )dξ = 1, (53)

as well as
1
T

∫ T

0
Θ(τ)dτ = 1, (54)

to guarantee noninvasiveness. So far, only Dirac kernels Ξ and Θ have been dis-
cussed. This control scheme includes multiple discrete delays, as well as extended
feedback control similar to [15], which has been proven very useful in the context of
ordinary differential equations and should therefore be investigated in this general
framework as well.

For similar reasons, we should also consider control schemes of nonlinear type,

ut = uxx + f (u)− cux +K(u(x, t),Ψu(x−ξ , t− τ)). (55)

where K : R×R→ R is any (suitably smooth) function satisfying K(y,y) = 0. For
ordinary differential equations, nonlinear control terms greatly enhance chances of
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stabilization [16, 17] and the question whether this also holds for partial differential
equations should be the subject of further research.

7 Conclusion and discussion

In conclusion, we have presented a new approach to spatio-temporal feedback con-
trol of partial differential equations, namely the control triple method. In this short
introduction into the topic, we have introduced the main concept, the control triples,
which define how we transform output signal, space, and time in the control term
such that the control term is noninvasive. We have also applied the control triple
method directly to linear scalar reaction-diffusion equations. The example was cho-
sen because it allows us to see the reason for the success of the control triple method
as well as understand its main assumptions directly. The long and detailed proof for
the general case is not included in this chapter, but can be found in [5].

The control triple method was inspired by Pyragas control, which it extends to
a more general noninvasive control scheme. This step was necessary since it turns
out that Pyragas control fails to stabilize equilibria and periodic orbits for scalar
reaction-diffusion equations [5].

Let us now discuss and comment our results in the general framework of time-
delayed feedback control.

In most situations, the presence of a time delay in a dynamical system is seen
as a burden, as it greatly increases the dimensionality and the complexity of a dy-
namical system. Time delayed feedback control, and the control triple method in
particular, use delay as a tool to achieve their goals. The control triple method has
even introduced a spatial delay, thereby allowing stabilization to succeed. Stabiliza-
tion is not possible if only time delay is used (Pyragas control). Our linear examples
have shown us that a cleverly chosen combination of spatial and temporal delays
renders stabilization possible and we were even able to get explicit results on the
stabilization regions.

Such explicit results are rare: The combination of time delay, resulting in an
infinite-dimensional equation, and the need for explicit and numerical results in
control theory, are responsible for the fact that only few analytical results on Pyragas
control and and its modifications have been obtained up to date. However, all the
analytical results are extremely valuable, since they expand our knowledge on the
mechanisms of time-delayed feedback control, which gives us the chance to design
successful control terms.

Stepping away from the control aspect for a moment, let us interpret the spatial
and temporal delays as additional parameters. This allows us to see interesting and
in some sense unexpected dynamics for delay equations: Without delay, all rotating
and frozen waves in scalar reaction-diffusion equations are unstable [6]. With spatio-
temporal delay, however, we have indeed shown the existence of stable waves by
explicit construction.



18 Isabelle Schneider

Let us end this chapter with a general outlook on future research and possible ap-
plications: The control triple method is designed to provide a tool for general partial
differential equations. We have already seen how we can control arbitrary equilibria,
equilibria with spatial patterns such as periodicity, and plane waves which occur in
many physical systems. Equivariant systems also provide fruitful examples. A par-
ticular aspect of the control triple method is also that it selects orbits with desired
properties by designing the control triple in such a way that it is noninvasive only
on the desired orbit. In contrast, Pyragas control cannot distinguish between differ-
ent equilibria, for example. For the reaction-diffusion equations, will be particularly
interesting to apply the control triple method to higher dimensional domains, where
many possibilities of spatial transformations arise, depending on the domain of the
equation. Furthermore, systems of partial differential equations provide opportuni-
ties to use matrices as linear transformations of the output signal instead of scalar
multiplications. For all these reasons, we encourage further investigations in the new
research area of spatio-temporal feedback control for partial differential equations.
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