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Abstract. Our aim is the stabilization of time-periodic spatio-temporal synchro-
nization patterns. Our primary examples are coupled networks of Stuart-Landau os-
cillators. We work in the spirit of Pyragas control by noninvasive delayed feedback.
In addition we take advantage of symmetry aspects. For simplicity of presentation we
first focus on a ring of coupled oscillators. We show how symmetry-breaking controls
succeed in selecting and stabilizing unstable periodic orbits of rotating wave type.
Standard Pyragas control at minimal period fails in this selection task. Instead, we
use arbitrarily small noninvasive time-delays. As a consequence we succeed in sta-
bilizing rotating waves – for arbitrary coupling strengths, and far from equilibrium.

1.1 Introduction

In their 1990 publication “Controlling Chaos” [17], Ott, Grebogi and Yorke
presented a first control scheme to stabilize unstable periodic orbits in chaotic
systems. Another particularly successful method for stabilizing periodic orbits
was introduced by Kestutis Pyragas in 1992, using time-delayed feedback [19]
as follows. Consider any autonomous system

ż(t) = F (z(t)) , (1.1)

say on a state space z ∈ RN or CN . Suppose that there exists a solution
z∗(t) which is an unstable periodic orbit with minimal period p > 0. Pyragas
suggests to stabilize the periodic orbit z∗(t) by adding a delayed control term.
It consists of the difference between the current state z(t) and a delayed state
z(t− τ) of the system (1.1). The resulting delayed feedback system takes the
form

ż(t) = F (z(t)) + b
(
z(t−mp)− z(t)

)
. (1.2)

Here b is a scalar control parameter, or a control matrix. The time-delay
τ = mp > 0 is an integer multiple m of the minimal period p. By periodicity
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of z(t) the control term in (1.2) vanishes on the periodic orbit and is therefore
called noninvasive.

Many theoretical investigations and experimental implementations have
shown the success of Pyragas control in stabilizing unstable periodic orbits.
For an overview, see for example the survey paper by Pyragas [20]. Pyragas
control can be applied without any explicit knowledge of the model (1.1) or
its solutions z(t). This is one of the main reasons for its widespread use in
experiments.

Analytic results include the odd-number-limitation, which was formu-
lated and proven by Nakajima in 1997 [15]. It states that in (generic) non-
autonomous systems Pyragas control fails for periodic orbits with an odd
number of unstable Floquet exponents, counting algebraic multiplicities of
exponents with positive real part, see Just et al. [13]. Genericity basically
requires the absence of a trivial zero Floquet exponent.

Autonomous systems do not depend on time, explicitly. Hence their non-
stationary periodic solutions do possess a trivial Floquet exponent zero. For
autonomous systems, the odd-number-limitation was in fact refuted by Fiedler
et al. [8] in 2007. Subcritical Hopf bifurcation for the Stuart-Landau oscillator
provided an analytically accessible counterexample.

Pyragas control for networks of coupled oscillators is a wide open subject
of research. In fact the periodic solutions may exhibit various spatio-temporal
symmetries, besides trivial complete synchrony. Indeed, we can prove that, in
diffusively coupled networks with positive coupling strength, stabilization by
standard Pyragas control is restricted to the fully synchronized periodic orbit.

Introducing symmetry-breaking control terms can overcome this limitation
and target periodic orbits of prescribed spatio-temporal symmetry separately.
Our control terms still follow the main idea of Pyragas [19] – they are non-
invasive and time-delayed. However the new control terms are able to select
specific prescribed spatio-temporal patterns of the periodic orbits, as we will
describe in more detail in section 1.2.

A first step in the direction of using spatio-temporal symmetries was al-
ready proposed by Nakajima and Ueda in 1998 [16]. It was intended as a
remedy to the odd-number-limitation [15], originally, which was believed to
also hold for autonomous systems, at that time. Though the odd-number lim-
itation has been refuted for autonomous systems, their approach remains a
first paradigm for symmetric systems. For odd nonlinearities, F (−z) = −F (z),
p-periodic odd oscillations may arise which satisfy

z∗(t) = −z∗(t− p/2) (1.3)

at half period. The delayed feedback system is of the form

ż(t) = F (z(t)) + b
(
z(t) + z(t− p/2)

)
. (1.4)

Note how the control term (1.2) is noninvasive on odd oscillations (1.3), even
though the time-delay τ = p/2 has been reduced to half the minimal period
p.
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Using the network structure, another control term with half-period delay
τ has been applied to a system of two diffusively coupled Stuart-Landau
oscillators. See Fiedler et al. in 2010 [10]. The controlled system is of the
following form:

ż0(t) = f(z0(t)) + a(z1 − z0) + b
(
z0(t)− z1(t− p/2)

)
(1.5)

ż1(t) = f(z1(t)) + a(z0 − z1) + b
(
z1(t)− z0(t− p/2)

)
. (1.6)

Here the state vectors z0 and z1 denote the first and the second oscillator,
respectively, for z = (z0, z1). The parameter a > 0 denotes diffusive cou-
pling. Note how this control scheme is noninvasive on p-periodic anti-phase
oscillations

z∗1(t) = z∗0(t− p/2) , (1.7)

where the two oscillators are phase-locked at half-period p. In 2013, slightly
more general control schemes were used by Bosewitz [1] and Bubolz [3] for the
same system, overcoming certain limitations. We will review their contribution
in section 1.4.

Already for three equilaterally coupled Stuart-Landau oscillators, new
challenges arise. Two different types of spatio-temporal symmetries arise, for
p-periodic solutions (z0, z1, z2) which are not fully synchronous. First we may
encounter discrete rotating waves

z∗1(t) = z∗0(t− p/3), z∗2(t) = z∗0(t− 2p/3) . (1.8)

Their reflected counterpart

z∗2(t) = z∗0(t− p/3), z∗1(t) = z∗0(t− 2p/3) , (1.9)

rotates in the opposite direction. Another spatio-temporal symmetry type
features double frequency oscillation of one node:

z∗0(t) = z∗0(t− p/2), z∗2(t) = z∗1(t− p/2) . (1.10)

Here the oscillators z1 and z2 of minimal period p are phase-locked at half-
periods, whereas z0 oscillates at double frequency. Again permutation of in-
dices produces related solutions of analogous spatio-temporal symmetry type.
See [12] and Fiedler [7] for an in-depth discussion in local and global bifurca-
tion settings, respectively.

This simple example already demonstrates why the control term should
be able to select periodic solutions with the desired symmetry type. We call
a control term pattern-selective or symmetry-breaking, if it is noninvasive on
exactly one periodic solution with a prescribed spatio-temporal pattern. First
successful controls in this sense were presented by Schneider in 2011 [21]; see
also [22] and closely related work by Postlethwaite at al. [18].

Choe et al. considered delay-coupled networks in [4,5]. They were able to
show that by tuning the coupling phase it is possible to control the stability
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of synchronous periodic orbits. Later they generalized their results by using
arbitrary and distributed time-delay as well as nonlinear coupling terms [6].

Unifying all control terms, a general equivariant formulation has been
presented, and its success has been proven near equivariant Hopf bifurcation
in [22,23] as well as in [18] in 2013:

ż(t) = F (z(t)) + b
(
− z(t) + hz(t−Θ(h) p)

)
. (1.11)

Here h and Θ(h) describe the spatio-temporal pattern of the periodic orbit
such that the control term is again noninvasive on the periodic orbit. Again
b denotes a suitably chosen control matrix. For details on the group theoretic
formulation see Golubitsky, Stewart [11,12], Fiedler [7], and section 1.2 below.

For a ring of coupled oscillators, the most complete results on Pyragas
stabilization, to date, have been presented in [24]. For rotationally symmetric
oscillators, nonlinear controls have been constructed by Bosewitz [2]. Addi-
tionally, a sharp upper bound on the unstable Floquet multiplier allowing
stabilization has been established in [2]. This upper bound depends on the
time-delay τ , see also [9].

Our survey is organized as follows. We describe some general background
on spatio-temporal patterns in section 1.2. Sections 1.3 and1.4 focus on a ring
of n identical, diffusively coupled oscillators zk, k mod n,

żk = f(zk) + a(zk+1 − 2zk + zk−1) , (1.12)

where a > 0 is the diffusive coupling strength. The stabilization results for
this model system will be discussed in section 1.4. We emphasize the aspect
of symmetry-breaking and compare different control schemes. We show that
standard Pyragas control is indeed not able to stabilize any but the totally
synchronous periodic orbit in our model system. In section 1.5 we discuss
results for general networks consisting of rotationally symmetric oscillators.
In particular we establish that pattern-selective Pyragas control of rotating
waves always succeeds, with sufficiently small delay τ and nonlinear control
of order 1/τ . Section 1.6 summarizes our conclusions.

1.2 Spatio-Temporal Patterns: Theory

In this section we explain our concept of spatio-temporal symmetry patterns
for time periodic solutions z∗(t) of equivariant systems. We illustrate the ab-
stract and rather general mathematical concept for the specific system (1.12)
of a ring of diffusively coupled identical oscillators; see also 1.3. Our presen-
tation follows [7].

For simplicity let us consider a linear action z 7→ g z of some group G
of matrices g on z ∈ RN or CN . We call the ODE system (1.1), ż = F (z),
equivariant under G, if gz(t) is a solution of the ODE whenever z(t) is, for
any g ∈ G. Since the action of G is linear, this simply means that
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F (gz) = g F (z) (1.13)

for all elements z ∈ RN or CN , and for all g ∈ G. We also call G an equivari-
ance group of F in (1.1).

Consider our ring (1.12) of diffusively coupled oscillators, for example. Let
Dn denote the dihedral group of n rotations and n reflections which leave the
regular planar n-gon invariant. Then G = Dn is an equivariance group of the
oscillator ring (1.12). The n-gon is represented by the ring structure of the
network. The vertices k = 0, . . . , n−1 indicate the oscillators zk, and the edges
define symmetric diffusion coupling. More precisely Dn = 〈ρ, κ〉 is generated
by the rotation ρ over 2π/n, and the reflection κ through the bisector of some
fixed n-gon vertex angle. The linear action of g ∈ Dn on z = (z0, . . . , zn−1) is
given by index permutation:

(ρz)k = zk−1 (1.14)

(κz)k = z−k (1.15)

for k mod n.
We now describe the spatio-temporal symmetry of any periodic solution

z∗(t) of any G-equivariant system ż = F (z). Let p > 0 again denote the
minimal period of z∗(t), and let O∗ = {z∗(t) | 0 ≤ t < p} denote the periodic
orbit, as a set. We can then describe the spatio-temporal symmetry of z∗(t)
by a triplet (H,K,Θ), as illustrated in Fig. 1.1.

Let H denote the set of those group elements h in the equivariance group
G which fix the orbit O∗, as a set. In other words,

hz(t0) = z(t0 + ϑ) (1.16)

for some t0, ϑ ∈ R. This definition makes sense because (1.16) holds for all
t0 ∈ R, once it holds for any, by G-equivariance. Indeed, both τ 7→ hz(t0 + τ)
and τ 7→ z(t0+τ+ϑ) are solutions of ż = F (z) with the same initial condition
at τ = 0. Moreover the phase shift ϑ = Θ(h)p is unique, for any given h ∈ H
and with normalized Θ(h) mod 1, by minimality of the period p of z∗(t). This
defines the phase map

Θ : H → S1 = R/Z . (1.17)

In fact G-equivariance implies that Θ is a group homomorphism:

Θ(h1h2) = Θ(h1) +Θ(h2) mod 1 , (1.18)

for all h1, h2 ∈ H. Finally, let K = kerΘ = {h ∈ H |Θ(h) = 0} denote the
kernel of the homomorphism Θ. Then K ≤ H is the set of group elements
h ∈ G which fix the periodic orbit O∗, pointwise. In other words,

hz∗(t0) = z(t0) (1.19)

for some (and hence for all) t0 ∈ R.
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Fig. 1.1. Spatio-temporal symmetry HΘ = {(h,Θ(h)) ∈ H × S1} of any periodic
orbit z∗(t) with minimal period p. The group H fixes the periodic orbit as a set.
The map h 7→ Θ(h) indicates the (normalized) temporal phase shift on z∗ effected
by the spatial transformation h ∈ H. The kernel K = kerΘ fixes any individual
point on the periodic orbit, one by one.

To summarize, the spatio-temporal symmetry of a periodic orbit z∗(t)
with minimal period p is characterized by a triplet (H,K,Θ). The phase map
homomorphism Θ : H → S1 describes the normalized time shifts

hz(t) = z
(
t+Θ(h)p

)
(1.20)

for all t ∈ R, h ∈ H, and the normal subgroup K := kerΘ of H describes the
purely spatial symmetry of any periodic point z∗(t0). We sometimes abbrevi-
ate the triplet by the twisted symmetry

HΘ := {
(
h,Θ(h)

)
|h ∈ H} . (1.21)

The range of the phase map Θ is a subgroup of S1, and range Θ ∼= H/K
by the homomorphism theorem. For compact (and in particular for finite)
subgroups H, continuity of Θ implies compactness of range Θ. Therefore
range Θ ≤ S1 is either finite, or else coincides with S1. We call z∗(t) a discrete
wave, in the former case, and a rotating wave, in the latter. Of course, finite
equivariance G cannot lead to rotating waves.

By equivariance, gz∗(t) is time periodic of minimal period p, whenever
z∗(t) itself is, for any fixed g ∈ G. The spatio-temporal symmetry HΘ

g of

gz∗(z) is conjugate to the twisted symmetry HΘ of z∗(t) itself, i.e.

HΘ
g = (gHg−1)Θ, with Θ(ghg−1) := Θ(h). (1.22)
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We also say that z∗(t) and gz∗(t) possess the same spatio-temporal symmetry
type, differing only by conjugacy.

Let us now return to our example (1.12) of an oscillator ring with dihedral
equivariance group G = Dn. The case H = 〈ρ〉 ∼= Zn of the cyclic subgroup
of rotations suggests Θ(ρ) := ±1/n mod 1 as a phase map with trivial kernel
K = {id}. Golubitsky and Stewart coined the term “ponies-on-a-merry-go-
round” for such discrete rotating waves. These are spatially discrete analogues
of the above rotating waves range Θ = S1. See (1.7) above, for the case n = 2,
and (1.8), (1.9) for n = 3. Note how the cases Θ(ρ) = ±1/n are conjugate by
the reflection g = κ; the right and left rotating discrete rotating waves belong
to the same symmetry type.

More generally, we might observe discrete waves of the form

Θ(ρ) = s/n mod 1, (1.23)

for any integer 0 ≤ s < n, and we do! Then Θ possesses trivial kernel, if and
only if s ∈ Z∗n is a multiplicative unit. In general K ∼= Z(s, n), where (s, n)
denotes the greatest common divisor of s and n. Again ±s belong to the same
symmetry type, conjugated by the reflection κ.

Example (1.10) is of a different type: H = κ ∼= Z2 and Θ(κ) = 1/2. Of
course the example generalizes to any n-ring, n ≥ 3. We call z∗(t) with this
symmetry standing waves. For even n, only, the vertex zn/2(t) then oscillates
at double frequency, as z0(t) always does. The reflection ρκ is nonconjugate
to κ in G = Dn, for even n, and H = 〈ρκ〉 ∼= Z2 with Θ(ρκ) = 1/2 does not
feature any vertices with double frequency oscillations, in general.

Suppose next that H = Dn arises in a spatio-temporal symmetry triplet
(H,K,Θ) in the n-oscillator ring (1.12). Of course this is possible for Θ = 0,
i.e. for total synchrony z0 ≡ z1 ≡ . . . ≡ zn−1. We claim there is only one other
possibility.

Indeed, Dn/K = H/K ∼= range Θ ≤ S1 must be a nontrivial Abelian
(in fact, cyclic) factor of Dn. Therefore K contains the commutator group
C(Dn) = [Dn, Dn] generated by all elements g1g2g

−1
1 g−22 with g1, g2 ∈ Dn. It

is well-known that the commutator of Dn is generated by ρ2. In particular the
abeliarization Dn/C(Dn) of Dn is Z2, for odd n, and the Klein 4-group Z2×Z2

for even n. Because Dn/K = H/K ≤ S1 is cyclic this implies range Θ =
{0, 1/2}. Moreover K = Zn for odd n. This already implies z0 ≡ z1 ≡ . . . ≡
zn−1 and triviality Θ = 0. Next suppose n is even. Then K corresponds to
one of the Z2 factors in Dn/C(Dn), i.e. K = Zn or K = Dn/2. We can discard
total synchrony K = Zn, as before.

The only remaining option, n even and K = Dn/2, corresponds to clus-
tering into the two clusters z0 = z2 = . . . = zn−2 and z1 = z3 = . . . = zn−1,
each of size n/2. By range Θ = {0, 1/2} the two clusters are half a period out
of phase: Θ(ρ) = 1/2. Note how our conclusions did not rely on any specific
information about the underlying equations other than the symmetry aspect.
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In sections 1.3 and 1.4 we focus on discrete right and left rotating waves of
the type (1.23), as a target of Pyragas control. Rotating waves, i.e. range Θ =
S1 are addressed in section 1.5. We plan to treat standing waves elsewhere.

1.3 Spatio-Temporal Patterns: Application to Rings of
Oscillators

We have seen how, both, standing waves and discrete rotating waves may
appear, hand-in-hand and at the same parameters. Hopf bifurcation in oscil-
lator rings (1.12) provides an example. To be specific, and for simplicity of
presentation, let us consider identical Stuart-Landau oscillators,

f(z) = (λ+ i + γ|z|2) z , (1.24)

for the individual dynamics in (1.12). Here λ is the real bifurcation parameter
and the cubic term parameter γ is complex. In total, there are n types of
discrete rotating waves and they all appear at equivariant Hopf bifurcations.

Proposition 1 (Equivariant Hopf bifurcations, [24]). Consider the cou-
pled oscillator ring (1.12), (1.24) of n ≥ 3 identical, and identically diffusion
coupled, Stuart-Landau oscillators. Hopf bifurcation occurs at the parameter
values

λ = λs = 2a
(
1− cos(2πs/n)

)
, s = 0, . . . , n− 1 . (1.25)

The purely imaginary eigenvalues are normalized to ±i, i.e. to unit frequency.
They are of algebraic and geometric real multiplicity 4, for s /∈ {0, n/2}.
The associated eigenspace possesses complex dimension 2 and real dimension
four. Both, standing waves and discrete rotating waves bifurcate, for each
s /∈ {0, n/2}. The discrete rotating waves are harmonic,

zk(t) = rs exp

(
2πi

(
t

ps
+ s

k

n

))
, (1.26)

for oscillators zk, k = 0, . . . , n−1, respectively, and are phase shifted by 2πs/n
between adjacent oscillators. See (1.23). Amplitudes rs and minimal periods
ps are given explicitly by

r2s = (λs − λ) /Re γ , (1.27)

ps = 2π/
(
1 + r2s Im γ

)
. (1.28)

In particular the discrete rotating waves bifurcate supercritically, i.e. towards
λ > λs, for Re γ < 0, and subcritically, i.e. towards λ < λs, for Re γ > 0.

The minimal period ps grows with amplitude (soft spring) if Im γ < 0, and
decreases with amplitude (hard spring) if Im γ > 0.
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Fig. 1.2. Parameter-dependent stability of the equilibria and the bifurcating peri-
odic orbits. The upper row shows the bifurcations for n = 4, while the lower one is
for n = 5. In (a) and (c) one can see the subcritical bifurcations with Re γ = 0.1 and
in (b) and (d) the supercritical ones with Re γ = −0.1. The coupling parameter was
always chosen as a = 0.2. In brackets the number of unstable dimensions is denoted.
Stable objects are colored in green, unstable ones in red. This figure, including its
caption, has previously been published in [24].

Not surprisingly, the waves with index s and index n− s bifurcate at the
same point λs = λn−s. The resulting discrete left and right rotating waves are
conjugate by reflection κ. See (1.23). See also Figure 1.2 for n = 4 and n = 5
oscillators. Standing waves are known to also bifurcate at λs = λn−s, for s /∈
{0, n/2}; see [7,11]. They are not harmonic and their bifurcation direction and
stability my differ from the discrete rotating waves. The Hopf bifurcation at
λ0 = 0 is a standard bifurcation with simple complex eigenvalues ±i and real
two-dimensional eigenspace. This leads to the bifurcation of fully synchronous
periodic solutions.

An elementary proof of proposition 1 relies on the Ansatz (1.26). The
harmonic character of the Ansatz (1.26) in time t is justified by the S1-
equivariance of the identical Stuart-Landau oscillators (1.24); see also section
1.5 below. The discrete harmonic character of the Ansatz (1.26) in the os-
cillator nodes k is justified by the imposed discrete rotating wave symmetry
Θ : Zn → S1 = R/Z in (1.12). In fact, both aspects can also be unified by
studying the ansatz (1.26) as the definition of a rotating wave under the full
equivariance group G = Dn × S1 of (1.12), (1.24). Insertion of (1.26) into
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(1.12) implies all other claims. For a more general analysis, in the framework
of section 1.2, see again [7, 11].

The fully synchronous periodic solution is the only one which may be
stable in the uncontrolled system, locally at Hopf bifurcation.

Proposition 2 (Stability of the periodic orbits, [24]). For s 6= 0, the
bifurcating discrete rotating waves (1.26), enumerated by s, are unstable, both
in the sub- and the supercritical case. For s = 0, i.e. the synchronous case, the
periodic solution is unstable in the subcritical and stable in the supercritical
case.

For a complete proof of Proposition 2 see [24]. The essential step of the
proof is to study the n dynamically invariant complex irreducible representa-
tion subspaces

Xs =
{

(z0, . . . , zn−1)
∣∣ zk = e−2πis/nzk−1 for all k mod n

}
(1.29)

On each subspace xs ∈ Xs the system (1.12), (1.24) reduces to one single
complex-valued equation

ẋs = f(xs)− 2a
(
(1− cos(2πs/n)

)
xs . (1.30)

Here xs ∈ Xs. Hopf bifurcation occurs at λ = λs = 2a(1− cos(2πs/n)), with
the spatio-temporal symmetry of the bifurcating periodic solution inheriting
the symmetry of the invariant subspace Xs.

1.4 Pyragas Stabilization for a Ring of Coupled
Stuart-Landau Oscillators

In this section we aim to stabilize unstable discrete rotating waves with pre-
scribed spatio-temporal symmetry pattern

zk(t) = zk−1(t− sps/n) , (1.31)

k mod n. In other words, an index shift ρ by 1 corresponds to a normalized
phase shift Θ(ρ) = s/n. The minimal period of the selected discrete rotating
wave is denoted by ps. The periodic orbit is uniquely determined by the choice
of the parameter s ∈ {1, . . . , n− 1} mod n. We recall how the solutions for s
and −s are conjugate by reflection κ : k ↔ −k, mod n.

The stabilization problem has first been addressed for two coupled oscilla-
tors by Fiedler et al. [10], then for three coupled oscillators by Schneider [21,22]
and Postlethwaite et al [18]. The general case of n oscillators has recently been
discussed by Schneider and Bosewitz [24].

For an equivariant control term we choose

b
(
− z(t) + h z(t− τ)

)
(1.32)
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Fig. 1.3. Stabilization curves and regions for n = 4 coupled oscillators as in (1.12),
(1.24) controlled as in (1.41) with index shift m = 1, for the third Hopf bifurcation
(i.e. s = 2). The coupling constant was chosen as a = 0.08 in (a) to (e) and a = 0.01
in (f). The curve belonging to the parameter βs = β2 is drawn in red, while the curves
corresponding to β1, β3 and β4 are drawn in green. These figures have previously
been published in [24].

with suitable b, h and τ = Θ(h)ps. Note that the control term is noninvasive
on the periodic orbit (1.31); see also (1.20).

To achieve large stabilization regions, and preserve equivariance under
H = Zn, it is suitable to employ complex circulant control matrices with
constant diagonals, i.e.

b =


b0 b1 b2 · · · bn−1
bn−1 b0 b1 · · · bn−2
bn−2 bn−1 b0 · · · bn−3

...
...

...
. . .

...
b1 b2 b3 · · · b0

 (1.33)

with constant diagonal coefficients bk ∈ C. Note the highly nonlocal character
of (1.33) with all-to-all coupling. Equivalently to (1.33) we may employ n
complex control parameters β0, . . . , βn−1, one in each representation subspace
Xs, s = 0, . . . , n − 1. The matrix b and the coefficients β are related via the
invertible linear transformation

bk :=

n−1∑
s=0

βs exp (2πisk/n) . (1.34)

The control parameters βs diagonalize the Zn-equivariant circulant matrix b
via the representations of Zn = 〈ρ〉 on Xs, but represent inherently nonlocal
coupling.
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In the control term (1.32) we are still free to choose h = ρm. Noninvasivity
on the discrete rotating wave (1.32) of type s is guaranteed by the delay

τ = Θ(h)ps = Θ(ρm)ps = msps/n, mod ps , (1.35)

and only by any such choice.
To be more precise suppose the control (1.32) with h = ρm, delay τ , and

invertible circulant control matrix b is noninvasive on some solution z∗(t) of
the oscillator ring (1.12). Let ν denote the order of h = ρm in Zn, i.e. ν > 0
is minimal such that νm ≡ 0 mod n. Then noninvasivity implies

z∗(t) = hνz(t) = z∗(t+ ντ) . (1.36)

Therefore z∗ is time-periodic with minimal period p dividing

ντ = s′p , (1.37)

for some positive integer s′. Let (H,K,Θ) denote the spatio-temporal sym-
metry of z∗. Of course hz(t) = z(t − τ) only guarantees H ≥ 〈h〉. To ensure
〈h〉 ≥ Zn let us choose m and n co-prime. In particular the order ν of h
becomes n. Let m′m = 1 mod n denote the multiplicative inverse of m. Then

s := nΘ(ρ) = nΘ(ρmm
′
) = nΘ(hm

′
) = nm′Θ(h) = nm′τ/p = νm′τ/p = m′s′

(1.38)
mod n. We have used mm′ = 1, ρm = h, the definition of the phase map Θ,
ν = n, and (1.37), successively, in this line. This readily identifies s in (1.32)
from the Pyragas data h = ρm and τ , via (m′,m) = 1 and s′ = nτ/p.

In principle, it is possible to use a time-delay τ > ps. However, in [24] it
was found that larger time-delay diminishes the stabilization regions.

The following theorem tells us that the constructed control is indeed sta-
bilizing.

Theorem 1 (Successful stabilization of discrete rotating waves [24]).
Consider the Hopf bifurcation of discrete rotating waves

z∗k(t) = z∗k−1(t− sps/n) , (1.39)

of the Stuart-Landau ring

żk = (λ+ i + γ|zk|2) zk + a(zk−1 − 2zk + zk+1) , (1.40)

k mod n, with λ ∈ R, a > 0 and γ ∈ C \R+.
Then for every combination of s and m, with s,m ∈ {1, . . . , n − 1} and

m co-prime to n, there exists a positive constant am,s such that the following
conclusion holds for all real coupling constants 0 < a < am,s, and sufficiently
near the selected Hopf bifurcation at λs = 2a(1− cos(2πs/n)).

There exist open regions of complex control parameters β0, . . . , βn−1 such
that in the delayed feedback system
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Fig. 1.4. Stabilization curves and regions for n = 5 coupled oscillators as in (1.12),
(1.24) with coupling constant a = 0.2, controlled as in (1.41) with index shift m = 1,
for s = 1. The curve belonging to the parameter βs = β1 is drawn in red, and the
green curve corresponds to those parameters βj for which λj < λs = λ1 (compare
also to Figure 1.3. Blue is used for the curves β2 and β3, which occur for λ2 = λ3 >
λs = λ1. For the black curve in (f), corresponding to β4, we find λ4 = λs = λ1. Note
that we only find four different types of stabilization regions for the parameters βj ,
depending on the relative positions of λs and λj . See also Figure 1.2 (c) and (d).
These figures have previously been published in [24].

ż = f(z) + a(%z − 2z + %−1z) + b
(
− z(t) + %mz(t− τ)

)
(1.41)

with circulant control matrix b = (bkl), bkl =
∑n−1
j=1 βj exp

(
2πij(l − k)/n

)
,

the discrete rotating wave solution (1.39) is stabilized for a time-delay

τ = msps/n mod ps , (1.42)

0 < τ ≤ ps. The stabilization is noninvasive and pattern-selective, i.e. the
control vanishes only on the discrete rotating wave (1.39).

If m is not co-prime to n, then the control term is noninvasive on more
than one discrete rotating wave. This can obstruct stabilization, as we will
see below for standard Pyragas control, m = n, τ = ps.

Theorem 1 is proved in [24]. Some examples for stabilization regions in the
complex parameters β0, . . . , βn−1 are depicted in Fig. 1.3, for n = 4 oscillators,
and in Fig. 1.4, for n = 5 oscillators.

The constants am,s limit the maximal coupling strength for which a stabi-
lization region exists. They depend on the spatio-temporal pattern, identified
by s, and the chosen control term, identified by the index shift m. The fol-
lowing theorem describes this upper bound am,s as a solution to a system of
trigonometric equations. For a graphical depiction see Figure 1.5.
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a)

b)

Fig. 1.5. Figure (a) shows the maximal coupling constant a for n = 40, m = 1, s = 8
and Θ = 1/5. It is given by the minimum of Aj := Aj/|2 cos(2πj/n)−2 cos(2πs/n)|
for j < 8 and j > 32. The gray area given by 8 ≤ j ≤ 32 is not relevant for the
minimum. The maximal coupling constant a allowing stabilization of the system
is marked as a horizontal (green) line. The solid (red) curve corresponds to the
solutions for real j ∈ [0, n]. This red curve can also be seen in (b), where we see the
general dependence of the threshold Aj on j as well as on Θ, for arbitrary n.

Theorem 2 (Maximal coupling constant for a given control scheme
[24]). Under the above conditions, the maximal coupling constant am,s is given
implicitly by the minimum of all

Aj/|2 cos(2πj/n)− 2 cos(2πs/n)| , (1.43)

with either 0 ≤ j < s or n− s < j < n. Here (Aj , ωj), j = 0, . . . , n− 1, is the
implicit solution of the system

sinΩj cosΩj = −ωjπΘ (1.44)
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�1,2,3,4

�
1
,2

,3
,4

Fig. 1.6. Stabilization curves and regions for the sum of the delays as in with
n = 4, s = 1, and a = 0.2 are shown. In accordance with the color coding of the
other figures, β0 is green, β1 red, β2 blue and β3 black. This figure has previously
been published in [24].

sin2Ωj = AjπΘ , (1.45)

with Ωj := π(mj/n−Θ(1 + ωj)), and Θ = ms/n mod 1, 0 < Θ ≤ 1.

The upper bound am,s for the coupling parameter a is strictly positive for
the equivariant control type, and equal to zero for standard Pyragas control.
For infinitesimal time-delay the threshold tends to infinity.

From Theorem 2, we can directly conclude that standard Pyragas control
fails to stabilize any spatio-temporal pattern which is not completely syn-
chronous. Indeed h = id and τ = ps for standard Pyragas control. The system
(1.44), (1.45) then simplifies to

sin(π(1 + ωj)) cos(π(1 + ωj)) = ωjπ (1.46)

sin2(π(1 + ωj)) = Ajπ . (1.47)

For any j, we only obtain the trivial solution (Aj , ωj) = (0, 0). Hence we
conclude a0,s = 0 for all s > 0 and we obtain the following Corollary.

Corollary 1 (Failure of standard Pyragas control [24]). The discrete
rotating wave

zk(t) = zk−1(t− sps/n) , (1.48)

with s 6= 0 cannot be stabilized by standard Pyragas control, i.e. by any delayed
feedback system of the form

ż = f(z) + a(%z − 2z + %−1z) + b
(
− z(t) + z(t− ps)

)
(1.49)
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which preserves at least Zn-equivariance. In fact the solution (1.48), is un-
stable, sufficiently close to Hopf bifurcation for any complex circulant n × n
control matrix b as in (1.33), and any coupling constant a > 0.

In the above control schemes, we have only used a single noninvasive con-
trol term. Linear combinations of such noninvasive control terms are an in-
teresting extension. For example we may consider weighted sums of all non-
invasive control terms,

ż = f(z) + a(%z − 2z + %−1z) (1.50)

+

n−1∑
m=0

bm
(
− z(t) + %mz(t− τm)

)
, (1.51)

with appropriate time-delays τm = msps/n mod ps and control matrices bm.
Such control terms also yield stabilization regions, see Fig. 1.6. However, the
existence of non-empty control regions for not necessarily small enough cou-
pling constants a remains an open problem.

1.5 Rotating waves under free S1-actions

From an abstract view point we return to the general G-equivariant dynamics

ż = F (z) (1.52)

of section 1.2. We assume the group G to take the direct product form

G = Γ × S1 (1.53)

g = (γ, ϑ) (1.54)

with elements γ ∈ Γ and ϑ ∈ S1 = R/Z. We assume the linear action of the
factor S1 on z to be free; i.e. ϑ(z) = z only if ϑ = 0 or z = 0. In other words,
we can assume z ∈ R2n ∼= Cn and

ϑ(z) := exp(2πiϑ)z . (1.55)

For simplicity we will assume the other factor Γ to be a finite group.
Our task, in the present section, will be the Pyragas stabilization of a

hyperbolic rotating wave solution

hz∗(t) = z∗(t+Θ(h)p) (1.56)

of (1.52), in the sense of section 1.2. See in particular (1.16) – (1.21). For
rotating waves z∗ with spatio-temporal symmetry HΘ, we recall that the
homomorphism

Θ : H → S1 (1.57)
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is surjective. We will first observe that

z∗(t) = eiωtz∗(0) (1.58)

is necessarily harmonic with frequency ω = ±2π/p. We then show how non-
linear Pyragas stabilization of the form

ż(t) = F (z(t)) +B(eiωτz(t− τ), z(t)) (1.59)

can always succeed, in this setting, for any small enough τ > 0 and suitably
chosen complex B of order 1/τ . Here B(z1, z2) is a vector-valued nonlinear
and nonlocal control which vanishes on the diagonal

B(z, z) = 0 . (1.60)

We will only sketch the relevant arguments; for further mathematical details
we refer to [2, 9, 24].

Any finite graph of linearly or nonlinearly coupled, neither necessarily
identical nor identically coupled, Stuart-Landau oscillators z0, . . . zn−1 pro-
vides an example for our setting. Here Γ is the automorphism group of the
coupled oscillator system; the elements γ of Γ are those permutations of the
vertex indices 0, . . . , n − 1 which leave the system of coupled oscillators in-
variant. Recall Γ = Dn for the symmetric diffusion coupling in a ring (1.12)
of identical and identically coupled oscillators. Slightly more generally than
the Stuart-Landau choice (1.24), we only require the nonlinearities fk(zk) to
satisfy the S1-equivariance

fk(e2πiϑζ) = e2πiϑfk(ζ) (1.61)

for all ζ ∈ C, ϑ ∈ S1.
To illustrate our abstract approach, we first consider the elementary planar

case of a single S1-equivariant oscillator

ż(t) = f(z(t)) + b(eiωτz(t− τ)− z(t)) , (1.62)

z ∈ C. For absent complex scalar control b = 0, any nonstationary periodic
solution z = z∗(t) with minimal period p > 0 must be harmonic,

z∗(t) = eiωtz∗(0) , (1.63)

with amplitude z∗(0) = r∗ > 0 and frequency ω = ±2π/p. Note

Re f(r∗) = 0 , (1.64)

Im f(r∗) = ω . (1.65)

We do not assume small amplitude r∗, here or below. In co-rotating coordi-
nates ζ(t) := exp(−iωt)z(t) we obtain
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ζ̇(t) = f(ζ(t))− iωζ(t) + b(ζ(t− τ)− ζ(t)) . (1.66)

Note how (1.66) remains autonomous, by S1-equivariance of (1.62). The circle
of stationary solutions ζ∗ = exp(iϕ)r∗, ϕ ∈ S1, testifies to noninvasivity of
the Pyragas control scheme (1.62) on the harmonic rotating wave z∗, for all
b.

Pyragas stabilization of z∗ in (1.62) is equivalent to stabilization of the
equilibrium ζ∗ = r∗ in (1.66), by some complex b. For small τ , we Taylor
expand

ζ(t− τ)− ζ(t) = −τ ζ̇(t) + . . . (1.67)

with higher terms of order τ2. In other words (1.66) reads

(1 + bτ)ζ̇ = f(ζ)− iωζ + . . . . (1.68)

Fix β := bτ and consider τ → 0. Then a remarkably early result by
Kurzweil in 1971 indeed justifies (1.68) as an ODE approximation, even in the
nonlinear case; see [14]. In modern language the ODE reduction (1.68) corre-
sponds to a center manifold reduction with rapid attraction in the infinitely
many remaining directions. For the characteristic equation of the lineariza-
tion of (1.66) at ζ = ζ∗ = r∗ the justification is trivial, by an exponential
Ansatz. Note how the trivial zero eigenvalue of the linearization at ζ∗ remains
unaffected by (1.68). The only other eigenvalue µ, alias the nontrivial Floquet
exponents of z∗, can be rotated at will by a suitably fixed chice of β = bτ ∈ C.
This choice stabilizes z∗, for sufficiently small τ > 0, because all omitted terms
are of order bτ2 = βτ = O(τ) or higher. This completes noninvasive Pyragas
stabilization of large rotating waves, in the planar case.

The above result is in marked contrast with controls based on z(t) and
z(t − p), only. In fact suppose the controls are even allowed to be of the
nonlinear form (1.59), (1.60). In the general S1-equivariant planar case, the
nontrivial Floquet exponent µ must then satisfy a constraint

pReµ < 9 , (1.69)

in order to enable noninvasive control; see [9]. In [2] the analogous bound
ϑpReµ < 9 was established for controls based on z(t) and z(t − ϑp), in the
S1-equivariant case.

Let us now return to the general case of G = Γ × S1-equivariant systems
ż = F (z). Our task is to stabilize a rotating wave z∗ of spatio-temporal
symmetry HΘ. We pursue the nonlinear Pyragas scheme (1.59) with small
delays ϑ > 0 and bounded control ϑB.

The spatio-temporal symmetry HΘ of the rotating wave z∗ possesses the
following general structure:

H = H0 × S1, and (1.70)

Θ(γ, ϑ) = Θ0(γ)± ϑ (1.71)
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with a suitable finite subgroup H0 ≤ Γ , and a homomorphism Θ0 : H0 → S1.
Here we use that G = Γ × S1 with Γ finite, and the free action z 7→ e2πiϑz of
S1 on z ∈ C. We omit mere mathematical details. Fixing γ = id, Θ0(γ) = 0
in (1.71) and letting t = ±ϑp, we obtain

z∗(t) = z∗(±ϑp) = z∗(0 +Θ(id, ϑ)p) = (id, ϑ)z∗(0) = (1.72)

= e2πiϑz∗(0) = eiωtz∗(0)

with frequency ω = ±2π/p. In particular z∗(t) is harmonic, as claimed in
(1.58), and the nonlinear Pyragas control scheme (1.59) is noninvasive on
z∗(t).

Noninvasive nonlinear Pyragas stabilization will be based on the pair

(z1, z2) = (hz(t−Θ(h)p), z(t)) (1.73)

for some suitable h = (γ,±ϑ) ∈ H = H0 × S1, ϑ > 0. By (1.70) we may pick
γ = id. Then the pair (1.73) becomes(

(±ϑ)z(t− ϑp), z(t)
)

=
(
eiωτz(t− τ), z(t)

)
(1.74)

with delay τ = ϑp > 0. This shows that the noninvasive control scheme (1.59)
is indeed based on the Pyragas difference (1.73).

To establish the success of (1.73) for small τ = ϑp > 0 we proceed very
much as in the planar case. In co-rotating coordinates ζ(t) := e−iωtz(t), which
freeze the harmonic rotation of z∗(t), we obtain

ζ̇(t) = F (ζ(t))− iωζ(t) +B(ζ(t− τ), ζ(t)) . (1.75)

Here we have replaced the complex scalar b by the complex vector nonlinearity
B. We have assumed that B commutes with the S1-action on z ∈ CN . The
justifiable approximation (1.68) then reads

(id + β)ζ̇ = F (ζ)− iωζ + . . . . (1.76)

with the complex nonlinearity β := τ∂1B(ζ, ζ) chosen to be τ -independent.
Naively, at first, we might attempt to choose β to be a complex scalar

multiple of an eigenprojection Q onto the strictly unstable eigenspace of the
linearization f ′(ζ∗)−iω at ζ∗ = z∗(0). Unfortunately the Jacobian f ′(ζ∗) itself
need not be complex linear, but will only be real linear in general. Indeed S1-
equivariance

f(eiϑz) = eiϑf(z) , (1.77)

for all ϑ ∈ R/2πZ and all z ∈ Cn, only implies conjugacy

f ′(eiϑz) = eiϑf ′(z)e−iϑ (1.78)

at z 6= 0, but not complex linearity. In particular, the Floquet eigenprojection
Q = Q(z∗(t)) depends on the footpoint z∗(t) of the linearization and satisfies
the same conjugacy
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Q(eiϑζ∗) = eiϑQ(ζ∗)e−iϑ . (1.79)

However, by hyperbolicity of ζ∗ the unstable eigenspace is transverse to the
group orbit z∗(t) = exp(iωt)ζ∗ of ζ∗; the tangent ż∗(0) = iωζ∗ to that group
orbit provides the trivial Floquet exponent µ = 0 which remains unaffected
by Q, B, and β. Therefore we can define a nonlinear control B = B(z1, z2),
which vanishes on the diagonal z1 = z2, stays S1-equivariant, and provides
the appropriate linearization β in a full neighborhood of the group orbit z∗(t),
for z1 = exp(iωτ)z∗(t− τ) = z∗(t) = z2.

In conclusion, noninvasive nonlinear Pyragas stabilization of large rotating
waves also succeeds in the general Γ ×S1-equivariant case with free S1-action.
In the general case, our result requires a nonlinear vector-valued control term
of the form (1.59), (1.60).

In [23], Schneider has studied the above problem with complex linear con-
trol matrices B = b based on (1.59), (1.60), for rotating waves of small ampli-
tudes near Hopf bifurcation form z = 0. In the supercritical case, control was
successful in open regions of b. The subcritical case required an additional
condition: the minimal period had to depend sufficiently strongly on ampli-
tude ζ∗. This condition is satisfied, essentially, for a sufficiently nonlinear soft
spring or hard spring case.

1.6 Summary

In this chapter, we have summarized recent results which show how equiv-
ariant Pyragas control succeeds in networks where standard Pyragas control
fails. For a ring of n diffusively coupled Stuart-Landau oscillators, explicit
complex linear control terms were constructed for each periodic orbit of dis-
crete rotating wave type. These control terms are nonlocal. They use an in-
terplay between index shifts h and temporal phase shifts Θ(h) to select the
spatio-temporal pattern, and they break the symmetry of the complete sys-
tem. The control term is noninvasive only for exactly one type of discrete
rotating waves. For full pattern-selectivity, the index shift m of h = ρm must
be chosen co-prime to the number n of oscillators coupled in the ring. For
each discrete rotating wave, this provides several control terms for which a
control is successful. In this case we have also provided an upper threshold
on the maximally admissible coupling parameter, depending on the specific
index shift.

For coupled Stuart-Landau oscillators, the additional S1-equivariance of
each oscillator allows additional conclusions. In this case, the existence of a
noninvasive stabilizing control scheme on rotating waves can be guaranteed
by choosing the time-delay small enough.

The control term will, however, become nonlocal and nonlinear in general.
Only near Hopf bifurcation, results on stabilization by linear control have
been obtained. The general results, on the other hand, are not limited to small
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amplitude. They do not require ring architecture. These results are based on
equivariance under a free S1-action as is provided by, but by no means limited
to, the paradigm of coupled Stuart-Landau oscillators.
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114101 (2007)
9. B. Fiedler, In: A.L. Fradkov et al. (eds.), 6th EUROMECH Conference on

Nonlinear Dynamics ENOC 2008, Sankt Peterburg, Russia (2008)
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