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Abstract

The modest aim of this case study is the noninvasive and pattern-selective sta-
bilization of discrete rotating waves (�ponies on a merry-go-round�) in a triangle of
di�usively coupled Stuart-Landau oscillators. We work in a setting of symmetry-
breaking equivariant Hopf bifurcation. Stabilization is achieved by delayed feedback
control of Pyragas type, adapted to the selected spatio-temporal symmetry pattern.
Pyragas controllability depends on the parameters for the di�usion coupling, the
complex control amplitude and phase, the uncontrolled super-/sub-criticality of the
individual oscillators and their soft/hard spring characteristics. We mathematically
derive explicit conditions for Pyragas control to succeed.

1 Introduction

Following a broadly applicable idea of Pyragas [1], periodic orbits z∗(t) of minimal period
p > 0 can be stabilized by di�erences z(t− τ)− z(t) which involve a feedback term with
time delay τ > 0. The di�erence vanishes, i.e. the feedback becomes noninvasive, if
τ = np is an integer multiple n of the minimal period p. For example this may happen
in systems of the form

ż = F (z) + b[z(t− τ)− z(t)] (1.1)

with control matrix b and z∗(t) solving ż = F (z).

In the present paper we address the case of equivariant systems, i.e. of systems ż = F (z)
with a (linear) group action z 7→ gz, such that gz(t) is a solution whenever z(t) is, for
all elements g of an equivariance group G. The N -gon of di�usively coupled oscillators

żk = f(λ, zk) + a(zk+1 − 2zk + zk−1), (1.2)

k mod N , with parameters λ ∈ R, a > 0 will serve as the principal example of our case
study. The dihedral group DN = 〈ρ, κ〉 of symmetries of a regular N -gon acts by index
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shift here. The rotations ZN = 〈ρ〉 are generated by (ρz)k := zk−1 and κ is the re�ection
(κz)k = z−k with k mod N , κ2 = (κρ)2 = Id. Frequently, the group G = DN itself is also
described by its standard complex representation ρw = e2πi/Nw and κw = w̄ on w ∈ C
� not to be confused with the above action by index shift.

Following [2] the symmetry of a periodic orbit z∗(t) of a G-equivariant system ż = F (z)
is given by triplets (H,K,Θ). Here H ≤ G leaves the orbit {z∗(t) : t ∈ R} �xed as a set.
The possibly strict subgroup K ≤ H ≤ G leaves each z∗(t) �xed, pointwise, for each t.
The group homomorphism Θ : H → S1 = R/Z is de�ned uniquely by time shift:

hz(t) = z(t+ Θ(h)p), (1.3)

for all t. Note that Θ is well-de�ned because the normal subgroup of H is the kernel,
Θ(K) = 0. In local settings this construction has �rst been introduced by Golubitsky
and Stewart; see for example [3, 4] .

Discrete rotating waves in oscillator N -gons (1.2), for example, are characterized by
H = ZN and Θ(e2πi/N ) = m/N , usually with m coprime to N , i.e. K = {Id}. Standing
waves, in contrast, have H = 〈κ〉 and Θ(κ) = 0. Another possibility, realized in human
walking for example, is the alternating wave H = 〈κ〉 and Θ(κ) = 1/2. Again K = {Id}.

The main question of the present paper is the following: How should one adapt the idea

of delayed feedback control to selectively stabilize periodic orbits of prescribed symmetry

type (H,K,Θ)? In short: How to achieve noninvasive but pattern-selective feedback
stabilization?

For the case of two oscillators, N = 2, G = 〈κ〉, this question has been addressed in [5],
numerically. For a more detailed mathematical analysis see [6]. The crucial idea there
were feedback terms of the form

hz(t− τ)− z(t), with τ := Θ(h)p. (1.4)

For N = 2, H = 〈κ〉 and h = κ the delay τ therefore becomes the half period p/2, owing
to Θ(h) = 1/2, rather than the full period. Indeed control (1.4) becomes invasive on
z(t), unless

hz(t) = z(t+ Θ(h)p), (1.5)

for all t; see (1.3).

In the present paper we pursue the same question in a more general equivariant context.
In order not to get lost, neither in mathematical generalities nor in exuberant detail,
we restrict ourselves to the modest paradigm of discrete rotating waves in a triangle of
N = 3 oscillators (1.2). More precisely we study the speci�c control

żk = f(λ, zk) + a(zk+1 − 2zk + zk−1) + b(zk+1(t− τ)− zk(t)) (1.6)

for k mod 3, real di�usion coupling a > 0, complex control b, and complex zk. For
mathematical convenience, only, we consider complex Stuart-Landau nonlinearities

f(λ, zk) := (λ+ i + γ|zk|2)zk (1.7)
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with real parameter λ and �xed complex γ. For some recent justi�cation of this choice
in a non-equivariant local center manifold and normal form setting see [7]. To further
facilitate our computations we study only local symmetry-breaking Hopf bifurcation of
(1.6), (1.7) in the two-parameter plane (λ, τ). But we invoke exchange of stability results
in the full system. Thus our results are not restricted to any center manifold. See also
[6, 8, 9, 10].

In section 2 we summarize our main results: stabilization of discrete rotating waves
in the full system (1.6), (1.7) by noninvasive and pattern-selective delayed feedback.
We distinguish sub-and supercritical cases, depending on the sign of Reγ. We also
distinguish the cases of soft and hard springs, depending on the sign of Imγ. In section
3 we illustrate the control domains of successful stabilization of the trivial equilibrium
z = 0 at Hopf bifurcation. Section 4 brie�y sketches the proofs and section 5 summarizes
our conclusions. All results are based on the Bachelor Thesis [11].

2 Main results

In this section we consider a triangle of coupled Stuart-Landau oscillators (1.6), (1.7),
N = 3. We �rst study local Hopf bifurcation of discrete rotating waves

zk+1(t− p/3) = zk(t) (2.1)

for k mod 3 and real t, with minimal period p > 0 and parameter λ, see proposition
1. Without feedback, b = 0, trivially, spatially homogeneous Hopf bifurcation with
z0(t) ≡ z1(t) ≡ z2(t) occurs at λ = 0. This contributes real unstable dimension 2 to the
spatially inhomogeneous Hopf bifurcation at λ = 3a, of real dimension 4, which is ad-
dressed in proposition 1. Theorems 1�3 summarize our main results on full stabilization
of the bifurcating discrete rotating waves, at λ = 3a, by pattern-selective and noninvasive
delayed feedback.

Proposition 1 Consider the coupled oscillator triangle (1.6), (1.7). Hopf bifurcation of

discrete rotating waves (2.1) occurs at the parameter value λ = 3a. The rotating waves

are harmonic,

zk(t) = r exp(2πi(t/p+ k/3)), (2.2)

for k = 0, 1, 2, and are phase shifted by 2π/3 between oscillators. Amplitude r and

minimal period p are given explicitly by

r2 = (3a− λ)/Reγ,

p = 2π/(1 + r2Imγ).
(2.3)

In particular the Hopf bifurcation is supercritical, i.e. towards λ > 3a, for Reγ < 0,
and subcritical for Reγ > 0. The minimal period p grows with amplitude (soft spring)
if Imγ < 0 and decreases (hard spring) if Imγ > 0.
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The proposition can be veri�ed easily, by direct calculation. Note however that the
imaginary eigenvalue +i of the linearization of (1.6), (1.7) is complex double at the Hopf
bifurcation point z = 0, λ = 3a, rather than simple. This real dimension 4 of the Hopf
eigenspace complicates the stability analysis. It also leads to the simultaneous bifurcation
of further branches of periodic standing waves, z1(t) ≡ z2(t), and of alternating waves,
z0(t+p/2) = z0(t) and z1(t+p/2) ≡ z2(t), of possibly di�erent periods p and bifurcation
directions. In particular supercritical bifurcation need not lead to stable periodic orbits
for two reasons. First, the 4-dimensional Hopf eigenspace can comfortably accomodate
further unstable Floquet exponents. Second, the onset of homogeneous Hopf bifurcation
z0(t) ≡ z1(t) ≡ z2(t) at λ = 0 forces the trivial equilibrium z = 0 itself to possess unstable
dimension 2, for 0 < λ < 3a. This is promptly inherited by the discrete rotating waves,
and by all periodic orbits, which bifurcate at λ = 3a.

Nevertheless we obtain the following stability results, for small enough amplitudes r > 0
near λ = 3a, where we distinguish between the super- and subcritical cases and between
the model for soft and hard springs. We recall that the hard spring model, Imγ > 0, is
characterized by decreasing period p as the amplitude r increases, whereas for the soft
spring model, Imγ < 0, the period p increases with amplitude.

Theorem 1 Consider the supercritical case Reγ < 0 for Hopf bifurcation of discrete

rotating waves (2.1) of the Stuart-Landau triangle (1.6), (1.7), near λ = 3a.

Then there exists a positive constant a+ ≈ 0.0974 and continuous strictly monotone

functions

(0, a+) 3 a 7−→ b(a) < b̄(a) ∈ (0,∞), (2.4)

independent of γ, such that the following conclusion holds for all real di�usion constants

a and real control amplitudes b with

0 < a < a+, b(a) < b < b̄(a), (2.5)

and for all su�ciently small λ− 3a > 0.

The delayed feedback control (1.5) under one-third period

(hz)k = zk+1 τ = Θ(h)p = p/3 (2.6)

stabilizes the discrete rotating wave solutions of proposition 1 for the above range of di�u-

sion couplings a, control amplitudes b, and parameters λ. The stabilization is noninvasive

and pattern-selective. Moreover the following limits hold for the control range:

0 = lim b(a) < lim b̄(a) =∞, for a↘ 0

0 < lim b(a) = lim b̄(a) ≈ 0.4766, for a↗ a+.
(2.7)

In the supercritical case Reγ < 0, real controls b su�ce. We comment on possible complex
control variants in the supercritical case at the end of section 4.
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The subcritical cases Reγ > 0 necessarily require complex controls b ∈ C\R. Moreover
the amplitude dependence of period, as measured by |Imγ|, has to be strong enough in
proportion to subcriticality, as measured by Reγ.

Theorem 2 Consider the subcritical case Reγ > 0 for soft springs, Imγ < 0, with the

setting and notation of proposition 1 and theorem 1 under delay feedback (2.6) of one

third period.

Then there exists a positive constant a+ ≈ 0.0974 and a continuous, strictly monotone

function

(0, a+) 3 a 7−→ β(a) ∈ (0,∞), (2.8)

independent of γ, such that the following conclusion holds for all di�usion constants a
and spring nonlinearities γ ∈ C which satisfy

0 < a < a+, |Imγ| > β(a) Reγ > 0. (2.9)

There exists an open region of complex controls b ∈ C\R, which depends on a and γ, such
that the subcritically bifurcating discrete rotating waves are stabilized for all su�ciently

small |λ− 3a|. Moreover

limβ(a) =

{
β̄ ≈ 3.6397 for a↘ 0
∞ for a↗ a+.

(2.10)

Theorem 3 Consider the subcritical case Reγ > 0 for hard springs, Imγ > 0, with the

above setting under delay feedback (2.6) of one third period.

Then there exist positive constants a− ≈ 0.2960, β̄ ≈ 3.6397 independent of γ, such that

the conclusion of theorem 2 holds for all di�usion constants a and spring nonlinearities

γ ∈ C\R which satisfy

0 < a < a−, Imγ > β̄ Reγ > 0. (2.11)

In summary, stabilization of discrete rotating waves at Hopf bifurcation succeeds for
su�ciently weak di�usive coupling a > 0. In all three theorems the assumption |λ− 3a|
su�ciently small guarantees that the positive Floquet exponent originating from the
homogeneous Hopf bifurcation is small enough for stabilization, see also [12].

3 Domains of stability

In this section we linearize the coupled oscillator triangle at the trivial equilibrium z = 0,
and derive the characteristic equations. For complex controls b we also plot stability
regions b ∈ Λa of the remaining non-imaginary spectrum for the trivial equilibrium z = 0
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at the Hopf point λ = 3a. We consider delay τ = p/3 at the limiting minimal period p =
2π, associated to the complex double eigenvalue +i. This is a necessary, but not su�cient,
prerequisite for pattern-selective and noninvasive stabilization of the bifurcating discrete
rotating wave by delayed feedback. The consequences for the bifurcating discrete rotating
waves, which prove theorems 1�3, are considered in section 4.

The linearization of (1.6), (1.7) at the trivial equilibrium z = 0 commutes with the
symmetry group G = D3 of the oscillator triangle. By Schur's Lemma the linearization
therefore diagonalizes in coordinates adapted to the irreducible representations of the
linear D3-action on (1.2), (1.6). The pertinent coordinates are

x0 =
1

3
(z0 + z1 + z2)

x1 =
1

3
(z0 + e2πi/3z1 + e−2πi/3z2)

x2 =
1

3
(z0 + e−2πi/3z1 + e2πi/3z2).

(3.1)

The diagonal form of the linearization, in these coordinates, decouples the characteristic
equation χ(η) = 0 for exponentials x(t) = eηt(x0, x1, x2) into a product of three factors,
χ = χ0 ·χ1 ·χ2 = 0. The complex spectrum is therefore given by those η ∈ C which solve
at least one of the three characteristic equations

χ0(η) = λ+ i + b
(
e−τη − 1

)
− η = 0

χ1(η) = λ− 3a+ i + b
(
e−2πi/3−τη − 1

)
− η = 0

χ2(η) = λ− 3a+ i + b
(
e2πi/3−τη − 1

)
− η = 0.

(3.2)

Let E(b) denote the strict unstable dimension of z = 0 at the Hopf point λ = 3a with
Pyragas delay τ = p/3 = 2π/3, i.e. the total number of solutions η with Reη > 0 for
the characteristic equation χ(η) = 0, counting algebraic multiplicities. Of course we seek
domains where E(b) = 0 gives the bifurcating discrete rotating waves a chance to be
born stable.

It is easy to determine the complex Hopf curves bj(ω) where an additional Hopf eigenvalue
η = iω̃ = i(1 + 3ω) changes the strict unstable dimension E(b) via χj(iω̃) = 0:

b0(ω) =
3

2
(a− iω − (ω + ia) cot(π(ω + 1/3)))

b1(ω) = −3

2
ω (cot(π(ω + 2/3)) + i)

b2(ω) = −3

2
ω (cot(πω) + i) .

(3.3)
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Figure 1: Hopf curves in the complex (Reb, Imb)-plane for a = 0.06. The numbers in
the parentheses denote the strict unstable dimension E(b) of z = 0 at the Hopf point
λ = 3a with Pyragas delay τ = p/3 = 2π/3. The arrows indicate the orientation of the
Hopf curves, i.e. they point towards increasing ω.

In �gure 1 we illustrate the resulting strict unstable dimensions E(b) of the trivial equi-
librium z = 0 for a = 0.06. The stability domain

Λa := {b ∈ C | E(b) = 0 at λ = 3a, τ = 2π/3} (3.4)

disappears at the critical point

a = a∗ ≈ 0.2960, ω = ω∗ ≈ 0.0813 (3.5)

where the complex derivative b′0(ω) of the complex analytic function ω 7→ b0(ω) vanishes.
In fact it is easy to determine the stability domain. We know E(0) = 2, by direct analysis
of the uncontrolled oscillators. Moreover, analyticity of C 3 ω 7→ bj(ω) ∈ C implies that
E(b) is larger, by two, on the right side of the Hopf curves bj(ω) when that curve is
oriented towards increasing real ω, i.e. along the imaginary axis η = iω̃ = i(1 + 3ω). See
�gure 1.

In fact the stability region Λa is bounded by b1(ω) from below and by b0(ω) from above,
for 0 < a < a∗. Note that Reb > 0 on Λa. For a < a∗ near a∗, we observe Imb < 0. Only
when

a = a+ ≈ 0.0974 < a∗, (3.6)

the loop of b0(ω), which de�nes the relevant upper boundary of the stability domain Λa,
touches the Reb axis and enables stabilization by real controls, as in theorem 1. For
0 < a < a+, the interval (b(a), b̄(a)) = Λa ∩ R of (2.4) is given by the intersection of the
loop of b0(ω) with the real axis; see again �gure 1. The monotonicity claims on b, b̄ can
be derived from the fact that the map R2 3 (ω, a) 7→ b ∈ C preserves local orientation.
The limits a ↗ a+ in (2.7) indicate where b0(ω) touches the real axis at a = a+. The
limits for a↘ 0 follow by direct analysis of b0(ω) at a = 0.
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We emphasize that the above analysis only asserts linear stability Reη < 0 of the re-
maining non-imaginary eigenvalues at the Hopf point λ = 3a, τ = p/3, p = 2π itself, for
b ∈ Λa. In particular the nonlinearity coe�cient γ ∈ C does not a�ect Λa.

4 Proof of theorems 1�3

We summarize the mathematical proofs of theorems 1�3. For complete details see also
[11].

The basic strategy of proof is the same, for all three theorems. For given 0 < a < a+, a−,
respectively, we �rst �x the control parameter b = B exp(iϕ) in the region Λa of (3.4)
where the characteristic equation (3.2) produces strictly stable non-Hopf eigenvalues
Reη < 0, only, at λ = 3a, τ = p/3, p = 2π. The complex double Hopf eigenvalue η = +i
is generated by a simple zero of each of the remaining factors χ1, χ2 of the characteristic
equation χ(η) = χ0 · χ1 · χ2 = 0; see (3.2). In particular χ0 is strictly stable, at λ = 3a,
τ = 2π/3, and remains strictly stable, locally.

In the (λ, τ) plane, we then determine the Hopf bifurcation curves τj(λ) where χj(η) =
0 for some purely imaginary η = iω and some remaining factor χj , j = 1, 2, of the
characteristic equation.

Orientation considerations similar to section 3 determine the resulting total unstable
dimensions E(λ, τ) of the trivial equilibrium z = 0 in the domains complementary to the
Hopf curves. See �gure 2 for numerical examples.

Locally near λ = 3a, we next restrict the control delay τ to the (smoothly extended)
Pyragas curve τp(λ) = p(λ)/3 of our proposed feedback, see (2.6). Explicitly,

τp(λ) := 1
3p(λ) = 2π

3 /
(
1 + (3a− λ)Imγ/Reγ

)
(4.1)

by (2.3). Note how the Pyragas curve τp depends on the spring nonlinearity γ, but not
on the control b. Conversely, the Hopf curves τj depend on b, but not on γ.

The additional assumptions of theorems 1�3 now guarantee that we only encounter a
standard supercritical Hopf bifurcation, when we restrict all considerations to parameters
(λ, τ) on the one-dimensional Pyragas curve τp(λ). "Standard" means that we only
encounter transverse crossing of one simple imaginary eigenvalue, across the imaginary
axis. The unique bifurcating Hopf branch then consists of exactly the original harmonic
discrete rotating waves of proposition 1, due to the noninvasive property of delayed
feedback control along the Pyragas curve. "Supercritical" means that the periodic orbits
bifurcate to the part of the Pyragas curve (λ, τp(λ)) in the domain where E(λ, τ) = 2.
Because E(b) = 0 and because the standard Hopf bifurcation is guaranteed to be always

supercritical along the Pyragas curve, standard exchange of stability therefore guarantees

stability of the bifurcating discrete rotating waves. See also [13].
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To prove theorems 1�3 it only remains to check supercriticality along the Pyragas curve
τp(λ). The Hopf curves τj(λ) at b = B exp(iϕ) introduced above can be calculated
explicitly to be

τ1(λ) =
± arccos (cosϕ− (λ− 3a)/B) + ϕ− 2π

3 + 2πn

1−B sinϕ∓
(
B2 sin2 ϕ+ (λ− 3a)(2B cosϕ− (λ− 3a))

)1/2
τ2(λ) =

± arccos (cosϕ− (λ− 3a)/B) + ϕ+ 2π
3 + 2πn

1−B sinϕ∓
(
B2 sin2 ϕ+ (λ− 3a)(2B cosϕ− (λ− 3a))

)1/2
(4.2)

with integer n.

From section 3, we already know the strict unstable dimension E(b) = 0 at λ = 3a, τ =
p/3, p = 2π for our choice of b ∈ Λa. From (4.2) we conclude that (λ, τ1(λ)) does not
enter a small neighborhood of (λ, τ) = (3a, 2π/3). Neither does (λ, τ2(λ)), unless n = 0
and the negative sign of ± is chosen. We also recall Reb > 0 and hence |ϕ| < π/2.
Therefore

τ2(λ) =
− arccos (cosϕ− (λ− 3a)/B) + ϕ+ 2π

3

1−B sinϕ+
(
B2 sin2 ϕ+ (λ− 3a)(2B cosϕ− (λ− 3a))

)1/2
τ ′2(3a) = −(3 + 2πReb)/(3Imb).

(4.3)

4.1 Supercritical case

To address the supercritical case Reγ < 0 of theorem 1, near λ = 3a, we observe that
our real choice Imb = 0 of the control b causes vertical slope of the Hopf curve τ2(λ) at
λ = 3a; see also �gure 2(a). Moreover the region E(λ, τ) = 2 is found towards larger
λ, i.e. to the right of the Hopf curve τ2. The original uncontrolled Hopf bifurcation
was assumed supercritical, i.e. to the right. Therefore the controlled Hopf bifurcation
remains supercritical, and theorem 1 is proved.

4.2 Subcritical soft spring case

To address the subcritical soft spring case Reγ > 0 > Imγ of theorem 2, near λ = 3a, we
also calculate the negative slope

τ ′p(3a) = 2
3πImγ/Reγ (4.4)

of the Pyragas curve, at λ = 3a, τ = 2π/3.
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Figure 2: Hopf curves in the (λ, τ) plane for (a) the supercritical case with parameters
Reγ = −1, Imγ = −10, a = 0.09, B = 0.2, ϕ = 0, (b) the subcritical soft spring
case Reγ = 1, Imγ = −10, a = 0.09, B = 0.4, ϕ = −π/7, (c) the subcritical soft
spring case with parameters Reγ = 1, Imγ = −10, a = 0.09, B = 0.2, ϕ = π/4,
(d) for the subcritical hard spring case with parameters Reγ = 1, Imγ = 10,
a = 0.09, B = 0.4, ϕ = +π/7, (e) for the subcritical hard spring case with parameters
Reγ = 1, Imγ = 10, a = 0.09, B = 0.4, ϕ = −π/7.
The numbers in parentheses denote the strict unstable dimension E(λ, τ).10



We �rst consider the case Imb < 0 in the loop Λa. Then Reb > 0 in Λa and (4.3), (4.4)
imply τ ′2(3a) > 0 > τ ′p(3a); see �gure 2(b). In particular E(λ, τp(λ)) = 0 for λ < 3a and
the Hopf bifurcation along the Pyragas curve is subcritical, rather than supercritical.
Hence Pyragas stabilization fails for Imb < 0.

Next consider the case Imb > 0 in the loop Λa. Again the stability region E(λ, τ) = 2 is
located above the Hopf curve τ2, locally. See �gure 2(c). The subcritical Hopf bifurcation
becomes supercritical, along the Pyragas line τp(λ), if and only if the region λ < 3a of
periodic orbits lies inside the dashed region E(λ, τ) = 2, along the Pyragas curve. This,
in turn, holds true if and only if the negative Pyragas slope τ ′p(λ) at λ = 3a satis�es

2
3πImγ/Reγ = τ ′p(3a) < τ ′2(3a) = −(3 + 2πReb)/(3Imb). (4.5)

This proves theorem 2 with the choice Imb > 0 in the loop Λa for

β(a) := min

{(
3

2π
+ Reb

)
/Imb

∣∣∣∣ b ∈ Λa, Imb > 0

}
. (4.6)

4.3 Subcritical hard spring case

We conclude with the case of subcritical hard springs, i.e. positive Reγ, Imγ near λ = 3a,
as addressed in theorem 3. If Imb > 0 in Λa then Reb > 0, (4.3), (4.4) imply τ ′2(3a) <
0 < τ ′p(3a), this time, see �gure 2(d). Hence Pyragas stabilization fails by arguments
quite analogous to those given for theorem 2, Imb < 0.

Next consider Imb < 0 in Λa, see �gure 2(e). Then it is su�cient to require

2
3πImγ/Reγ = τ ′p(3a) > τ ′2(3a) = −(3 + 2πReb)/(3Imb). (4.7)

This proves theorem 3, (2.11) with

β̄ := min

{(
3

2π
+ Reb

)
/Imb

∣∣∣∣ b ∈ Λa, Imb < 0

}
. (4.8)

In fact, β̄ does not depend on a, due to the precise geometry of the curves b0(ω) and
b1(ω) in �gure 1.

This completes the proofs of theorems 1�3.

4.4 Remarks on the supercritical case

The above analysis for complex controls b also applies to the supercritical case of theorem
1, Reγ < 0, of course. We consider the same complex control region Λa as for the
subcritical cases, see also �gure 1. We then obtain stabilization for an extended range

0 < a < a∗ ≈ 0.2960 (4.9)
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of di�usion couplings. The prize we have to pay, however, are restrictions on the nonlin-
earity quotient Imγ/Reγ, as follows:

First consider a control with Imb > 0. Then stabilization is possible for

Imγ < β(a)|Reγ| (4.10)

where β(a) is given by

β(a) := min

{(
3

2π
+ Reb

)
/Imb

∣∣∣∣ b ∈ Λa, Imb > 0

}
. (4.11)

In the soft spring case stabilization is always possible for 0 < a < a+ ≈ 0.0974 and
suitable b ∈ Λa, Imb > 0. Speci�c restrictions on the nonlinearity only arise for hard
springs.

Next consider a control with Imb < 0. In this case, stabilization is possible for

Imγ > β(a)|Reγ| (4.12)

where β(a) is given by

β(a) := max

{
−
(

3

2π
+ Reb

)
/|Imb|

∣∣∣∣ b ∈ Λa, Imb > 0

}
. (4.13)

It is the hard spring, this time, which is stabilizable for all 0 < a < a− ≈ 0.2960 and
suitable b ∈ Λa with Imb < 0. The soft spring case requires the above constraint.

5 Conclusions

The modest scope of our case study was the noninvasive and pattern-selective stabiliza-
tion of discrete rotating waves in a triangle of di�usively coupled oscillators at symmetry-
breaking Hopf bifurcation. The oscillators were assumed to be in Stuart-Landau normal
form. Feedback was of delay type, reminiscent of Pyragas control but, adapted to be
pattern-selective.

For explicit intervals of small enough di�usion coupling we have determined explicit
domains of the control coe�cient b, and explicit constraints on the spring nonlinearity,
such that delayed feedback control succeeds.

In the supercritical case of theorem 1, real control b succeeded for di�usion coupling
0 < a < a+ ≈ 0.0974 and arbitrary nonlinearities. Control also succeeds for 0 < a <
a∗ ≈ 0.2960 and suitable complex controls b, without constraints on the nonlinearities
for hard springs, but with speci�c restrictions for soft springs.

In the subcritical cases of theorems 2, 3, complex controls b were necessary, along with
constraints on the nonlinearities. These constraints depended on the di�usion coupling
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0 < a < a+, in the case of soft springs. For hard springs, the required constraints turned
out to be independent of 0 < a < a− ≈ 0.2960.
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