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A B S T R A C T

Flux sensitivity analysis in chemical reaction networks is the study of steady state
flux responses due to perturbations of reaction rates. In this thesis we give an
introduction and a detailed comparison of two recent approaches to flux sensitiv-
ity analysis. Fiedler and Mochizuki provide a structural approach based on the
directed graph structure of the network in the case of monomolecular reaction
networks. Their approach allows to determine zero and nonzero flux responses,
without any numerical input. Another intriguing approach, proposed by Fein-
berg, Shinar, Mayo, and Ji, reveals a connection between the structure of a mass
action network and constraints in the order of magnitude on the sensitivity of
steady state fluxes against a rate perturbation. We check the consistence of both
approaches by means of several examples, and further investigate response pat-
terns determined from the local structure of the network. By this means, we pro-
vide two new ideas on motif rules describing the branching in reaction networks,
namely the feedback behaviour and the splitting behaviour.
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1
I N T R O D U C T I O N

To understand the biology of living cells, the theory of chemical reaction network
attempts to model the relationship between chemicals and reactions by a directed
graph. The vertices of the graph represent reactants and products of the reactions,
consisting of one or several species of chemicals and the edges are the reaction
arrows, representing a state-transition of these chemicals.

Pioneering work in search of the general law of chemical reactions was made by
Waage and Guldberg in 1864 with their paper about mass action laws [33]. Inde-
pendently, van’t Hoff rediscovered this law in 1877 and published in 1884 the first
book about chemical dynamics "Études de Dynamique Chimique" [17]. Among
numerous distinctions, in 1901 van’t Hoff was awarded with the first Nobel Prize
in Chemistry "in recognition of the extraordinary services he has rendered by the
discovery of the laws of chemical dynamics and osmotic pressure in solutions".

A first milestone in analysis of chemical reaction networks was Wegscheider’s
work [34] on networks which consist of several elementary reactions in 1901.
Wegscheider pointed out that an equilibrium of a reaction network may not be
an equilibrium of each reaction from the network if their rate constants are inde-
pendently defined. This situation became known as Wegscheider’s paradox. Fur-
thermore, he gave detailed balance conditions on the reaction rate constants which
are necessary and sufficient for the equilibrium of the network to coincide with
the joint equilibrium of their elementary reactions.

The question how the dynamics of a reaction network is affected by its structure
was approached by Semenov [25] in 1935 and by Hinshelwood [16] in 1940 with
their theory of chain reactions. "For their researches into the mechanism of chemi-
cal reactions", Semenov and Hinshelwood were awarded with the Nobel Prize in
Chemistry in 1956. In 1965, Aris’ program [1, 2] on the detailed systematization
of mathematical ideas and approaches led to fundamental results by Horn and
Jackson [18], and Feinberg [6, 8].

Also in the 1960s, Higgins published his ground breaking work [15] on the applica-
tion of sensitivity analysis to biochemistry. The sensitivity analysis is a framework
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2 introduction

to determine the relation between the structure of a system and the magnitude of
the impact of some small perturbation in a parameter, like enzyme activity on a
metabolic system property, such as the flux or the concentration of a metabolite.
This method became a fundamental tool in biochemical systems theory, which
was developed by Savageau [24], and also in metabolic control analysis pioneered
independently by Kacser and Burns [20] and by Heinrich and Rapoport [13, 14].
For a survey of the large area of metabolic control analysis and its development
see for example [10, 31].

This thesis deals with two recent approaches of sensitivity analysis in chemical
reaction networks. The structural approach by Fiedler and Mochizuki (2015) [11,
22] provides a sensitivity analysis based on the directed graph structure of the net-
work for the case of monomolecular reactions. In fact, to determine which steady
state concentrations and reaction fluxes are sensitive to a specific rate change does
not require any numerical input, and therefore their results are function-free. Fur-
thermore, Fiedler and Mochizuki observed a concept of transitivity of influence
which establishes a hierarchy of the influence of a rate perturbation.

Another interesting approach to this issue has been proposed by Shinar, Mayo, Ji
and Feinberg (2011) [29, 30]. The second approach we will study in detail shows a
connection between the structure of a mass action network and the sensitivity of
their steady state fluxes against a rate perturbation. In particular, for the case of
injective reaction networks there are constraints on the flux control coefficients for
all positive steady states.

In this thesis we will especially consider the results of both approaches regarding
flux sensitivity analysis and its fundamental tool the flux sensitivity matrix. The
sensitivity matrix is an array whose elements are the partial derivatives of the con-
centrations or fluxes with respect to the rate parameters, evaluated at a particular
steady state. Examination of the flux sensitivity matrix will indicate which fluxes
are affected by a rate change of a specific reaction, and which are not.

Experimentally, one possible method to determine the sensitivity of concentra-
tions and fluxes are knockout experiments. During these experiments, each en-
zyme which mediates a reaction in the network is knocked out separately and
the response of the system is observed in terms of changes in the concentration of
chemicals or their fluxes. For large data bases on chemical and metabolic pathways
see for example [21, 23].
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Concerning flux sensitivity analysis, the approach by Fiedler and Mochizuki pro-
vides a theory based only on the structure of the metabolic or chemical reaction
network, i. e., it only considers its stoichiometric graph structure and thus is called
structural sensitivity analysis. Fundamental assumptions are the existence of a
positive steady state of the system and positivity of the reaction rates. In addi-
tion, the network is required to be regular at steady states. For reactions j∗ and
j ′ we denote j∗ ; j ′ as j∗ influences j ′, if Φj ′j∗ 6= 0. Their main result regarding
flux changes Φj ′j∗ of reaction j ′ due to a rate increase of reaction j∗ gives certain
conditions to determine if j∗ influences j ′, i. e., if the flux change is algebraically
nonzero, or not.

The results apply to almost every choice of reaction rate functions rj ∈ C1, pro-
vided that their equilibrium flux values rj(x∗m) can be considered as algebraically
independent to their derivatives r ′j(x

∗
m) at the steady state x∗ = (x∗m)m∈M, where

xm is the concentration of the metabolite m ∈ M. Therefore, the theory does not
apply to pure mass action kinetics, since only a single rate constant is available
for each reaction. But already rate functions of Michaelis-Menten or Langmuir-
Hinshelwood type are rich enough to satisfy the algebraic independence. More
generally, two parameter families of functions rj fulfill these assumptions.

At present, this approach is limited to monomolecular reactions and therefore
only offers a first step towards understanding the sensitivity behaviour of chemical
reaction networks, mathematically. But in a very recent advance Brehm and Fiedler
[3] were able to enhance the theory for regular multimolecular systems. In fact, in
some sense, they provide a completely different approach which is more powerful.

We next want to take a closer look at the approach by Shinar, Mayo, Ji and Fein-
berg. Their theory is designed for mass action networks that possess an injectivity
property. Injectivity is a network property which is closely related to the unique-
ness of positive equilibria in the system. In fact, we will see that noninjectivity is a
necessary condition for the existence of a mass action network possessing multiple
equilibria in the same positive stoichiometric compatibility class. Since injectivity
is a condition imposed on the network structure alone, the approach is based only
on the network structure, too.

Their main result provides bounds on the diagonal elements of the correspond-
ing flux sensitivity matrix in each positive steady state to lie between 0 and 1.
Furthermore, it gives constraints on the values that any pair of reciprocal off-
diagonal elements of the matrix may take. Specifically, in each pair of reciprocal
flux control coefficients at least one coefficient lies between −1 and 1. In the case of
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noninjective networks these sensitivity bounds can be violated, thus the injectivity
requirement is crucial.

Besides the fact that both approaches only rely on the underlying structure of the
chemical reaction network, on the first glance, the approaches seem to have com-
plementary assumptions. Indeed, where the approach by Shinar et al. requires
injective mass action reaction networks, Fiedler and Mochizuki allow a very gen-
eral class of rate functions, with exception of pure mass action kinetics. Further-
more, the theory by Fiedler and Mochizuki is limited to monomolecular reaction
networks at present, opposed to Shinar et al. not having such limitations.

Let us briefly compare the results. We see that the approach by Shinar et al. gives
bounds on the diagonal elements of the flux sensitivity matrix, in addition to con-
straints on the reciprocal off-diagonal elements. In contrast, the theory by Fiedler
and Mochizuki provides a framework, which is able to derive zero and nonzero
flux changes, i. e., to determine zero and nonzero entries of the flux sensitivity
matrix.

In this thesis we aim for a detailed comparison of the both approaches. We will
apply both theories to several examples and examine them at great length. More-
over, we will observe characteristic response patterns in the flux sensitivity matri-
ces of the examples, which are determined from the local structure of the network.
By this means, we will provide some ideas to expand the motif rules given by
Mochizuki and Fiedler [22]. Another interesting observation is that the regularity
assumption on the network from the approach by Fiedler and Mochizuki is very
close to the injectivity property of the network by Shinar, Mayo, Ji and Feinberg. In
fact, if we forget about the restrictions on the reaction rate functions for a second,
the injectivity property implies the regularity assumption.

The thesis is organized as follows. We will introduce basic notation and definitions
of the approach by Fiedler and Mochizuki in Chapter 2. We discuss the necessary
assumptions, state the main result regarding flux sensitivity analysis, and give a
commented proof. Furthermore, we examine the flux sensitivity matrix, which is
a fundamental tool in sensitivity analysis, in detail.

Chapter 3 is devoted to the introduction of the approach by Shinar, Mayo, Ji and
Feinberg. Here we will adopt the notation from Fiedler and Mochizuki, but give
detailed comments about the changes and the standard notation from Feinberg.
After introducing the necessary definitions, we state and prove the main result.
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Chapter 4 provides a comparison of the both approaches. We will examine the
similarities and differences in the fundamental ideas and the model, as well as
in the assumptions and the results. This way, we also give a short recall of the
basic principles and definitions from the previous two chapters. The reader who
is already familiar with the theory by Fiedler and Mochizuki, and by Shinar, Mayo,
Ji and Feinberg can therefore start with this chapter and return to Chapter 2 or
Chapter 3 as needed.

In Chapter 5 we apply the results of both approaches to several examples. In
particular, we derive the corresponding flux sensitivity matrices according to the
theory by Fiedler and Mochizuki and check for the constraints and bounds given
by Shinar et al. Furthermore, we study characteristic patterns in the flux sensitivity
matrices and provide new ideas on motif rules regarding the branching in reaction
networks. For the flux sensitivity matrices of even more examples see Appendix
A. Finally, we discuss and summarize our ideas and findings in Chapter 6.
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2
A S T R U C T U R A L A P P R O A C H T O S E N S I T I V I T Y A N A LY S I S

This chapter presents a detailed introduction to the structural approach to flux sen-
sitivity analysis by Fiedler and Mochizuki [11, 22]. In the following sections we
will give the basic notation and definitions for monomolecular reaction networks,
their dynamics and sensitivity analysis. We provide some insight with regards to
the ideas and necessary assumptions of the main result. Knowing the preliminar-
ies, we are able to state the main result and give a commented proof. Furthermore,
we study a fundamental tool in sensitivity analysis, the flux sensitivity matrix. We
also present a method to calculate the flux sensitivity matrix, as well as some of
its interesting properties.

2.1 monomolecular reaction networks and their dynamics

A monomolecular chemical reaction network consists of a set of metabolites M,
namely reactants and products, and of a set of reactions E, representing a state-
transition of these chemicals. The reaction network theory models the chemical
system as a directed graph Γ with vertex set M∪ {0}, made of metabolites m ∈M
and the zero complex 0, and directed edges j ∈ E standing for the reactions. The
total number of metabolites is denoted as M := |M| and the total number of edges
is E := |E|. We emphasize here that the metabolites m ∈ M are distinct from the
zero complex 0. The zero complex 0 is a vertex in which no metabolite is supported.
In the graph it acts as a tool to describe feed reactions and exit reactions. The
essential role of the zero complex, which was introduced by Feinberg [7, 8], will
become clear when we consider feed and exit reactions and in particular in an
example at the end of this section.

The approach by Fiedler and Mochizuki is limited to monomolecular reactions.
But in a recent advance Brehm and Fiedler were able to enhance the theory for
regular multimolecular systems, see [3]. However, this is beyond the scope of this
thesis, we regard the monomolecular case, only. Thus, any reaction j ∈ E just
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8 a structural approach to sensitivity analysis

converts one metabolite mj, called reactant or educt into another one mj, called
product. In symbols

j : mj //mj (2.1.1)

represents a reaction, where mj,mj are different elements from the vertex set
M∪ {0}. Special reactions are feed reactions j with mj = 0 and exit reactions j with
mj = 0. On the graph structure of the reaction network we impose the conditions
that any order pair (m,m) is connected by at most one directed edge. Further
we prohibit the existence of self-loops m = m. Note that in graph theory this is
called simple directed graph. If for a reaction j : mj //mj the reverse reaction
j̄ : mj //mj also occurs in Γ , we call the reaction j reversible.

A path in a graph is a sequence of edges j ∈ E which connect a sequence of vertices
m ∈ M ∪ {0} without any self-intersections. We call a directed path, abbreviated
a di-path, a path with added restriction that all edges are directed in the same
direction. If the two end points of an undirected path coincide we speak of a cycle.
A di-cycle is a cycle with an underlying directed path. Another variant of a cycle is
called bi-cycle, which consists of two parallel di-path arcs. Each arc is required to
have at least one edge and both arcs are disjoint, except for their shared start and
end vertices. Of course, in order to respect our conditions on the graph structure,
at least one of the arcs needs at least two edges joined by a vertex.

We next define the notions of weak and strong connectivity of vertices m,m ′ ∈
M∪ {0}. For the case of an undirected graph m,m ′ are weakly connected, in sym-
bols m ∼ m ′, if there exists an undirected path connecting m and m ′. The cor-
responding equivalence class of the equivalence relation ∼ is called weakly con-
nected component. In a di-graph, we call m,m ′ strongly connected, in symbols
m ≈ m ′, if there exists a di-path from m to m ′ and a different one from m ′ to
m. Analogously, the equivalence class of the relation ≈ is called strong connected
components. Note that m = m ′ without any edge implies m ∼ m ′ and m ≈ m ′.

We call a undirected graph Γ acyclic, if it does not contain any cycles. A maximal
spanning forest T of an undirected graph Γ is an acyclic subgraph of Γ , which
is maximal. T has the properties that it contains all vertices M ∪ {0} of Γ , i. e.,
T = (M ∪ {0}, E(T)), and by maximality of T, that any added edge j 6∈ E(T) pro-
duces an undirected cycle cj in T ∪ {j}. Note that the cycle cj is unique, since T

is acyclic. We call T a spanning tree if the graph Γ is weakly connected, since
any maximal spanning forest is also connected. Here, deviating from the standard
graph terminology, the term maximal spanning tree T is used in the connected
case, to emphasize that T consists of a maximal number of edges.
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Consider a reaction j : mj //mj . We call the reactant or tail mj of the arrow j

the mother metabolite of the corresponding reaction and the product or head mj

the child metabolite. This terminology gives rise to the mother map, which is a
map given by

m : E→M∪ {0} (2.1.2)

such that m(j) = mj is the mother of j, as well as the map m(j) := mj which yields
the reaction product mj, respectively. Thus, we can characterize the feed reactions
j as the elements of E0 := m−1(0) and the elements of m−1(0) as the exit reactions.
The right inverse of the mother map m is called child selection map

J : M→ E,

m 7→ J(m).
(2.1.3)

Therefore, we have
m ◦ J = idM (2.1.4)

as identity relation between the mother map and the child selection map.

To study the dynamics of the chemical reaction network, we first define their
ordinary differential equation. The ODE

ẋ = f(r, x) :=
∑
j∈E

rj(xm(j))(Xm(j) −Xm(j)) (2.1.5)

describes the dynamics of the vector x = (xm)m∈M of concentrations xm of the
metabolites m ∈M. Here Xm ∈ RM defines the m-th unit vector for any nonzero
metabolite m ∈M. In addition, we define X0 := 0 ∈ RM and x0 := 1. Furthermore,
we view the reaction rate functions r = (rj)j∈E, i. e., the rates at which reaction j is
active per time unit, as given parameters. For brevity, we define the derivatives of
the reaction rates at the equilibrium x∗ as

rjm :=
∂

∂xm
rj(x

∗) =

 r ′j(x
∗
m) for m = m(j),

0 otherwise.
(2.1.6)

As promised, we give a simple example to illustrate the essential role of the zero
complex 0 and also an application of the ODE (2.1.5). Lets consider the reaction
network

0
1 // A

2 // 0 .
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Note that the two zeros in the reaction network are actually the same zero vertex
0, but separated to emphasize feed and exit reactions. In this sense, we can view
the graph as a di-cycle and also as strongly connected, even reversible. Since A is
the only metabolite, we have M = {A} and hence M = 1. We see that RM is one-
dimensional, so the unit vector XA = 1 ∈ RM is scalar, as is X0 = 0. The only two
reactions that appear are the feed reaction j = 1 and the exit reaction j = 2, thus
we have E = {1, 2} with m(1) = m(2) = 0. Therefore, the reaction rates become
r1 = r1(x0) = r1(1), which is constant and r2 = r2(xA) = r2(x) if we abbreviate
x := xA. So we can conclude that the single ODE (2.1.5) for our example network
is given by

ẋ = r1 − r2(x).

2.2 main idea and assumptions on sensitivity analysis

We next take a closer look at the crucial assumptions and ideas on the flux sen-
sitivity analysis provided by this theory. The first assumptions regard the ODE
(2.1.5). On the reaction rate functions rj ∈ C1 we assume positivity, i. e.,

rj(ξ) > 0 for ξ > 0. (2.2.1)

This basically means that we omit vanishing reactions. But we do not require the
positivity of their derivatives r ′j. Note that the definition (2.1.6) for the derivatives
of the reaction rates respects the positivity assumption. Furthermore, we assume
the existence of a positive steady state x∗ > 0 that is

f(r, x∗) = 0 (2.2.2)

for some x∗ which satisfies in all components x∗m > 0. Again, in practise the
positivity in this assumption just omits steady states with zero components of x∗.
Finally, we assume the general reaction network to be regular at steady states of
(2.1.5). This means we require the Jacobian fx(r, x∗) of the partial derivatives with
respect to x of the ODE vector field f to be nonsingular, i. e.,

det fx(r, x∗) 6= 0. (2.2.3)

The last assumption gives rise to a fundamental idea of the approach. We can
use the implicit function theorem to study for any reaction j∗ the steady state
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response to any perturbation of the rate function rj∗ . Let ρ ∈ C1 be a continuously
differentiable function and ε ∈ R small. Then the C1-small perturbation

rε := r + ερ (2.2.4)

of r = r0 induces a response curve x∗(ε), such that we have at rε and x∗(ε)

fr · ρ+ fx ·
d
dε
x∗ = 0. (2.2.5)

Since we know by (2.2.3) that the Jacobian of f is nonsingular, this yields the
resulting perturbation of x∗. Considering a special case of the perturbation, where
ρ = (ρj)j∈E with ρj = ρj(xm(j)) has no effect on the reaction network, but only
changes reaction j∗, we are now able to define the concentration response of a
metabolite. From the restriction above we have

ρj(ξ) = 0, for j 6= j∗, and (2.2.6)

ρj∗(x
∗
m(j∗)) = 1 (2.2.7)

where we normalized the perturbation of rate j∗, without loss of generality. The
resulting (infinitesimal) concentration response δxj

∗
m of metabolite m at steady

state is defined as

δxj
∗
m :=

d
dε

∣∣∣∣
ε=0

x∗m(ε) (2.2.8)

for the particular case (2.2.6), (2.2.7). For this function-free approach no knowledge
of numerical data is required to make a prediction on concentration responses
δx
j∗
m to be zero or nonzero, but to determine their precise numerical values, the

numerical values of the derivatives rjm are necessary.

One fundamental idea behind the theory is to consider the derivatives rjm as
abstract independent variables which enter the response δxj

∗
m0

via certain rational
expressions. In this spirit, we define δxj

∗
m0

algebraically nonzero if

δxj
∗
m0
6= 0, (2.2.9)

as a rational function of the variables rjm with m = m(j). As emphasized above,
we see here that this implies δxj

∗
m0
6= 0, except on real algebraic varieties of codi-

mension at least 1 in the space of data rjm.

However, this view point puts a further restriction of the approach into force. We
require that the derivative variables rjm are independent of the equilibrium flux
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values rj(x∗m). But this independence fails if the class of nonlinearities rj itself
solves the same ODE r ′j = hj(rj) for some fixed function hj, for example in cases
like rj = a · exp(xm). Thus we need for the algebraic independence of rj and r ′j at
least a two parameter family of functions rj. This means we have to exclude pure
mass action kinetics, but already slightly richer rate functions of Michaelis-Menten
and Langmuir-Hinshelwood type are permissible.

Note that the theory by Fiedler and Mochizuki also provides significant results
on concentration sensitivity analysis. In fact, it states precise conditions on the
stoichiometric graph structure of the chemical reaction network in order to possess
nonzero concentration responses δxj

∗
m of any metabolite m ∈ M in response to a

rate perturbation (2.2.4) - (2.2.7) of any reaction j∗ ∈ E. Since we focus especially
on flux sensitivity analysis here, this is beyond the scope of this thesis.

2.3 main result on flux changes

Before we state the main result on flux changes due to a perturbation of reaction
rates, let us discover the idea behind the construction of the sensitivity of reaction
fluxes. The (infinitesimal) flux response Φj ′j∗ of the flux through reaction j ′ due
to a rate perturbation of reaction j∗ is defined as follows:

Φj ′j∗ := δj ′j∗ + rj ′m(j ′)δx
j∗

m(j ′). (2.3.1)

The flux response Φj ′j∗ consists of two terms, the first one, the Kronecker-delta
δj ′j∗ , represents the explicit flux change due to the external perturbation at j∗ in
reaction j ′ = j∗. The second term indicates the implicit flux change in any reaction
j ′, which is caused by the concentration response δxj

∗

m(j ′) of the mother reactant
m(j ′) due to the external perturbation at j∗.

The main result on structural sensitivity analysis of flux influences, which we
state now, provides insight on the impact of an external perturbation at reaction
j∗ to either propagate downward along a directed path γ ′ starting with vertex
m(j∗) = m∗ and edge j∗, or else to spill over to a side branch γ ′ from j∗ ∈ γ0\γ ′.

Theorem 2.1 (Fiedler & Mochizuki). Let positivity and existence assumptions (2.2.1),
(2.2.2) hold for the monomolecular reaction network (2.1.1), (2.1.2) and (2.1.5). Moreover
assume the Jacobian determinant in (2.2.3) is nonzero, algebraically. Consider any pair of
edges j ′, j∗ ∈ E, not necessarily distinct.
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m∗

(i)
j∗

(ii)

γ0

γ ′

paths are disjoint
(iv)

0
(iii)

(iii)j ′

m ′

or

Figure 2.3.1: Illustrating the properties (i) - (iv) of Theorem 2.1: the exit di-path γ0 is at
the top and the influence di-path γ ′ at the bottom, property (i): both paths
emanate from m∗; (ii): one of the paths contains j∗; (iii): γ0 terminates at
vertex 0 and γ ′ with edge j ′; (iv): the paths are disjoint except for m∗.

Then j∗ influences j ′, i. e., the flux response Φj ′j∗ of reaction j ′ to a rate perturbation
(2.2.4) - (2.2.7) of reaction j∗ satisfies

Φj ′j∗ 6= 0 (2.3.2)

algebraically, if, and only if, there exist two directed paths γ0 and γ ′ for which the follow-
ing four conditions all hold true:

(i) both paths emanate from the mother reactant m∗ = m(j∗) of reaction j∗;

(ii) one of the paths contains reaction j∗;

(iii) the exit path γ0 terminates at vertex 0, and the influence path γ ′ terminates with
reaction edge j ′ : m ′ //m ′ , but omitting the product vertex m ′ = m(j ′) of j ′;

(iv) except for their shared starting vertex m∗, the two paths γ0 and γ ′ are disjoint.

Where disjoint means that the paths do not share any edge, or any vertex besides
m∗. For an illustration of the four conditions see Figure 2.3.1. The idea of the
conditions on γ ′ is to describe some domain of influence of the perturbation j∗.
Also note that γ ′ always contains the edge j ′ and then terminates. However, the
idea of the exit path γ0 is less intuitive, in particular in the case when the effects
of j∗ ∈ γ0 spill over to the side branch γ ′.

A simple application is the single child case. In this case j∗ is the only child edge
of the mother vertex m∗. According to the Theorem 2.1 we need two different
di-paths γ0 and γ ′, which are disjoint, by property (iv) and emanate, by (i), from
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the same mother vertex m∗ for a nonzero flux response Φj∗j∗ 6= 0. Since we only
have a single child edge of m∗, this is a contradiction. Therefore, we have

Φj ′j∗ = 0, (2.3.3)

for all j ′ ∈ E. To verify this result, we also want to prove (2.3.3) directly. By (2.1.6)
and (2.2.5) - (2.2.8) at the single-child vertex m∗ we conclude

δx
j∗
m∗ =

−1

rj∗m∗
6= 0. (2.3.4)

Looking at (2.3.1), we see that this implicit response compensates for the external
flux increase by ρ, at j∗, and therefore Φj∗j∗ = 0. Furthermore, we note that the
zero flux response in this example is caused by the Kronecker-delta in the flux
sensitivity (2.3.1).

A further intriguing result by Fielder and Mochizuki, which we just want to men-
tion here, is the concept of transitivity of influence. We say that reaction j∗ in-
fluences reaction j ′, in terms j∗ ; j ′, if the flux response Φj ′j∗ is algebraically
nonzero:

j∗ ; j ′ ⇐⇒ Φj ′j∗ 6= 0. (2.3.5)

In addition, we call the flux influence relation (2.3.5) transitive if

j1 ; j2 and j2 ; j3 implies j1 ; j3, (2.3.6)

i. e., if a perturbation in the reaction rate of j1 causes a change in j2, and a change
of the rate of reaction j2 propagates to j3, then j1 also influences j3. Under the
assumptions of Theorem 2.1 Fiedler and Mochizuki proved that transitivity (2.3.6)
holds true for the flux influence relation j∗ ; j ′. Furthermore, we like to men-
tion that Nicola Vassena [32] has provided a simplified proof of this transitivity
result, based on more advanced graph theory. His proof utilizes standard connec-
tivity concepts from graph theory, Menger’s Theorem, and what he calls obliged
elements.
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2.4 construction and calculation of the flux sensitivity matrix

The flux sensitivity matrix
Φ :=

(
Φj ′j∗

)
j ′,j∗∈E (2.4.1)

is an array whose elements are the flux responses Φj ′j∗ = δj ′j∗ + rj ′m(j ′)δx
j∗

m(j ′),
see (2.3.1), for the whole reaction network. Similarly, the array of concentration
sensitivities δxj

∗
m is called concentration sensitivity matrix, in terms

δx :=
(
δxj

∗
m

)
j∗∈E,m∈M

. (2.4.2)

Since involved reaction networks contain more edges than metabolites, the first
thing we notice about both matrices is that the flux sensitivity matrix is larger
than the concentration sensitivity matrix.

We going to develop a method to calculate the flux sensitivity matrix and in ad-
dition gain insight into its precise construction. We also give an example how to
derive the matrix for a simple network, afterwards. For this purpose we define the
stoichiometric matrix S with dimensions M× E by

S : RE → RM,

Sej := Xm(j) −Xm(j),
(2.4.3)

with ej as the j-th unit vector in RE, and we already defined Xm as the m-th unit
vector in RM, with X0 := 0. By looking at the feed and exit reactions we can see
an application of the convention X0 = 0. For the feed reactions j we have Sej =
Xm(j) −X0 = Xm(j), and for the exit reactions j we get Sej = X0 −Xm(j) = −Xm(j).
Moreover, the stoichiometric matrix S allows us to reformulate the ODE (2.1.5) as

ẋ = Sr(x), (2.4.4)

where x = (xm)m∈M and r = (rj)j∈E.

The E×M-dimensional reactivity matrix R is defined by

R :=
(
rjm

)
j∈E,m∈M , (2.4.5)

where rjm = r ′j(x
∗
m) are the nontrivial derivatives of the reaction rate functions for

m = m(j), viewed as independent variables. By (2.1.6) we fill the matrix with zeros
for missing entries. The idea behind the reactivity matrix R is the representation
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of the reaction aspect of the stoichiometric matrix S. Let N := dim ker S be the
dimension of the kernel of the stoichiometric matrix and take an arbitrary basis
c1, . . . , cN ∈ RE for ker S, with components ckj . We define the E×N-matrix

C :=
(
ckj
)
j∈E,k∈{1,...,N}

, (2.4.6)

which accounts for the graph aspect of S. Now we are able to define a mandatory
tool for the calculation of the flux sensitivity matrix and also for the proof of the
main result, the augmented matrix A : RM ×RN → RE. This matrix, defined in
block form as

A := (R, C) , (2.4.7)

with dimensions E× (M+N), on the one hand combines the reaction aspect R
and the graph aspect C of the stoichiometric matrix S. On the other hand, both
aspects stay separated and can therefore be addressed without any effort.

For the sake of a more elegant appearance of the calculation method, we define
for the rest of this section the augmented matrix A as

A =


r11 . . . r1M −c11 . . . −cN1

...
...

...
...

rE1 . . . rEM −c1E . . . −cNE

 , (2.4.8)

which is equivalent to (2.4.7) by the freedom of choice of the basis of ker S, but
saves us from a lot of minus signs. The C-part can easily be determined by virtue
of Proposition 2.2, which we will state and prove in the next section. For that
purpose, we consider a maximal spanning tree T of the reaction network Γ and
generate cycles cj in T ∪ {j} by adding edges j 6∈ E(T). These cycles are unique,
linearly independent and form a basis of ker S. Therefore we just need to write
the cycles cj, i. e., the edges they are made of, in the columns of the C-part.

The negative inverse of the augmented matrix A is called sensitivity matrix S and
give by

S :=



δx11 . . . δxE1
...

...

δx1M . . . δxEM

µ11 . . . µE1
...

...

µ1N . . . µEN


= −A−1, (2.4.9)
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where µjk ∈ R are coefficients of a suitable linear combination of kernel vectors
(ckj )j∈E of S such that we can express the flux response vector Φ∗ := (Φj ′j∗)j ′∈E to
a perturbation of reaction j∗ as

Φ∗ = C(µjk)k∈{1,...,N}. (2.4.10)

The sensitivity matrix S of a system, with columns j∗ ∈ E indicating perturbed
reactions, is a square E× E matrix. That the relation E = M+N holds true, we
will see in Proposition 2.2, in the next section. Let us emphasize that the sensi-
tivity matrix S may not be confused with the concentration sensitivity matrix δx,
albeit the first M rows of S collect the sensitivity responses δxj

∗
m of all metabolites.

The bottom part of the S matrix contains the responses of fluxes to a normalized
perturbation of the reaction j∗ in the coefficient column (µj

∗
k )k∈{1,...,N}.

Motivated by (2.3.1), our first attempt to construct the E×E flux sensitivity matrix

Φ = idE×E + Rδx (2.4.11)

involves the identity matrix idE×E, the concentration sensitivity matrix δx, as well
as the reactivity matrix R. On the other hand, since the flux response vectors Φ∗

for j∗ ∈ E are the columns of the flux sensitivity matrix Φ, we can use (2.4.10) to
reformulate (2.4.11) as

Φ =


c11 . . . cN1
...

...

c1E . . . cNE



µ11 . . . µE1
...

...

µ1N . . . µEN

 . (2.4.12)

For an actual calculation of the flux sensitivity matrix Φ, this means, we need
to set up the augmented matrix A for the negative of the C-part, determine the
sensitivity matrix S, i. e., compute the negative inverse of A for its bottom part
and multiply both parts with each other, as in (2.4.12). Details on the abstract
construction of the augmented matrix A and the correctness of the equations (2.4.9)
and (2.4.10) are given in the proof of the main result in Section 2.6.

To demonstrate the method for calculation of the flux sensitivity matrix we give an
example of a simple chemical reaction network, the single path way. This example
also illustrates our findings on the single child case in Section 2.3. The single path
way Γ is made of three metabolites M = {A,B,C} and four reactions E = {1, 2, 3, 4},
which are arranged as a metabolic chain without any side branches, see Figure
2.4.1. The network is monomolecular and fulfills the regularity condition (2.2.3),
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0 A B C 01 2 3 4

single path way Γ

Figure 2.4.1: Single path way Γ containing three metabolites M = {A,B,C} and four reac-
tions E = {1, 2, 3, 4} arranged as metabolic chain without side branches.

which can be easily checked with the help of Lemma 2.4, which we will see in
the next section. First we need to determine the augmented matrix A. We know
that the network has E = 4 reactions, thus we deal with a 4× 4 matrix. Since the
single path way has three metabolites, i. e., M = 3, the first three columns of A are
occupied by the R-part and only the last column is reserved for the C-part of A.
Indeed, byN = E−M the kernel of the stoichiometric matrix S is one dimensional.
The augmented matrix A is given as

A =


0 0 0 −1

r2A 0 0 −1

0 r3B 0 −1

0 0 r4C −1

 ,

where the C-part is made of a single cycle, the single path way itself. We next
compute the sensitivity matrix S by taking the negative inverse of A,

S = −A−1 =


1
r2A

− 1
r2A

0 0

1
r3B

0 − 1
r3B

0

1
r4C

0 0 − 1
r4C

1 0 0 0

 .

The perturbed reactions j∗ = 1, . . . , 4 are indicated by the columns. The first three
rows represent the concentration responses δxA, δxB, δxC of the metabolites and
the last row the response of the flux. Therefore, the last row shows that the flux
only changes if reaction 1, the input in the system, is perturbed. Then all concen-
trations in the network increase, accordingly. However, when perturbing the other
reactions 2, 3, or 4, only the input reactant of the perturbed reaction changes.
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To obtain the flux sensitivity matrix Φ, finally, we take the negative of the C-part
of the augmented matrix A and multiply it with the bottom part of the sensitivity
matrix S, according to (2.4.12),

Φ =


1

1

1

1

 ·
(
1 0 0 0

)
=


1 0 0 0

1 0 0 0

1 0 0 0

1 0 0 0

 .

As mentioned before, this example illustrates our findings on the single child case,
since any reaction j∗ other than the feed reaction 1 is a single child of a mother
vertex m = m(j∗). Therefore, we have for all j∗ 6= 1 and all j ′ a zero flux response
Φj ′j∗ = 0. For the feed case j∗ = 1, m∗ = 0 we have to take the trivial path γ0 = {0}

as exit path and see that any edge j ′ is reachable from the leading edge j∗ = 1 by
a di-path γ ′ from m∗ = 0, therefore Theorem 2.1 implies Φj ′1 6= 0 for all j ′ ∈ E.

The calculation of a prolonged single path way with any finite number of metabo-
lites is straightforward and the flux sensitivity matrix will look the same way, but
with adapted dimensions.

2.5 graph theoretical properties for reaction networks

This section mainly concerns a reformulation of the regularity assumption (2.2.3)
on the reaction network in terms of graph theory, as well as the implications of
the positivity assumptions (2.2.1), (2.2.2) for the stationary reaction rates rj on the
graph structure of the network.

Our view point on the regularity assumption (2.2.3) is a purely algebraic one, in
terms of the independent variables rjm = r ′j(x

∗
m), where j ∈ E is a reaction with

mother vertex m = m(j) ∈ M ∪ {0}. Let us temporarily consider x∗ as a generic
point on a solution curve of the ODE (2.1.5), instead of our usual assumption
to be a stationary solution (2.2.2). We also do not require positivity (2.2.1). We
decompose

f ′(x∗) = SR (2.5.1)

into the reactivity matrix R = (rjm)j∈E,m∈M and the stoichiometric matrix S, see
(2.4.3), (2.4.5). From the last section we know that the augmented matrix A =
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(R, C) separates the reaction aspect R and the graph aspect C of the stoichiometric
matrix S.

We first study the graph aspect of S and consider for this purpose the graph
Γ = (M ∪ {0}, E) as undirected. This means, we disregard all orientations of the
edges j, for the moment. We define the boundary map D, mapping edges j ∈ E to
vertices m ∈M∪ {0} in Γ by

D : RE → RM+1,

Dej := Xm(j) −Xm(j).
(2.5.2)

Furthermore, we define the projection P0, which simply drops the last component
associated to the vertex 0 in Γ , by

P0 : RM+1 → RM. (2.5.3)

We can use the projection P0 and the boundary map D to decompose the stoichio-
metric matrix S as

S = P0D. (2.5.4)

For the boundary map D the homologies H0(Γ) and H1(Γ) are defined as

H0(Γ) := (range D)⊥ 6 RM+1, (2.5.5)

H1(Γ) := ker D 6 RE. (2.5.6)

By the definition of H0(Γ) we note that dimH0 counts the weakly connected com-
ponents W of the graph Γ . Thus, a basis of H0 is given by the characteristic func-
tions 1W of the component vertices. The Euler characteristic

χ(Γ) := dimH0 − dimH1 =M+ 1− E (2.5.7)

is the alternating sum of the dimensions of the homologies H0(Γ) and H1(Γ). From
another view point, the Euler characteristic χ(Γ) is the negative Fredholm index
of the boundary map D. An important observation here is that the cycles cj ∈
ker D = H1(Γ), which are produced by adding edges j 6∈ E(T) to a maximal
spanning forest T of Γ , are linearly independent, and by maximality and acyclicity
of T therefore form a basis of H1(Γ). Hence

dimH1 = E− E(T), (2.5.8)

where E(T) is the number of edges of the maximal spanning forest T of Γ .

With the next proposition we are going to justify some of the properties, which we
already used in the previous section on calculating the flux sensitivity matrix Φ.
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Proposition 2.2 (Fiedler & Mochizuki). In the above setting and notation, the kernel
of the stoichiometric matrix S coincides with the first homology: H1(Γ) = ker D = ker S.
Equivalently,

dimH1(Γ) = N := dim ker S. (2.5.9)

Moreover the following properties are mutually equivalent

(i) S : RE → RM is surjective;

(ii) N := dim ker S = E−M;

(iii) the matrix A : RM+N → RE is square;

(iv) Γ is (weakly) connected, i. e.,

dimH0(Γ) = 1. (2.5.10)

Proof. For brevity, we define def S := dim ker S and cork S := codim range S for
the stoichiometric matrix S : RE → RM. Our first step is to prove ker D = ker S
and consequently (2.5.9), too. Let e0 ∈ ker P0 be the spanning element which is
omitted by P0. By definition, we know e0 ⊥ 1W for the characteristic function
1W of any weakly connected component W of Γ which does not contain vertex 0,
and eT0 · 1W0

= 1 for the weakly connected component W0 of the vertex 0 itself.
Therefore, e0 satisfies

e0 6∈ range D = H0(Γ)
⊥, (2.5.11)

if, and only if, ker D > ker S. Furthermore, S = P0D implies ker D 6 ker S and
hence the equality ker D = ker S holds true. This also proves (2.5.9):

dimH1(Γ) := dim ker D = dim ker S =: N. (2.5.12)

In the next step we address the equivalence of (i) - (iv). The equivalence (i) ⇐⇒ (ii)
is true, since

E−M = def S − cork S = N− cork S = N, (2.5.13)

if, and only if, S is surjective. Equivalence (ii) ⇐⇒ (iii) is trivial, since M+N = E.
Lastly, we prove the equivalence (ii) ⇐⇒ (iv), i. e., (2.5.10). According to the Euler
characteristic (2.5.7) we know the first equality of

dimH0 = dimH1 +M+ 1− E = 1+N− (E−M) = 1, (2.5.14)

and (2.5.9) provides the second equality. This completes the proof.
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We next study the symbolic reaction part R of the stoichiometric matrix S, its
influence on the Jacobian matrix f ′(x∗) = SR, and its role in the augmented matrix
A = (R, C), see (2.5.1) and (2.4.7).

Proposition 2.3 (Fiedler & Mochizuki). Consider any directed graph Γ = (M∪ {0}, E),
as in (2.1.1). Then

det SR 6= 0 ⇐⇒ det A 6= 0. (2.5.15)

Proof. The proof is fairly short. First we show that

det SR 6= 0 =⇒ det A 6= 0, (2.5.16)

and the converse claim afterwards. Suppose that det SR 6= 0. By Proposition 2.2
(i) and (iii), this implies that S is surjective, and therefore A = (R, C) is a square
matrix. To show that ker A is trivial, we consider ξ ∈ RM and µ ∈ RN such that

0 = Rξ+ Cµ. (2.5.17)

If we multiply (2.5.17) by S, the C term cancels out, since it describes the kernel of
S, i. e., SC = 0. Thus, we obtain SRξ = 0. We further conclude that ξ = 0, by the
assumption det SR 6= 0. For the remaining part Cµ of (2.5.17) we recollect that the
columns ck of C are a basis for ker S and thus linearly independent. This implies
that µ = 0 and hence we proved claim (2.5.16).

To address converse direction that det A 6= 0 implies det SR 6= 0, we show that SR
possesses a trivial kernel. Suppose SRξ = 0. Thus Rξ ∈ ker S = span{c1, . . . , cN}
means that there exists a linear combination µ ∈ RN such that (2.5.17) is fulfilled.
But det A 6= 0 let us draw the conclusion ξ = 0. This proves the proposition.

Now we want to regard det SR as a polynomial in the nontrivial derivative vari-
ables rjm, for j ∈ E and m = m(j). We call det SR 6= 0 algebraically, if this polyno-
mial does not vanish identically.

Lemma 2.4 (Fiedler & Mochizuki). Consider any directed graph Γ = (M∪ {0}, E) as in
(2.1.1). Then

det SR 6= 0 (2.5.18)

algebraically if, and only if, for every vertex m0 ∈ M there exists a directed exit path γ0

in Γ from vertex m0 to vertex 0.
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Proof. For a clear structure, we divide the proof into five steps, since it is more
involved. The first step reminds of the child selection map (2.1.3), (2.1.4) and uses
it to replace det SR by a polynomial expression. In the second step, we look for a
suitable choice for a basis of ker S to simplify this polynomial expression. Now, in
the third step, we are able to find a directed exit path γ0 and thus prove the first
direction. Step 4 concerns itself with the converse direction by reducing the state-
ment to the construction of a suitable child selection map and Step 5 completes
the proof with this construction.

Step 1: We may replace det SR 6= 0 by det A 6= 0, according to Proposition 2.3. Our
view point on det A is purely algebraical, in the sense that we regard it as polyno-
mial in the nontrivial derivative variables rjm. Thus, det A 6= holds, algebraically,
if, and only if the polynomial expansion of the determinant does not vanish iden-
tically in the nontrivial entries rjm of R. By (2.1.4), we know that the mother map
m : E → M ∪ {0} is a left inverse of the child selection map J : M → E, i. e.,
m ◦ J = idM. Consider any child selection map J. The polynomial expansion

det A =
∑
J

aJr
J (2.5.19)

has the generating nontrivial monomials rJ with the coefficients aJ. The generating
monomials of this expansion, given as

rJ :=
∏
m∈M

rJ(m),m =
∏
j∈J(M)

r ′j(xm(j)), (2.5.20)

are in one-to-one correspondence with the child selection maps J. The coefficients
aJ are the subdeterminants of the kernel part C of the augmented matrix A, in
terms

aJ = ±det(ckj )j∈E\J(M),k∈{1,...,N}. (2.5.21)

In fact det A 6= 0 holds, algebraically, if, and only if, at least one coefficient aJ of
the nontrivial monomials rJ in (2.5.19) is nonzero.

Step 2: Now we want to choose a suitable basis c1, . . . , cN of ker S for our situation.
Let T0 be a maximal spanning forest of the graph Γ . Since Γ is connected, by our
assumption det SR 6= 0, which implies surjectivity of the stoichiometric matrix S,
combined with Proposition 2.2 (i) and (iv), T0 is even a maximal spanning tree.
We define C by the cycles ck of the maximal spanning tree T0. In (2.5.21) the rows
of J(M) are omitted, so let us denote this square matrix as Č(J(M)), as well as
E ′ := J(M). An crucial observation here is that

det Č(E ′) 6= 0 (2.5.22)
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holds, if, and only if, T = (M ∪ {0}, E ′) is a maximal spanning tree of Γ . So Č(E ′)
defines a change of the basis of ker S from the cycle basis given by the maximal
spanning tree T0 to the new cycle basis defined by T.

Step 3: To find a directed exit path γ0, we reactivate the edge orientations. Consider
m0 ∈ M. Since the maximal spanning tree T selects one unique child edge J(m)

out of any mother vertex m ∈ E, this defines a unique directed path γ0 starting at
m0. By acyclicity of the maximal spanning tree T, the di-path γ0 can never return
to itself. Therefore, γ0 can only terminate at the exit vertex 0 6∈M. This shows the
first direction.

Step 4: Now we want to deal with the converse direction. Suppose there exists a
di-path γ0 in Γ = (M ∪ {0}, E) from any m ∈ M to 0. The first thing we observe is
that Γ is weakly connected. Therefore, it is sufficient to construct a child selection
map J : M→ E as is in (2.1.4), to show that det A 6= 0 algebraically.

Step 5: We are going to inductively construct J from the paths γ0. To accomplish
this, consider any acyclic exit di-path γ0 and attach any missing vertex m ∈ M
by following its acyclic exit di-path γ0 until it reaches a vertex which already has
been taken care of. This method selects a unique child arrow J(m), for any mother
vertex m ∈ M, gradually. In return, the child selection J produces a nontrivial
monomial (2.5.19) of det A with nonzero coefficients aJ, as in (2.5.20), (2.5.21), and
hence det A 6= 0, algebraically. This completes the proof of the lemma.

The previous proof also yields a variant formulation for the child selection map J,
which are in a way defined that they posses the mother map m as a left inverse,
i. e., m ◦ J = idM. Also see (2.1.3), (2.1.4). The next corollary concerns itself with
this issue.

Corollary 2.5 (Fiedler & Mochizuki). In the setting of Lemma 2.4, det SR 6= 0 holds
algebraically if, and only if, there exists a child selection map J : M → E such that
T = (M∪ {0}, J(M)) is a maximal spanning tree of the network Γ = (M∪ {0}, E).

By construction via the child selection map J the directed tree T possesses the following
additional properties:

(i) any di-path in T terminates at 0;

(ii) for any edge j 6∈ T, the following alternative holds true:

(a) either, the unique cycle cj in T ∪ {j} is a di-cycle,
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(b) or else, the short-cut j 6∈ T runs parallel to the di-path cj ∩ T in T;

(iii) T does not contain any feed reaction j emanating from 0;

(iv) any feed reaction j defines a unique di-cycle cj in T ∪ {j}, which runs from 0 to 0.

The last lemma for this chapter deals with the implications of the positivity as-
sumptions (2.2.1) and (2.2.2) for the stationary reaction rates rj on the graph struc-
ture of the reaction network. In fact, the positivity assumptions ensure that each
weakly connected component is also strongly connected.

Lemma 2.6 (Fiedler & Mochizuki). Let positivity assumptions (2.2.1), (2.2.2) hold.

Then any weakly connected component of the reaction network Γ is strongly connected.

In particular, suppose that regularity assumption (2.2.3) holds in addition, i. e., det f ′(x∗) 6=
0. Then Γ is strongly connected.

Proof. For the first part of the lemma, consider the acyclic induced di-graph on the
strongly connected components within any weak connected component of Γ . The
remaining directed edge of a minimal component W, if any, then leads to W, and
not away from W. Since the reaction fluxes rj satisfy Kirchhoff’s law at any vertex
m, we know that the total in-flow toW vanishes. By assumption, all reaction fluxes
rj are strictly positive, thus there cannot exist any directed edge pointing towards
W. Therefore strong component W and its weak component coincide.

Part two follows from part one, in addition to Proposition 2.2 (i), (iv) applied to
the surjective f ′(x∗) = SR. Therefore, the lemma is proved.

2.6 proof of the main result

This section concerns itself with the proof of the main result on flux sensitivity
analysis, Theorem 2.1 by Fiedler and Mochizuki, only. Before we start the proof,
let us mention here that Nicola Vassena [32] has provided a reformulation of the
theorem, based on more advanced graph theory and his obliged elements.

Throughout the whole section we assume positivity and existence assumptions
(2.2.1), (2.2.2), and regularity assumption (2.2.3). Analogously as in the proof of
Lemma 2.4, maximal spanning trees T and the augmented matrix A will play a
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crucial role. So you may want to have another look at (2.4.6), (2.4.7), and Proposi-
tion 2.2.

To provide a clear structure for an easier understanding, we divide the proof into
eight steps and give a brief overview. In the first step we calculate the flux response
vector Φ∗ in terms of the reactivity matrix R and the C-matrix. Step 2 makes use
of the Cramer rule and some calculation to reformulate the determinant of the
augmented matrix A. The third step just sets our goals in the new setting. We
need to consider two cases for the construction of a maximal spanning tree. Step
4 concerns itself with the general case and Step 5 uses the results to construct the
required exit and influence path. The easy case is shown in Step 6 and finishes
the only-if-direction of the theorem. We lay out the plan for the other direction in
step 7, in particular, we have to show that the reformulated det A is algebraically
nonzero. The eight step finally carries out the plan and closes the proof.

Step 1: For fixed j∗ ∈ E, we start with calculating the flux response vector Φ∗ =

(Φj ′j∗)j ′∈E to the perturbation vector ρ = e∗ =: ej∗ of the reaction j∗, see (2.2.4) -
(2.2.7). If we look at the concentration response δx∗ := (δxj

∗
m)m∈E of (2.2.8), we can

conclude by the implicit function theorem (2.2.5)

Se∗ + SRδx∗ = 0. (2.6.1)

We can rewrite this expression, according to the definition of the kernel matrix C
of the stoichiometric matrix S, as

e∗ + A

(
δx∗

µ∗

)
= e∗ + Rδx∗ + Cµ∗ = 0, (2.6.2)

for some suitable linear combination µ∗ of kernel vectors (ckj )j∈E of S. By defini-
tion (2.3.1) of the flux response, we can therefore conclude

Φ∗ = e∗ + Rδx∗ = −Cµ∗. (2.6.3)

By regularity assumption (2.2.3), the Jacobian f ′(x∗) = SR is invertible, and hence
A is invertible by Proposition 2.3, (2.5.15), too. Therefore, we can calculate the flux
response vector Φ∗ by solving (2.6.2) for µ∗ and insert the result in (2.6.3).

Step 2: Now we reformulate the determinant of the augmented matrix A. For this
purpose we use the Cramer rule and obtain

− µ∗k det A = (−1)M+k+j∗ det Ǎj∗,M+k, (2.6.4)
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for k = 1, . . . ,N. The matrix Ǎj∗,M+k is the augmented matrix A = (R, C) with
omitted row j∗ and column M+ k, which in fact is the k-th column of C. Now we
insert (2.6.4) into (2.6.3)

Φj ′j∗ det A = (Φ∗)j ′ det A

= (C · (−µ∗))j ′ det A

=

N∑
k=1

ckj ′ · (−µ∗k det A)

=

N∑
k=1

(−1)M+k+j∗ckj ′ · det Ǎj∗,M+k

= detAj ′j∗ ,

(2.6.5)

where the matrix Aj ′j∗ coincides with the augmented matrix A but with the re-
placement of the rows

row j∗ :
(
0 . . . 0 c1j ′ . . . cNj ′

)
; (2.6.6)

row j ′ :
(
rj ′1 . . . rj ′M 0 . . . 0

)
; (2.6.7)

for j ′ 6= j∗. In (2.6.6) and (2.6.7) we separated the first M columns of R = (rjm)

from the subsequent N columns of C = (ckj ) in A = (R, C). Let us provide some
explanations for the calculation in (2.6.5). After replacing row j∗ by (2.6.6), we
interpreted the sum in the third line as an expansion of det A with respect to row
j∗. The next step is subtracting row j∗ from row j ′ and afterwards replacing row
j ′ with (2.6.7), which finally yields detAj ′j∗ . In the case, j ′ = j∗ the replacement
(2.6.6) is sufficient to obtain Aj∗j∗ .

Step 3: To prove the flux response theorem 2.1, we need to show the equivalence
of the nonzero flux influence condition Φj ′j∗ 6= 0 with the path conditions (i) -
(iv). We start with the only-if-direction, so let us suppose Φj ′j∗ 6= 0. First thing
we note is that (2.6.5), together with assumptions Φj ′j∗ 6= 0 and det A 6= 0 im-
plies detAj ′j∗ 6= 0. Therefore, we can proceed with our algebraic analysis of
detAj ′j∗ 6= 0 analogously as in Lemma 2.4 regarding the analysis of det A 6= 0.
On the existence of a child selection map J : M → E, such that the mother map
m : E → M ∪ {0} is a left inverse m ◦ J = idM, we can insist. But we need that
the remaining N = E−M rows E \ J(M) of the C-part Cj ′j∗ of Aj ′j∗ form a cycle
basis of ker S, which is slightly more delicate due to the replacements (2.6.6) and
(2.6.7) in Aj ′j∗ . As mentioned before, hence we need to consider two cases now,
the general case j ′ 6= j∗ and the easy case j ′ = j∗, which we will see in Step 6.
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Step 4: We start with general case j ′ 6= j∗. For a nonzero contribution aJr
J to

detAj ′j∗ , the zero entries in (2.6.6) for the first M columns requires

j∗ 6∈ J(M). (2.6.8)

On the other hand, the zero entries in (2.6.7) in the right part, for the subsequent
N columns requires

j ′ ∈ J(M), (2.6.9)

and especially m ′ := m(j ′) ∈ M, thus m ′ 6= 0. However, the rest stays the same.
The remaining rows E \ J(M) of Aj ′j∗ correspond to the rows of A in

Jc := E \ J ′, with

J ′ := (J(M) \ {j ′})∪ {j∗}.
(2.6.10)

Since we modified matrix Aj ′j∗ , the child selection graph T := (M ∪ {0}, J(M)) is
not necessarily a maximal spanning tree, as it had been for A before. But if we
replace the child selection graph by

T ′ := (M∪ {0}, J ′), (2.6.11)

where J ′ excludes j ′ of T, and instead takes j∗ into account, then T ′ is a maximal
spanning tree, since detAj ′j∗ 6= 0 algebraically. However, we lose the property that
T ′ is defined by a child selection. Indeed, in case m ′ = m(j ′) 6= m∗ with m∗ 6= 0

T ′ possesses a single forward branch at the mother vertex m∗ = m(j∗).

Step 5: We next construct the exit path γ0 and the influence path γ ′. For this
purpose we use the edge directions in T ′ and consider the cases that j ′ 6= j∗ have
either the same mother vertex m∗ = m ′ 6= 0, the mother vertices are different and
both not 0, i. e., 0 6= m ′ 6= m∗ 6= 0, or they are different but one of them is the zero
vertex, m∗ = 0 6= m ′. If j ′ 6= j∗ have the same mother vertex m∗ = m ′ 6= 0, then
we choose the directed influence path γ ′ as the edge j ′ from vertex m∗ = m ′ to
m ′ = m(j ′). The exit path γ0 is the path from m∗ along j∗ to 0 procured in Lemma
2.4.

Then again, if the mother vertices m ′ and m∗ are different, and both different
from 0, i. e., 0 6= m ′ 6= m∗ 6= 0, the maximal spanning tree T ′ is in possession
of a single branch point at m∗. Since any other vertex m ∈ M of T ′ possesses a
unique outgoing arrow j = J(m), we can uniquely extend the two arising di-paths
γ∗ 3 j∗ and γJ 3 J(m∗) 6= j∗, which emanate from m∗. We just extend forward
by J in the acyclic tree T ′, as in T, until they either hit 0 or m ′, and by acyclicity
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of T ′, the di-paths cannot return to themselves. After starting at m∗, for the same
reason, the di-paths stay disjoint. By this means, only one of the di-paths leads
to 0, which we will set as exit di-path γ0. The other di-path, extended by j ′ but
omitting m ′ = m(j ′), reaches m ′. This is the influence di-path γ ′.

For the last case, m∗ = 0 6= m ′, we choose the exit di-path γ0 = {m∗} without
any edge. We let the influence di-path γ ′ start at m∗ = 0 along j∗ in T ′, following
the orientation of T, J, as before. Hence this path cannot terminate at 0, or else
it would create a cycle in T ′, which contradicts the acyclicity of T ′. Therefore it
terminates at m ′ and we can append j ′ again.

Step 6: We now turn to the easy case j ′ = j∗, with (2.6.6). We know that the
influence di-path γ ′ consists of the edge j∗ with mother vertexm∗. Since j∗ 6∈ J(M)

still holds, we have T ′ = T and thus acyclicity of T. To construct the exit di-path
γ0 63 j∗, we follow the edge J(m∗) 6= j∗ emanating from m∗ and leading along the
orientation of T ′ = T. This way, we reach the 0-vertex and obtain the exit di-path
γ0. So we just proved the only-if-direction of Theorem 2.1.

Step 7: For the converse if-direction, i. e., the necessity of Φj ′j∗ 6= 0, suppose the
existence of two disjoint paths γ0 fromm∗ = m(j∗) to 0, and γ ′ fromm∗ to j ′, such
that properties (i) - (iv) of Theorem 2.1 all hold for both paths. We only concern the
main case of j∗ and j ′ with distinct nonzero mother vertices m∗ = m(j∗) 6= m(j ′).
The other cases are straightforward, but lengthy.

By (2.6.5), if we show that detAj ′j∗ 6= 0 algebraically holds, this already implies
Φj ′j∗ 6= 0. So, equivalently, we also can construct a child selection map J : M →
E, which satisfies (2.6.8) and (2.6.9), such that T ′, defined as in (2.6.10), (2.6.11)
becomes a maximal spanning tree of the network Γ = (M∪ {0}, E).

Step 8: We start this construction by defining J(m) to be the unique edge j in
γ0 ∪γ ′ which emanated from the vertexm of γ0 ∪γ ′, except for vertexm ′ = m(j ′)
of j ′ and the mother vertex m∗ = m(j∗) of j∗. At m∗ we have two edges, namely
j∗ and one other such edge. To define J(m∗), we pick the other one. Thus, our
construction satisfies j∗ 6∈ J(M) and j ′ = J(m ′) ∈ J(M), as well as uniqueness
by properties (i), (ii) and (iv) of the di-paths γ0 and γ ′. Consider the remaining
vertices m ∈M. To complete the construction of J, we invoke Lemma 2.4. Thereby
we know that there exists a di-path γm from m to 0. By iteration on m, the di-path
γm extends J to all previous vertices on γm. For this purpose we terminate the
di-path γm as soon as it hits any vertex m0 where J has already been constructed,
at each step.
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On the one hand, γ0 ∪ (γ ′ \ {j ′}) is acyclic, by nonintersection property (iv) of γ ′

and assuming acyclicity before each induction step preserves acyclicity. On the
other hand, the path γm is acyclic, because γm starts at m, outside the previous
construction, and terminates on the first contact. Hence, it cannot create any new
undirected cycle. Therefore, by construction of J is the resulting graph T ′ acyclic.
Note that T ′ omits E−M = N edges. But dimH1 = N is the number of indepen-
dent cycles. According to Proposition 2.2, the subgraph T ′ is therefore a maximal
spanning tree. Finally, we can conclude that detΦj ′j∗ = detAj ′j∗ 6= 0 algebraically.
This completes the proof of Theorem 2.1.



3
C O N S T R A I N T S O N F L U X S E N S I T I V I T I E S

In this chapter, we provide a detailed introduction to the approach to flux sensitiv-
ity analysis by Shinar, Mayo, Ji and Feinberg [29, 30]. Specifically, we look at their
results on constraints on reciprocal flux sensitivities. In the first section we give ba-
sic definitions and concepts for chemical reaction networks. For a clear and precise
comparison of the approaches in the next chapter, we want to stay consistent in
the notation we use and therefore adopt the notation from Fiedler and Mochizuki,
which we discussed in the previous chapter. However, we will make comments on
the precise changes and also show the standard notation by Feinberg. We study
the flux control coefficient and the concentration control coefficient, as well as the
relation between them in the second section. In Section 3 we will state the main
result on flux sensitivities, after looking at a fundamental assumption of the the-
orem, the injectivity property of reaction networks. We give a commented proof
to the main result in the fourth section. The last section provides a computational
method to determine the control coefficients.

3.1 basic definitions for chemical reaction networks

As already mentioned, we deviate from the standard notation by Feinberg and
present this approach to flux sensitivity analysis in the notation from Chapter 2,
by Fielder and Mochizuki. For a full introduction to the theory and notation by
Feinberg see for example [7, 8].

When considering Feinberg’s notation for the theory of chemical reaction net-
works, we need to change our point of view on how to set up a vector associated
with the vertices or edges of a directed graph. Let I be a finite set, for example,
of edges or vertices. For his theory it is useful to associate {xi ∈ R | i ∈ I } as the
components of a vector x in the vector space of real-valued functions RI , having
domain I . Thus for x ∈ RI and i ∈ I , xi is the value assigned to i by x. We
denote the subset of RI which contains those functions that take only positive

31
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values as RI
+ , and for functions with nonnegative value as R̄I

+ . The symbol ln z,
for z ∈ RI

+ denotes the element of RI defined by

(ln z)i := ln zi, for all i ∈ I , (3.1.1)

componentwise. In the same way we define x ◦ x ′ for x, x ′ ∈ RI as the elements
of RI fulfilling

(x ◦ x ′)i := xix ′i, for all i ∈ I . (3.1.2)

And for each z ∈ RI
+ , we denote with 1

z the elements of RI
+ such that(

1

z

)
i

:=
1

zi
, for all i ∈ I . (3.1.3)

Let J be a subset of I . We denote the characteristic function on J as ωJ and
in particular if J is the singleton {j} ⊂ I , we write for brevity ωj instead of the
formal ω{j}. Hence, the standard basis for RI is the set {ωi ∈ RI | i ∈ I } and for
each x ∈ RI the representation x =

∑
i∈I xiωi arises naturally. Let x and x ′ be

elements of RI , we define the standard scalar product in RI in this setting as

x · x ′ =
∑
i∈I

xix
′
i. (3.1.4)

With respect to this scalar product, the standard basis of RI is orthonormal. Fur-
thermore, we consider RI carrying the norm and topology derived from the stan-
dard scalar product.

In Feinberg’s notation, a chemical reaction network {S , C , R} consists of three
finite sets:

(i) a set S of distinct species of the network;

(ii) a set C ⊂ R̄S
+ of distinct complexes of the network;

(iii) a set R ⊂ C ×C of distinct reactions, with the following properties:

(a) (y,y) 6∈ R for any y ∈ C ;

(b) for each y ∈ C there exists y ′ ∈ C such that (y,y ′) ∈ R or such that
(y ′,y) ∈ R.

We say that a complex y reacts to a different complex y ′, in symbols

y // y ′ , (3.1.5)



3.1 basic definitions for chemical reaction networks 33

if the ordered pair (y,y ′) is a member of the reaction set R. As before, we call
the complex at the tail of a reaction arrow the reactant and the complex at the
head of a reaction arrow the product. For more clearness, we will abbreviate ωs
for s ∈ S with s itself, and thus view RS as the vector space of all formal sums
of species s ∈ S . Consider for example two species A and B, which build the
complex y = ωA+ 2ωB, henceforward we denote this complex as y = A+ 2B and
take it as member of RS .

The stoichiometric coefficient is the nonnegative number ys ∈ R+ of species that
participate in a complex y ∈ RS

+ . In our example the stoichiometric coefficient of
the species A is one and the stoichiometric coefficient of B is two.

A reaction diagram of a chemical reaction network is constructed such that each
complex appears precisely once and a reaction from one complex to another is
indicated by an arrow (3.1.5). The zero complex 0, in which all stoichiometric
coefficients are zero, is a special complex that can appear in a reaction network. It
acts as a tool to describe the input and the output of a chemical system. A detailed
introduction into the use of the zero complex can be found in [7].

To adopt the notation by Fiedler and Mochizuki, there are just a few essential
changes. The set S of distinct species swill be replaced by the set M of metabolites
m. We writeM := |M| for the total number of metabolites. Furthermore, we denote
the unit vector ωs ∈ RS of any nonzero species s as the m-th unit vector Xm ∈
RM, and hence write RM for the corresponding vector space instead of RS . A
complex y ∈ C is a linear combination of unit vectors Xm with stoichiometric
coefficients ym, so we denote the vector y as

y1X1 + · · ·+ yMXM = y ∈ RM. (3.1.6)

The zero complex, which has ym = 0 for all m ∈ M, will eventually be denoted
as 0 ∈ RM. Note that the zero complex is distinct from the metabolites m ∈ M.
A reaction y // y ′ ∈ R will now be denoted as j ∈ E, where E is the set of
reactions with total number E := |E|. Since each reaction j ∈ E of a network is
represented by a arrow in the corresponding diagram, E may also be called the set
of reaction arrows. The elements j ∈ E represent the reactions

y
j
1X1 + · · ·+ y

j
MXM

// ȳj1X1 + · · ·+ ȳ
j
MXM , (3.1.7)

where yj, ȳj ∈ RM are suitable nonnegative real coefficient vectors with compo-
nents yjm and ȳjm, respectively. To address the tail of a reaction arrow j ∈ E, i. e.,
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the reactant complex we conventionally use m(j) = yj, and m(j) = ȳj for the head
of the arrow j, i. e., the product complex. In summary, we replace the notation of
the chemical reaction network {S , C , R} by the sets M of metabolites m and E of
reactions j.

Henceforth, we state all definitions in the new setting. We say that a complex
y ∈ RM ultimately reacts to another complex ȳ ∈ RM if one of the following
conditions hold true:

(i) yj // ȳj , i. e., j ∈ E exists;

(ii) there exists a sequence of complexes y ′,y ′′, . . . ,y(k) ∈ RM such that

y // y ′ // y ′′ // . . . // y(k) // ȳ . (3.1.8)

In this sense, we call a reaction network weakly reversible if for each y, ȳ ∈ RM,
y ultimately reacts to ȳ implies that ȳ ultimately reacts to y, and reversible if
ȳj // yj whenever yj // ȳj , j ∈ E. Therefore, any reversible reaction net-

work is also weakly reversible. For example consider the simple network

A // B

��
C

__

which is weakly reversible but not reversible. Note that a weakly reversible net-
work possesses the property that any arrow resides in a cycle of arrows in the
corresponding diagram.

The difference of product complex ȳj ∈ RM and reactant complex yj ∈ RM of a
reaction j ∈ E is called reaction vector, and is also an element in RM. The set of
all reaction vectors is denoted as

{ȳj − yj ∈ RM | j ∈ E}. (3.1.9)

The rank of the set of reaction vectors denotes also the rank of the reaction network
itself. The linear subspace of RM defined by the linear hull of all reaction vectors,
i. e.,

S := span {ȳj − yj ∈ RM | j ∈ E} (3.1.10)

is called the stoichiometric subspace S of a reaction network. Notable is that the
dimension of S coincides with the rank of the network.



3.1 basic definitions for chemical reaction networks 35

We call the number of distinct parts of a reaction network, i. e., sets of complexes
that are not linked by a reaction, the linkage class l of the network. This definition
will be clear if we consider the following example:

A+B // C

D E+ Foo ))
Gjj

Here the network consists of the two distinct complex sets {A+ B,C} and {D,E+
F,G} and thus has linkage class l = 2.

The deficiency of a network, introduced by Feinberg to classify reaction networks,
is defined by

δF := n− l− s, (3.1.11)

where n is the number of complexes in the network, l the linkage class, and s the
rank of the network. Note that the deficiency is an nonnegative integer. For a more
detailed introduction see [7, 8].

A mixture state will conventionally be represented by a composition vector x =

(xm)m∈M ∈ R̄M+ , with nonnegative components xm understood as the molar con-
centrations for m ∈ M. We say that a reaction network is a mass action system if
we equip the reaction network with a positive element k = (kj)j∈E ∈ RE+. The com-
ponents kj are the rate constants for the reactions j ∈ E. The ordinary differential
equation of a mass action system is given as

ẋ = f(x,k), (3.1.12)

where f : R̄M+ ×RE+ → S is the mass action rate function, defined by

f(x,k) :=
∑
j∈E

kjx
yj(ȳj − yj) (3.1.13)

with
xy

j

:=
∏
m∈M

(xm)y
j
m . (3.1.14)

The mass action rate function is determined by the network and in this sense a
network attribute. Another point of view on the mass action rate function is to fix
the reaction rate vector k ∈ RE+. This induces a map r : R̄M+ → S defined by

r(x) := f(x,k), (3.1.15)
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where r is called the species formation rate function.

By virtue of (3.1.12) - (3.1.14), we observe that in every point, ẋ invariably lies in the
stoichiometric subspace S of the corresponding reaction network. Therefore, if we
consider a solution curve of ODE (3.1.12), the difference of any two compositions
x, x ′ ∈ R̄M+ along these curve will remain in S. We say that two compositions x
and x ′ in R̄M+ are stoichiometrically compatible if

x ′ − x ∈ S, (3.1.16)

i. e., if composition x can follow x ′ along the same solution curve. Stoichiometric
compatibility is an equivalence relation, which partitions R̄M+ into equivalence
classes, called stoichiometric compatibility classes. For example, the stoichiometric
compatibility class which contains the composition x is given by

(x+ S)∩ R̄M+ = {x ′ ∈ R̄M+ | x ′ − x ∈ S}. (3.1.17)

To check for stoichiometrically compatibility, we can use the following conser-
vation condition. Let us define the orthogonal complement with respect to the
standard scalar product in R̄M+ of the stoichiometric subspace S by S⊥. Denote the
dimension of S⊥ as dimS⊥ = p. If {O1, . . . Op} is an arbitrary basis of S⊥, we can
use the conservation condition

Oi · x = Oi · x ′, for all i = 1, . . . ,p (3.1.18)

to verify that two compositions x, x ′ ∈ R̄M+ are stoichiometrically compatible.

A positive equilibrium of the network is a point (x,k) ∈ RM+ ×RE+, satisfying
f(x,k) = 0. The set of all positive equilibria is denoted as

E := {(x,k) ∈ RM+ ×RE+ | f(x,k) = 0}. (3.1.19)

For a fixed composition x∗ ∈ RM+ we define a scalar product ∗ in RM by

x ∗ x ′ := x · ( 1
x∗
◦ x ′) ≡

∑
m∈M

xmx
′
m

x∗m
. (3.1.20)

This scalar product will be useful in the following definition of the linear transfor-
mation T∗η. Let S be the stoichiometric subspace of the reaction network and fix
x∗ ∈ RM+ , η ∈ RE+. The linear map T∗η : S→ S is defined by

T∗ησ :=
∑
j∈E

ηj(y
j ∗ σ)(ȳj − yj), (3.1.21)
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where ∗ is the scalar product corresponding to x∗ as defined in (3.1.20).

Before we close the section, let us provide an example to illustrate most of the
definitions. Consider the reaction network

2A+B

1
$$
C

2

dd

with metabolites M = {A,B,C} and edges E = {1, 2}. The complexes of the net-
work are 2A+ B and C and the set of all reaction vectors is given by {2A+ B−

C,C − 2A − B}. The stoichiometric subspace for the network is the one dimen-
sional subspace spanned by 2A+ B−C, and thus the rank of the network is one.
Furthermore, the network is reversible and has just one linkage class, which con-
tains all complexes. Hence the network has the deficiency δF = 2− 1− 1 = 0. The
corresponding ODE for the network, according to (3.1.12) - (3.1.14) is given by

ẋA = −2k1x
2
AxB + 2k2xC,

ẋB = −k1x
2
AxB + k2xC,

ẋC = k1x
2
AxB − k2xC.

3.2 flux - and concentration control coefficients , and their

relation

In this section, we establish the fundamental concepts of the flux control coef-
ficients and the concentration control coefficients, as well as a relation between
them. Beforehand, in order to define the control coefficients properly, we give con-
ditions for the existence of local functions that map rate constant vectors to unique
network equilibria. Furthermore, we provide some technical preliminaries, which
are required for the main result in the next chapter.

Consider a mass action network with metabolites m ∈M and reactions j ∈ E and
let the positive state (x∗,k∗) ∈ RM+ ×RE+ be fixed. We define the positive element
κ ∈ RE+ by

κ :=
∑
j∈E

k∗j (x
∗)y

j

ej, (3.2.1)

where ej denotes the j-th unit vector in RE and yj the reactant of the reaction
j. Therefore, whenever the mass action system with rate constant vector k∗ is
observed at composition x∗, the flux through reaction j ∈ E is equal to κj.
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Proposition 3.1 (Shinar, Mayo, Ji & Feinberg). Let S be the stoichiometric subspace of
the mass action network with metabolite set M and edge set E. Suppose that (x∗,k∗) ∈ E

is a positive network equilibrium. If the map T∗κ : S→ S is nonsingular, then there exists
an open set K ⊂ RE+ containing k∗, an open set C ⊂ (x∗ + S) ∩RM+ containing x∗, and
a unique differentiable function x̂ : K→ C such that x∗ = x̂(k∗) and

(x,k) ∈ E∩ (C×K) if, and only if, x = x̂(k). (3.2.2)

By an open set C ⊂ (x∗ + S) ∩RM+ we mean open in the relative topology that
x∗ + S inherits from RM+ .

Proof. We restrict the mass action function f to the domain (x∗ + S)∩RM+ in RM+ ,
i. e., f̂ : ((x∗ + S)∩RM+ )×RE+ → S. The assumption (x∗,k∗) ∈ E implies

f̂(x∗,k∗) = 0. (3.2.3)

We can view (x∗ + S) ∩RM+ , RE+ and S as smooth manifolds, and note that the
tangent subspace to (x∗ + S) ∩RM+ at x∗ can be identified with S. We define the
partial derivative dcf̂(x∗,k∗) : S→ S by

dcf̂(x∗,k∗)σ =
df̂(x∗ + θσ,k∗)

dθ

∣∣∣∣∣
θ=0

, for all σ ∈ S. (3.2.4)

By direct calculation, we see that (3.2.4) is identical to T∗κ. Since T∗κ is nonsingular,
by assumption, we can apply the implicit function theorem, which provides us
with the existence of an open set K ⊂ RE+ containing k∗ and an open set C ⊂ (x∗+
S)∩RM+ containing x∗. We also obtain a unique differentiable function x̂ : K→ C

such that x∗ = x̂(k∗), and (x,k) ∈ C × K, f̂(x,k) = 0 if, and only if, x = x̂(k).
In addition, we note that (x,k) ∈ C × K and f̂(x,k) = 0 holds if, and only if,
(x,k) ∈ E∩ (C×K). This proves the proposition.

Let the setting as in Proposition 3.1. We define the function x̄ : lnK→ C by

x̄(lnk) = x̂(k). (3.2.5)

Note that x̄ is a composition of differentiable functions and thus is differentiable,
too. Furthermore, by (3.2.2) and (3.2.5) we have

(x,k) ∈ E∩ (C×K) if, and only if, x = x̄(lnk). (3.2.6)



3.2 flux - and concentration control coefficients , and their relation 39

Another map that we shall interested in is ¯K : lnK→ RE+, given by

¯K (lnk) =
∑
j∈E

kj(x̄(lnk))y
j

ej. (3.2.7)

¯K is a differentiable function, because it can be expressed as a composition of
differentiable functions. We want to emphasize that ¯Kj(lnk) corresponds to the
flux through reaction j ∈ E if the mass action system is at the positive equilibrium
x̄(lnk). Hence, by (3.2.1), we have the equivalence

¯Kj(lnk∗) ≡ κj, for all j ∈ E. (3.2.8)

Finally, we define the differentiable maps

ln x̄ : lnK→ RE by ln x̄(lnk) = ln(x̄(lnk)), (3.2.9)

ln ¯K : lnK→ RE by ln ¯K (lnk) = ln( ¯K (lnk)). (3.2.10)

Now we are able to give a precise definition of the control coefficients. Let (x∗,k∗) ∈
E be a fixed positive network equilibrium. Suppose that the map T∗κ : S → S is
nonsingular. Then the concentration control coefficient for each m ∈M and j∗ ∈ E
is the partial derivative

∂ ln x̄m
∂ lnkj∗

(lnk∗). (3.2.11)

And for each ordered pair (j ′, j∗) ∈ E×E we denote the corresponding flux control
coefficient by

∂ ln ¯Kj ′

∂ lnkj∗
(lnk∗). (3.2.12)

Thus, the flux control coefficient indicates the fractional change in the flux through
reaction j ′ ∈ E due to variation in the rate constant of reaction j∗, evaluated at k∗.

By direct computation (3.2.9) - (3.2.12) imply that for each j∗ ∈ E the following
equations hold true:

∂ ln ¯Kj∗

∂ lnkj∗
(lnk∗) = yj

∗ ∗ ∂x̄

∂ lnkj∗
(lnk∗) + 1 =

∑
m∈M

yj
∗
m

∂ ln x̄m
∂ lnkj∗

(lnk∗) + 1,

∂ ln ¯Kj ′

∂ lnkj∗
(lnk∗) = yj

′ ∗ ∂x̄

∂ lnkj∗
(lnk∗) =

∑
m∈M

yj
′
m

∂ ln x̄m
∂ lnkj∗

(lnk∗), for all j ′ ∈ E \ {j∗}.

(3.2.13)
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Relation (3.2.13) will be a crucial tool in the proof of the main result in Section 3.4.

The other main tool will be a intriguing relation between the control coefficients,
which we are going to derive now. For a reaction network with positive equilib-
rium (x∗,k∗) ∈ E and nonsingular map T∗κ : S→ S, we combine (3.1.13), (3.1.19),
(3.2.6), and (3.2.7) to obtain ∑

j∈E

¯Kj(lnk)(ȳj − yj) = 0, (3.2.14)

for every k ∈ K. Furthermore, we take the derivative of (3.2.14) with respect to
each component of lnk, and evaluate the result at lnk∗. We note that

∂ ¯Kj∗

∂ lnkj ′
(lnk∗) = κj∗

∂ ln ¯Kj∗

∂ lnkj ′
(lnk∗), (3.2.15)

for all j ′, j∗ ∈ E, and use the relation (3.2.13) to finally obtain

κj∗

(
yj
∗ ∗ ∂x̄

∂ lnkj∗
(lnk∗) + 1

)
(ȳj

∗
− yj

∗
)

+
∑

j ′∈E\{j∗}

κj ′

(
yj
′ ∗ ∂x̄

∂ lnkj∗
(lnk∗)

)
(ȳj

′
− yj

′
) = 0 (3.2.16)

for each j ′ ∈ E.

3.3 constraints on flux sensitivities for injective networks

This section concerns itself with the main result of the approach, the constraints
on reciprocal flux sensitivities in injective mass action networks. The necessary
injectivity assumption is a network property, which we investigate beforehand.

Let us start with the bare definition of injectivity for chemical reaction networks.

Definition 3.2 (Injectivity property). We call a network injective if for each k ∈ RE+
and for each choice of distinct stoichiometrically compatible compositions x, x ′ ∈ RM+ ,

f(x,k) 6= f(x ′,k), (3.3.1)

holds true.
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Thus, injectivity is a network property that, regardless of the rate constants, pre-
cludes two different stoichiometrically compatible compositions to give rise to
production rates that, metabolite-wise, are completely identical.

In other words, the network is not injective if, and only if, there exist k ∈ RE+ and
two different stoichiometrically compatible compositions x, x ′ ∈ RM+ such that

f(x,k) = f(x ′,k). (3.3.2)

So noninjectivity is a necessary condition for the existence of a mass action system
which possesses multiple equilibria in the same positive stoichiometric compati-
bility class. Therefore, the concept of injectivity is closely related to the uniqueness
of positive equilibria.

We next want to provide an equivalent definition of injectivity that makes use of
the linear transformation T∗η, see (3.1.21). Let S be the stoichiometric subspace of
the reaction network. The network is injective if, for every choice of η ∈ RE+ and
for every choice of x∗ ∈ RM+ the map T∗η : S→ S is nonsingular.

To verify injectivity of a specific network is a more involved matter. One graph
theoretic approach to ascertain injectivity in the case of fully open networks, in
which for each metabolite m the degradation reaction m // 0 belongs to E,
utilizes the species reaction (SR) graph. For a detailed introduction see [28].

Furthermore, for an injective reaction network and a positive equilibrium (x∗,k∗) ∈
E we note that the element ∂x̄

∂ lnkj
(lnk∗) lies in S for each j ∈ E. Indeed, the im-

age of x̄ : lnK → C lies in x∗ + S, implying for each k ∈ K that the difference
x̄(lnk) − x̄(lnk∗) is contained in S. Thus, all partial derivatives of x̄ must lie in S,
too.

We are now ready to state the main result of the approach by Shinar, Mayo, Ji and
Feinberg, the Reciprocity Theorem, which we will compare with the main result
of the approach by Fiedler and Mochizuki in the next chapter.
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Theorem 3.3 (Reciprocity Theorem; Shinar, Mayo, Ji & Feinberg). Consider an injec-
tive mass action network with metabolite set M and edge set E. At each positive network
equilibrium (x∗,k∗) ∈ E the following relations hold:

(i) For each reaction j∗ ∈ E,

0 6
∂ ln ¯Kj∗

∂ lnkj∗
(lnk∗) 6 1. (3.3.3)

(ii) For each pair of distinct reactions j ′ ∈ E and j∗ ∈ E,

− 1 6
∂ ln ¯Kj ′

∂ lnkj∗
(lnk∗) 6 1 or − 1 6

∂ ln ¯Kj∗

∂ lnkj ′
(lnk∗) 6 1. (3.3.4)

In other words, if we consider the flux sensitivity matrix for any positive network
equilibrium of an injective mass action network, all of the diagonal elements are
nonnegative and bounded from above by 1, and for each pair of reciprocal non-
diagonal elements at least one entry lies between −1 and 1. Particularly in the
nondiagonal case, this provides us with the information that one large entry, i. e.,
greater 1, implies that his reciprocal partner is small, i. e., less or equal to 1.

We want to emphasize again that the injectivity assumption is a condition imposed
on the network structure alone, and thus the conclusions of the theorem will hold
for each positive equilibrium. Also we will see an example in Section 3.5, which
shows that the injectivity requirement is necessary and can not be weakened.

3.4 proof of the main result

Now we are going to prove the Reciprocity Theorem 3.3. The proof is divided
into two propositions, one for each case (i) and (ii) of the Reciprocity Theorem.
To prove the propositions we take advantage of (3.2.13) and (3.2.16), as well as a
lemma, which we state beforehand. Finally, a corollary of the second proposition
will complete the proof of Theorem 3.3.

Let M be the metabolite set and E the reaction set of an injective reaction network,
with stoichiometric subspace S. Let the positive network equilibrium (x∗,k∗) ∈ E

be fixed. Suppose that E ′ is a non-empty subset of E. For brevity we define the
vector σE ′ by

σE ′(k
∗) :=

∑
j∈E ′

∂x̄

∂ lnkj
(lnk∗). (3.4.1)
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Note that σE ′(k
∗) lies in S, since it is a sum of ∂x̄

∂ lnkj
(lnk∗).

Lemma 3.4 (Shinar, Mayo, Ji & Feinberg). Let (x∗,k∗) ∈ E be a fixed, positive equi-
librium of the injective mass action network with metabolite set M and reaction set E.
Suppose that E ′ is a non-empty subset of E. Then there exists a reaction j∗ ∈ E ′ such that

− 1 6 yj
∗ ∗ σE ′(k

∗) 6 0. (3.4.2)

Proof. By the injectivity assumption, we know that the map T∗κ is nonsingular.
Thus, we can use (3.2.16) for each j∗ ∈ E ′ and obtain with (3.4.1)∑

j∈E ′
κj(y

j ∗ σE ′(k
∗) + 1)(ȳj − yj) +

∑
j∈E\E ′

κj(y
j ∗ σE ′(k

∗))(ȳj − yj) = 0. (3.4.3)

Suppose that (yj ∗σE ′(k
∗)+ 1) 6∈ [−1, 0] for each j ∈ E ′. Then there exists a positive

number ρj such that

yj ∗ σE ′(k
∗) + 1 = ρj(y

j ∗ σE ′(k
∗)) 6= 0, (3.4.4)

for each j ∈ E ′. Plugging (3.4.4) into (3.4.3) yields∑
j∈E ′

(κjρj)(y
j ∗ σE ′(k

∗))(ȳj − yj) +
∑
j∈E\E ′

κj(y
j ∗ σE ′(k

∗))(ȳj − yj) = 0. (3.4.5)

We define η̄ ∈ RE+ by
η̄ :=

∑
j∈E ′

(κjρj)ej +
∑
j∈E\E ′

κjej (3.4.6)

where ej is the j-th unit vector in RE. Combining (3.1.21), (3.4.5), and (3.4.6), pro-
vides us with

σE ′(k
∗) ∈ ker T∗η̄. (3.4.7)

Furthermore, by the inequality in (3.4.4) we know that σE ′(k
∗) 6= 0, and thus the

map T∗η̄ is singular. But this contradicts the injectivity assumption.

The following proposition shows the first part of the Reciprocity Theorem 3.3.

Proposition 3.5 (Shinar, Mayo, Ji & Feinberg). Let the setting as in Lemma 3.4. Then
for each j∗ ∈ E

0 6
∂ ln ¯Kj∗

∂ lnkj∗
(lnk∗) 6 1. (3.4.8)



44 constraints on flux sensitivities

Proof. Fix the reaction j∗ ∈ E, and let E ′ = {j∗}. By (3.4.1), we have

σE ′(k
∗) =

∂x̄

∂ lnkj∗
(lnk∗). (3.4.9)

Since Lemma 3.4 holds, we can plug the first equation of (3.2.13) and (3.4.9) into
(3.4.2) to obtain (3.4.8), and prove the proposition.

We next show the second property of Theorem 3.3 with the following proposition.

Proposition 3.6 (Shinar, Mayo, Ji & Feinberg). Let the setting as in Lemma 3.4. Sup-
pose that E ′ is a subset of E containing at least two reactions. Then there exists a reaction
j∗ ∈ E ′ such that

− 1 6
∑

j∈E ′\{j∗}

∂ ln ¯Kj∗

∂ lnkj
(lnk∗) 6 1. (3.4.10)

Proof. According to Lemma 3.4 there exists a reaction j∗ ∈ E ′ such that (3.4.2)
holds. By plugging (3.4.1) into (3.4.2) we obtain

− 1 6 yj
∗ ∗ ∂x̄

∂ lnkj∗
(lnk∗) +

∑
j∈E ′\{j∗}

yj
∗ ∗ ∂x̄

∂ lnkj
(lnk∗) 6 0. (3.4.11)

If we further use (3.2.13), the equation (3.4.11) becomes

0 6
∂ ln ¯Kj∗

∂ lnkj∗
(lnk∗) +

∑
j∈E ′\{j∗}

∂ ln ¯Kj∗

∂ lnkj
(lnk∗) 6 1. (3.4.12)

By Proposition 3.5 we can use (3.4.8) in addition to (3.4.12) to obtain (3.4.10), and
close the proof of the proposition.

Finally, the following corollary completes the proof of Theorem 3.3.

Corollary 3.7 (Shinar, Mayo, Ji & Feinberg). Let the setting as in Lemma 3.4. Then for
each pair of distinct reactions j ′ ∈ E and j∗ ∈ E,

− 1 6
∂ ln ¯Kj∗

∂ lnkj ′
(lnk∗) 6 1 or − 1 6

∂ ln ¯Kj ′

∂ lnkj∗
(lnk∗) 6 1. (3.4.13)

Proof. Let j ′ ∈ E and j∗ ∈ E be two distinct reactions, and let E ′ = {j ′, j∗}. Applying
Proposition 3.6 to E ′ shows the corollary.
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3.5 a method to compute the control coefficients

We provide a method to compute the control coefficients in this section and use
it to give an example which shows that the injectivity requirement is essential.
Through the whole section we consider a reaction network with metabolite set M,
reaction set E, and stoichiometric subspace S. We further suppose that (x∗,k∗) ∈
E is a positive equilibrium of the network, and that the map T∗κ : S → S is
nonsingular.

Since for each reaction j ∈ E the element ∂x̄
∂ lnkj

(lnk∗) lies in S, we can rewrite
(3.2.16) as follows

T∗κ

(
∂x̄

∂ lnkj
(lnk∗)

)
= −κj(ȳ

j − yj) 6= 0, (3.5.1)

where the inequality holds, because κ ∈ RE+ is positive and by definition ȳj−yj 6=
0 if j ∈ E. The assumption that T∗κ is nonsingular guarantees a unique solution
for the vector ∂x̄

∂ lnkj
(lnk∗). We can rewrite

∂ ln x̄m
∂ lnkj

(lnk∗) =
1

x∗m

∂x̄m

∂ lnkj
(lnk∗), (3.5.2)

for every m ∈ M and j ∈ E. Therefore, the equations (3.5.1) and (3.5.2) uniquely
determine the concentration control coefficient (3.2.11). By virtue of (3.2.13), we
obtain the flux control coefficient, uniquely, as well.

For a computational method we recast (3.5.1) in a form that suits this purpose. Let
{σ1, . . . ,σs} be an orthonormal basis for S, with s := dimS and the standard scalar
product in RM. As abbreviation, we define for each j ∈ E and i ∈ {1, . . . , s}

ai(j,k∗) := σi ·
∂x̄

∂ lnkj
(lnk∗), (3.5.3)

bi(j) := σ
i · (ȳj − yj). (3.5.4)

Furthermore, we can use the orthonormal basis {σ1, . . . ,σs} to get a unique repre-
sentation of the vectors ∂x̄

∂ lnkj
(lnk∗) ∈ S and ȳj − yj ∈ S for each j ∈ E as

∂x̄

∂ lnkj
(lnk∗) =

s∑
l=1

al(j,k∗)σl, (3.5.5)

ȳj − yj =

s∑
k=1

bk(j)σ
k. (3.5.6)
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Combining (3.1.21), (3.5.1) and the representations (3.5.5), (3.5.6) we obtain for
each j ∈ E the linear system

A∗κa(j,k∗) = −κjb(j), (3.5.7)

where the real s× s matrix A∗κ is defined by

(A∗κ)kl :=
∑
j∈E

κj(σ
l ∗ yj)bk(j). (3.5.8)

The vectors a(j,k∗) and b(j) are defined for every j ∈ E in the obvious way:

a(j,k∗) := (a1(j,k∗), . . . ,as(j,k∗))
T , (3.5.9)

b(j) := (b1(j), . . . ,bs(j))
T . (3.5.10)

We just derived a matrix representation A∗κ of the nonsingular linear map T∗κ
regarding the basis {σ1, . . . ,σs} of S. Therefore, A∗κ is nonsingular too. Hence, the
inverse A−1

∗κ exists and we can solve the linear system (3.5.7) by multiplying with
it. For each j ∈ E we obtain

a(j,k∗) = −κjA
−1
∗κ b(j). (3.5.11)

Pulling all the parts together, in particular (3.5.11), (3.5.2), (3.5.5), and (3.5.6), we
obtain an expression that is able to compute the concentration control coefficient
with input of the precise numerical data. For each j ∈ E the formula

∂ ln x̄m
∂ lnkj

(lnk∗) =
1

x∗m

s∑
l=1

al(j,k∗)(σl)m (3.5.12)

holds. The flux control coefficient can be computed using (3.2.13) together with
(3.5.12).

We next show an example of a simple mass action network, which can admit two
positive equilibria in the same stoichiometric compatibility class for each choice of
rate constants. In other words, we look at a reaction network that is not injective.

2A+B
1 // 3A

A
2 // B
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The set of reaction vectors consists of the vectors A− B and B−A, and thus the
stoichiometric subspace S is one dimensional. We choose the single vector

σ1 =
1√
2
(B−A)

as the basis orthonormal basis of S. For b(j) we get according to (3.5.4) and (3.5.10)

b(1) = −
√
2,

b(2) =
√
2.

Suppose that (x∗,k∗) ∈ E is a positive equilibrium of the network. The equilibrium
flux κj corresponding to (x∗,k∗) through reaction j is given by κj = k∗j (x

∗)y
j
, and

since f(x∗,k∗) = 0 holds for an equilibrium, we have that the equilibrium fluxes
for both reactions are equal, i. e.,

κ1 = κ2.

We next calculate the A∗κ matrix, which, by virtue of (3.5.7) and (3.5.8), consists
only of one entry. We have

A∗κ = κ2

(
1

x∗A
−
1

x∗B

)
.

In order to obtain an invertible A∗κ matrix, we assume x∗A 6= x∗B. Inverting our
matrix yields

A−1
∗κ =

1

κ2

(
1
x∗A

− 1
x∗B

) .

By (3.5.9) and (3.5.11), we have

a(1,k∗) =
√
2

1
x∗A

− 1
x∗B

,

a(2,k∗) =
−
√
2

1
x∗A

− 1
x∗B

.
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Finally, we can use (3.5.12) to get the concentration control coefficients:

∂ ln x̄A
∂ lnk1

(lnk∗) =
1

x∗A
x∗B

− 1
,

∂ ln x̄B
∂ lnk1

(lnk∗) =
1

x∗B
x∗A

− 1
,

∂ ln x̄A
∂ lnk2

(lnk∗) =
−1

x∗A
x∗B

− 1
,

∂ ln x̄B
∂ lnk2

(lnk∗) =
−1

x∗B
x∗A

− 1
.

By (3.2.13), we can further compute the flux control coefficients as:

∂ ln ¯K1
∂ lnk1

(lnk∗) =
1

x∗A
x∗B

− 1
,

∂ ln ¯K1
∂ lnk2

(lnk∗) =

x∗A
x∗B

− 2

x∗A
x∗B

− 1
,

∂ ln ¯K2
∂ lnk1

(lnk∗) =
1

x∗A
x∗B

− 1
,

∂ ln ¯K2
∂ lnk2

(lnk∗) =

x∗A
x∗B

− 2

x∗A
x∗B

− 1
.

Let ε be positive and much smaller than 1, and suppose that k∗1 = 1
1−ε , k∗2 = 1,

x∗A = 1− ε, and x∗B = 1. Hence, (x∗,k∗) is a positive equilibrium of our example.
The flux control coefficients for this particular choice are

∂ ln ¯K1
∂ lnk1

(lnk∗) =
−1

ε
,

∂ ln ¯K1
∂ lnk2

(lnk∗) =
1+ ε

ε
,

∂ ln ¯K2
∂ lnk1

(lnk∗) =
−1

ε
,

∂ ln ¯K2
∂ lnk2

(lnk∗) =
1+ ε

ε
.
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Both diagonal flux control coefficient are greater than 1, and thus violate the first
part of the Reciprocity Theorem 3.3, to lie in the range [0, 1]. Furthermore, the recip-
rocal off-diagonal flux control coefficients lie outside the interval [−1, 1], violating
the second part of the theorem. Therefore, we see that the injectivity requirement
of the Reciprocity Theorem is crucial and can not be omitted.





4
C O M PA R I S O N O F B O T H A P P R O A C H E S T O F L U X
S E N S I T I V I T Y A N A LY S I S

After the detailed introductions into the approaches to flux sensitivity analysis by
Fiedler and Mochizuki [11, 22] in Chapter 2, and by Shinar, Mayo, Ji and Feinberg
[29, 30] in Chapter 3, we are now ready to compare both theories. For this purpose
we start by comparing basic definitions and similar elements of both approaches
in the first section. This way, we also provide a short recall of the basic princi-
ples and ideas from the previous two chapters. The second section compares the
assumptions on reaction networks, and also gives detailed explanations on the
restrictions they impose. Thus, we will investigate the limitations and the scope
of both approaches. Section 3 contributes insight in the construction of the flux
sensitivities. Finally, we will compare the main results of both approaches to flux
sensitivity analysis and give an example of a simple reaction network that we
examine in detail to illustrate the theorems.

4.1 basic definitions and similar elements of both approaches

In this section we compare the basic principles and similar elements of both ap-
proaches. Thus, we also provide a short recall of the basic definitions. For a de-
tailed introduction see Chapter 2 for the approach by Fiedler and Mochizuki, and
Chapter 3 for the approach by Shinar, Mayo, Ji and Feinberg.

We start with the most basic definition, the chemical reaction network itself. A
reaction network in Feinberg’s notation consists of three finite sets: a set of species
S , a set of complexes C ⊂ R̄S

+ , and a set of reactions R ⊂ C × C . If the ordered
pair (y, ȳ) is a member of the reaction set R, we say that the complex y reacts to a
different complex ȳ , in symbols y // ȳ . We can construct a reaction diagram
of the network such that each complex appears precisely once and a reaction from
one complex to another is indicated by an arrow. A special complex that may
appear in the network is the zero complex, in which all stoichiometric coefficients
are zero.

51
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Fiedler and Mochizuki attempt the construction of the reaction diagram directly.
They define the equivalent of the species set S , the set of metabolites m ∈ M as
the set of all vertices in the reaction network, excluding the zero vertex. The to-
tal number of metabolites is denoted as M := |M|. Since the theory by Fiedler
and Mochizuki only concerns monomolecular reaction networks, there are no
complexes, other than the metabolites themselves. But a complex can easily be
written as the linear combination of unit vectors Xm ∈ RM with nonnegative
stoichiometric coefficients ym as y1X1 + · · ·+ yMXM = y ∈ RM. The set of all
reactions R is represented by the edge set E, since each reaction j : mj //mj ;
mj,mj ∈ M ∪ {0} appears precisely once as a edge in the reaction diagram. The
total number of edges is denoted as E := |E|.

We can conclude that the graph representation of a monomolecular reaction net-
work from the approach by Fiedler and Mochizuki coincides with the graphs on
reaction complexes given by the theory from Feinberg, since each complex, respec-
tively vertex, appears precisely once in the diagram and any ordered pair of them
is connected by at most one arrow.

Furthermore, the view on the zero complex is basically the same. In both theories,
the zero complex, respectively the zero vertex, appears in the diagram as a tool
to describe feed reactions and exit reactions in the model of the chemical system.
In fact, the zero vertex from the theory by Fiedler and Mochizuki is motivated by
Feinberg’s zero complex. However, there are differences in the implementation of
the zero complex into the approaches. Feinberg just views the zero complex as a
complex, in which all stoichiometric coefficients are zero, and thus as 0 ∈ RS , not
extending the dimension of RS . In contrast, Fielder and Mochizuki regard the
zero vertex as a additional vertex, extending the metabolite set, i. e., M ∪ {0}, and
therefore it also extends the dimension of RM to |M∪ {0}| =M+ 1.

There are further similarities in the notation of the graph theoretical properties
of reaction networks. The notion of a reversible reaction is the same in both ap-
proaches. But what Feinberg calls a weakly reversible network, is called strong
connectivity by Fiedler and Mochizuki, i. e., a network in which for each reaction
y // ȳ there exits a sequence of reactions from ȳ back to y, see (3.1.8).

The linear span of the reaction vectors, i. e., the vectors ȳj − yj ∈ RM for each
j ∈ E, is called stoichiometric subspace S = span {ȳj − yj ∈ RM | j ∈ E}, see
(3.1.10), by Feinberg. This subspace is equivalent to the image of the stoichiometric
matrix S : RE → RM from the theory by Fielder and Mochizuki, defined by
Sej = Xm(j) − Xm(j), where ej is the j-th unit vector in RE, see also (2.4.3). The
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equivalence becomes obvious, when we note that the stoichiometric matrix S maps
every edge to the difference of product and reactant complex. Thus, its image is
the subspace, spanned by those reaction vectors. Both definitions play an essential
role in their corresponding approaches.

The monomolecular reaction networks, described by Fiedler and Mochizuki are a
special case of deficiency zero networks, studied by Feinberg. By (3.1.11), we know
that the deficiency of a network is defined as δF = n− l− s, where n is the number
of complexes, l the linkage class and s the rank of the network. In the language
of Fiedler and Mochizuki we can formulate the deficiency as δF = dim ker S −

dim ker D, where S is the stoichiometric matrix and D the boundary map, given by
(2.4.3) and (2.5.2), respectively. Proposition 2.2 shows that dim ker S = dim ker D,
and therefore that δF = 0.

We next turn our attention to the dynamics of the concentrations, i. e., the ODE’s
which both approaches provide. We will see that they are pretty similar with the
exception of a few limitations. The ODE, which Fiedler and Mochizuki introduce,
describes the dynamics of the vector x = (xm)m∈M of concentrations xm of the
metabolite m ∈M by

ẋ = f(r, x) :=
∑
j∈E

rj(xm(j))(Xm(j) −Xm(j)), (4.1.1)

where X0 := 0 ∈ RM and x0 := 1, see (2.1.5). The reaction rate functions r = (rj)j∈E,
which are the rates at which reaction j is active per time unit, are considered as
given parameters. Note that rj(xm(j)) may also be called the flux through reaction
j. One fundamental assumption here is that the derivatives of the reaction rates
rjm := r ′j(x

∗
m) for m = m(j) at equilibrium x∗ are viewed as abstract independent

variables. However, this point of view excludes reaction networks taken with pure
mass action kinetics. Further assumptions on the ODE are the positivity of reaction
rate functions rj(ξ) > 0 for ξ > 0, the existence of a positive steady state and the
regularity at steady states x∗, det fx(r, x∗) 6= 0. See also (2.2.1), (2.2.2), and (2.2.3).
We postpone the discussion about the assumptions to the next section.

The approach by Shinar et al. assumes mass action kinetics, i. e., a reaction network
equipped with a positive element k = (kj)j∈E ∈ RE+. The components kj are the
rate constants for the reactions j ∈ E. In this setting, the ODE for the vector of
concentrations x = (xm)m∈M is given by

ẋ = f(x,k) :=
∑
j∈E

kjx
yj(ȳj − yj) (4.1.2)
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with
xy

j

:=
∏
m∈M

(xm)y
j
m . (4.1.3)

See (3.1.12) - (3.1.14). We also assume the existence of a positive network equilib-
rium (x∗,k∗) ∈ RM+ ×RE+. Let such an equilibrium (x∗,k∗) be fixed, we defined
the vector of fluxes in (3.2.1) as

κ =
∑
j∈E

k∗j (x
∗)y

j

ej, (4.1.4)

with unit vector ej ∈ RE and yj as reactant of the reaction j. Thus, the flux through
reaction j ∈ E is equal to κj, when the system with rate constant vector k∗ is
observed at x∗.

In comparison, the ODE’s of both approaches are very similar. Both are con-
structed as the sum over all reactions of the product of the reaction kinetics and
the reaction vector. The differences lie, on the one hand, in the restrictions on the
reaction rates. Where Fielder and Mochizuki allow a wide class of reaction rate
functions, with exception of pure mass action kinetics, the approach by Shinar et
al. is limited to mass action kinetics. On the other hand, the reaction vectors show
that the theory by Fielder and Mochizuki is valid for monomolecular reaction net-
works, only. In contrast, the theory by Shinar et al. has no such limitations. This is
just a first glance on the assumptions and their restrictions, we will discuss them
extensively in the next section.

4.2 assumptions and the restrictions they impose

This section concerns the assumptions of both approaches, and the restrictions
they impose. We investigate the assumptions on the ODE’s, which we already saw
in the last section, the assumptions on the network themselves, like the injectiv-
ity property or to be monomolecular, as well as the assumptions on the reaction
kinetics. Surprisingly, we will also see that the regularity assumption on the reac-
tion network by Fiedler and Mochizuki is kind of a weaker form of the injectivity
assumption imposed by Shinar, Mayo, Ji and Feinberg.

See Table 1 for a brief overview of all assumptions and restrictions of the approach
by Fiedler and Mochizuki, and the approach by Shinar, Mayo, Ji and Feinberg in
contrast to the corresponding assumption from the other theory.
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Assumptions and restrictions of the approach by

Fiedler and Mochizuki Shinar et al.

• monomolecular reactions • multimolecular reactions

• general class of reaction kinetics, • mass action kinetics

except for mass action kinetics

• regularity of the network • injectivity of the network

• positivity of reaction rates • positivity of reaction rates

• existence of positive steady states • existence of positive steady states

Table 1: All assumptions and restrictions of both approaches briefly summarized and in
contrast to the corresponding assumption from the other theory.

We start our investigation of the assumptions with the fact that the approach
by Fielder and Mochizuki is at present limited to monomolecular reaction net-
works and therefore only offers a first step towards understanding the sensitivity
behaviour of chemical reaction networks. In a very recent advance Brehm and
Fiedler [3] were able to enhance the theory for regular multimolecular systems.
The approach by Shinar et al. does not have such limitations, it is valid for multi-
molecular reaction networks.

On the other hand, the approach by Shinar et al. also has a fundamental limitation
regarding the variety of reaction rate kinetics that can be chosen. The reaction rate
functions are restricted to mass action kinetics

rj(x) = kjx
yj = kj

∏
m∈M

(xm)y
j
m (4.2.1)

as we can see in the ODE (4.1.2), (4.2.3).

In contrast, the approach by Fiedler and Mochizuki allows a very general class
of reaction rate functions rj ∈ C1, except for pure mass action kinetics. This re-
striction on the kinetics originates in the fundamental idea that the derivatives of
the reaction rate functions rjm are viewed as abstract independent variables. The
derivatives participate in the construction of the augmented matrix A, see (2.4.7),
via certain rational expressions, as we saw explicitly in the proof of Lemma 2.4.
However, we require the derivative variables rjm to be independent of the equilib-
rium flux values rj(x∗m). But if the class of nonlinearities rj itself solves the same
ODE r ′j = hj(rj) for some fixed function hj, this independence evidently fails.
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Thus, the algebraic independence of rj and r ′j requires at least a two parameter
family of functions rj. So let us consider mass action kinetics like in (4.2.1). The
partial derivatives of the reaction rate functions rj(x) are given by

rjm =
∂

∂xm
rj(x

∗) =
y
j
mrj

xm
. (4.2.2)

Obviously we are in the case described above, and therefore need to exclude pure
mass action kinetics. But already classes like Michaelis-Menten and Langmuir-
Hinshelwood kinetics justify the algebraic independence.

We next regard the assumptions on the ODE’s of both approaches. We already
saw the assumptions (2.2.1), (2.2.2) and (2.2.3) imposed by Fiedler and Mochizuki
on the ODE (4.1.1) in the previous section. Let us provide an overview:

• positivity of reaction rates rj(ξ) > 0 for ξ > 0; (4.2.3)

• existence of poisitive steady state x∗ > 0 with f(r, x∗) = 0; (4.2.4)

• regularity at steady states x∗ det fx(r, x∗) 6= 0. (4.2.5)

Note that they do not require positivity of the derivatives r ′j of the reaction rates.
In practise, the consequences of the positivity assumption (4.2.3) and the positivity
of the steady state in (4.2.4) are just that we omit vanishing reactions and steady
states with zero components of x∗, respectively. The assumption (4.2.5) on the re-
action network to be regular at steady states plays a crucial role in the derivation
of the concentration response δxj

∗
m, for a metabolite m. It enables us to use the im-

plicit function theorem for studying the steady state response to any perturbation
of the reaction rate rj∗ for any reaction j∗. See also (2.2.4) - (2.2.8).

The first two assumptions (4.2.3) and (4.2.4) are present in the approach by Shinar
et al., too. They assume the existence of positive network equilibria, see (3.1.19)
and implicitly also the positivity of reaction rates, since they consider mass ac-
tion kinetics, which uses a positive element k = (kj)j∈E ∈ RE+, only. Instead of
regularity, here we assume the reaction network to be injective, see (3.3.1).

Injectivity is a network property that requires for each k ∈ RE+ and for each choice
of distinct stoichiometrically compatible compositions x, x ′ ∈ RM+ ,

f(x,k) 6= f(x ′,k), (4.2.6)

where f is defined as in (4.1.2). Equivalently, we can assume the linear map T∗η :

S→ S, defined by (3.1.21)

T∗ησ :=
∑
j∈E

ηj(y
j ∗ σ)(ȳj − yj) (4.2.7)
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to be nonsingular for every choice of η ∈ RE+ and x∗ ∈ RM+ . S is the stoichiometric
subspace and the scalar product ∗ corresponding to x∗ is defined as in (3.1.20). In
other words, injectivity, regardless of the rate constants, precludes two different
stoichiometrically compatible compositions to give rise to production rates that,
metabolite-wise, are completely identical. Thus, injectivity is closely related to the
concept of uniqueness of positive equilibria. Indeed, the network is not injective
if, and only if, there exists k ∈ RE+ and two different stoichiometrically compatible
compositions x, x ′ ∈ RM+ such that

f(x,k) = f(x ′,k). (4.2.8)

Hence, noninjectivity is a necessary condition for the existence of a mass action
system, which possesses multiple equilibria in the same positive stoichiometric
compatibility class.

The injectivity assumption, i. e., the nonsingularity of the map T∗κ, is essential for
the proof of Proposition 3.1, which guarantees the existence of local functions that
map rate constant vectors to unique network equilibria. Main step in the proof
is to identify the partial derivative of the mass action rate function f with the
map T∗κ, see (3.2.4). Since, by assumption, T∗κ is nonsingular, we can use the
implicit function theorem to obtain the existence of the local functions we are
looking for. These local functions will play a crucial role in the construction of
the concentration control coefficient ∂ ln x̄m

∂ lnkj∗
(lnk∗), see (3.2.11). Furthermore, the

nonsingularity of T∗κ is utilized in the proof of Lemma 3.4.

Therefore, it seems that the regularity assumption (4.2.5) by Fiedler and Mochizuki,
and the injectivity assumption (4.2.6) by Shinar et al. are not as far apart as one
would believe on the first glance. In fact, if we forget for a moment about the
restrictions on the reaction rate functions in both approaches, we claim that injec-
tivity implies the regularity assumption.

Observation 4.1. Consider the illegal setting which allows the ODE vector field f in
(2.1.5), respectively (3.1.13) to take any reaction rate functions rj. We claim that the
injectivity assumption (4.2.6) by Shinar et al. implies the regularity assumption (4.2.5) by
Fiedler and Mochizuki.

Indeed, just for a moment, let us allow the ODE vector field f in (2.1.5), respec-
tively (3.1.13) to take any reaction rate functions rj. We show in this setting that
a violation of the regularity assumption implies noninjectivity of the network. Let
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M be the metabolite set and E be the reaction set of a reaction network with stoi-
chiometric subspace S, and let κ ∈ RE+. Suppose there exists a positive steady state
x∗ ∈ RM+ such that det fx(r, x∗) = 0, i. e., the regularity assumption (4.2.5) is vio-
lated. This essentially means that the Jacobian fx(r, x∗) of the partial derivatives of
f with respect to x evaluated at the steady state x∗ is singular. On the other hand,
we know that the network is injective, if for every choice of κ ∈ RE+ and every
choice of x∗ ∈ RM+ , the map T∗κ is nonsingular. By direct calculation we get(

∂f(x,k)
∂x

)∣∣∣∣
x=x∗

(σ) =
∑
j∈E

κj(y
j ∗ σ)(ȳj − yj) = T∗κσ, (4.2.9)

also see [9]. Therefore, when ignoring the restrictions on the reaction rate func-
tions, we see that the Jacobian of f with respect to x evaluated at x∗ is identical
to the linear map T∗κ. Since the Jacobian is singular at x∗, T∗κ is singular at x∗,
too. Hence, by definition of the injectivity property, the reaction network is not
injective. Taking the contraposition proves our claim.

Another interesting observation in this illegal setting, in which we forget about
the restrictions on the rate functions, is that a singular augmented matrix A, see
(2.4.7), for the corresponding network implies noninjectivity. This therefore yields
a fairly easy first way to verify noninjectivity, which is not a straightforward mat-
ter. Indeed, by Proposition 2.3 and equation (2.5.1) is a singular augmented matrix
A equivalent to a violation of the regularity assumption. We can also check for
noninjectivity, in virtue of Lemma 2.4 by just finding a vertex in the reaction dia-
gram Γ = (M ∪ {0}, E) that does not possess a directed exit path γ0 to 0. Thus we
have a tool which allows us to check for noninjectivity by examining the graph
structure of reaction network, only.

Observation 4.2. In the illegal setting, in which we forget about the restrictions on
the reaction rate functions, we have two simple tools to verify noninjectivity that are
equivalent:

(i) Set up the augmented matrix A and show that it is singular.

(ii) Find a vertex in the reaction network diagram Γ = (M ∪ {0}, E) without directed
exit path to the zero vertex.

However, keep in mind that this proof is not legal, since the mutually exclusive
restrictions on the reaction rate functions forbid the comparison of the ODE vector



4.3 comparison of the flux sensitivities and the main results 59

fields f. We just want to underline the claim that the injectivity assumption and
the regularity at a steady state are very similar to each other.

In summary, both approaches are complementary regarding their assumptions
about reactions and the variety of permissible reaction rate functions. But they are
also similar in their positivity assumption on the reaction rates and the existence
of positive steady states. Surprisingly, also the regularity assumption by Fiedler
and Mochizuki and the assumption on the reaction network to be injective by
Shinar et al. are very close to each other.

In addition, we note that all assumptions are imposed on the structure of the
network, only, except for the restrictions on the reaction rate functions. But Fiedler
and Mochizuki allow a generic class of rate functions and hence this limitation
is negligible. Albeit the restriction to mass action kinetics by Shinar et al. is a
significant limitation, this kinetics is widely spread in application. Furthermore,
in both of the theories, no numerical data is required in order to utilize their
main results. In this sense, both approaches rely only on the underlying network
structure.

4.3 comparison of the flux sensitivities and the main results

We finally turn our attention to the construction of the flux sensitivities, and also
want to compare the main result of both approaches. For illustration and a clear
insight into the main results, we apply both theorems to a simple example and
provide a detailed discussion.

Regarding the construction of the flux sensitivities, Fiedler and Mochizuki define
the flux response Φj ′j∗ of the flux through reaction j ′ due to a rate perturbation of
reaction j∗ as follows:

Φj ′j∗ := δj ′j∗ + rj ′m(j ′)δx
j∗

m(j ′), (4.3.1)

see also (2.3.1). The Kronecker-delta in the first term accounts for the explicit flux
change due to the external perturbation at j∗ in reaction j ′ = j∗. The implicit flux
change in any reaction j ′, in the second term, originates due to the concentration
response δxj

∗

m(j ′) of the mother reactant m(j ′), at the steady state x∗ caused by the
external perturbation at reaction j∗. The flux sensitivity matrix is defined by

Φ :=
(
Φj ′j∗

)
j ′,j∗∈E , (4.3.2)
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see (2.4.1).

Shinar, Mayo, Ji and Feinberg denote the flux control coefficient at the positive
network equilibrium (x∗,k∗) ∈ E for each ordered pair (j ′, j∗) ∈ E × E as the

partial derivative
∂ ln ¯Kj ′
∂ lnkj∗

(lnk∗). Thus, the flux control coefficient is the fractional
change in the flux through reaction j ′ caused by variation of the rate constants of
reaction j∗, evaluated at k∗. They further provide a relation with the concentration
control coefficient ∂ ln x̄m

∂ lnkj∗
(lnk∗) for two cases, for the diagonal entries of the flux

sensitivity matrix and the off-diagonal elements:

∂ ln ¯Kj∗

∂ lnkj∗
(lnk∗) = yj

∗ ∗ ∂x̄

∂ lnkj∗
(lnk∗) + 1 =

∑
m∈M

yj
∗
m

∂ ln x̄m
∂ lnkj∗

(lnk∗) + 1,

∂ ln ¯Kj ′

∂ lnkj∗
(lnk∗) = yj

′ ∗ ∂x̄

∂ lnkj∗
(lnk∗) =

∑
m∈M

yj
′
m

∂ ln x̄m
∂ lnkj∗

(lnk∗), for all j ′ ∈ E \ {j∗},

(4.3.3)

for each j∗ ∈ E. Also see (3.2.11) - (3.2.13).

The constructions of the flux sensitivities are very similar, both are essentially
made of the concentration response, respectively concentration control coefficient,
and account the diagonal elements of the flux sensitivity matrix with a additional
plus one.

Since we want to compare the main results of both approaches, the question
whether the flux sensitivities are comparable arises. By the construction of the
flux response (4.3.1) and the flux control coefficient (4.3.3), which both add a 1
to the diagonal entries of their flux sensitivity matrix, and the examples we saw
in Section 2.4 and Section 3.5, respectively, we can conclude that both flux sen-
sitivities lie in the same order of magnitude. To further illustrate that the flux
sensitivities also have the same scaling behaviour, we derive the flux sensitivity
matrices from both approaches for a simple network in which the flux in the sys-
tem only changes if the input, i. e., the feed reaction 1 is perturbed. We expect both
matrices to show the same behaviour among their entries.

0
1 // A

2 // B
3 // 0 (4.3.4)

The example in (4.3.4) is just another variant of the single path way, with two
metabolites M = {A,B} and three reactions E = {1, 2, 3}. According to the method
we explained in Section 3.5, we first calculate the flux sensitivity matrix made of
flux control coefficients from the approach by Shinar et al.
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The set of reaction vectors of (4.3.4) is {A,−B,B−A}. Since A and −B are linearly
independent, we already found an orthonormal basis

{σ1 = A,σ2 = −B}

of the two dimensional stoichiometric subspace S. We next determine the vectors
b(j) = (b1(j),b2(j))T with help of equation bi(j) = σi · (ȳj − yj), see (3.5.4), for
j ∈ E and i = 1, 2 as

b(1) =

(
1

0

)
, b(2) =

(
−1

−1

)
, b(3) =

(
0

1

)
.

Let (x∗,k∗) ∈ E be a positive equilibrium of the network. Using f(x∗,k∗) = 0, we
find that the equilibrium fluxes κj = k∗j (x

∗)y
j

through reaction j corresponding to
(x∗,k∗) for all three reactions are equal, i. e., we find the relation

κ1 = κ2 = κ3.

To set up the 2× 2 matrix A∗κ, which is the matrix representation of the linear
map T∗κ, we use (A∗κ)kl =

∑
j∈E κj(σ

l ∗ yj)bk(j), see (3.5.8), and get

A∗κ =

 − κ1x∗A
0

− κ1x∗A
−κ1x∗B

 .

Since the reaction network is injective, we know that T∗κ is nonsingular, and thus
A∗κ is nonsingular, too. Therefore, the inverse of A∗κ exists and is given by

A−1
∗κ =

(
−
x∗A
κ1

0
x∗B
κ1

−
x∗B
κ1

)
.

We can use the inverseA−1
∗κ to solve the linear systemA∗κa(j,k∗) = −κjb(j), where

a(j,k∗) is defined by (3.5.3) and helps us to determine the concentration control
coefficients. According to a(j,k∗) = −κjA

−1
∗κ b(j), we get for j ∈ E

a(1,k∗) =

(
x∗A
−x∗B

)
, a(2,k∗) =

(
−x∗A
0

)
, a(3,k∗) =

(
0

x∗B

)
.

The concentration control coefficients can be determined by the formula

∂ ln x̄m
∂ lnkj

(lnk∗) =
1

x∗m

2∑
l=1

al(j,k∗)(σl)m,
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and further we use (4.3.3) to calculate the flux control coefficients. Arranged as
matrix, we get the flux sensitivity matrix to our example by the approach from
Shinar et al. as (

∂ ln ¯Kj∗

∂ lnkj ′
(lnk∗)

)
j ′,j∗∈E

=

 1 0 0

1 0 0

1 0 0

 . (4.3.5)

On the other hand, we already know the flux sensitivity matrix of our single
path way example (4.3.4) derived by the theory from Fiedler and Mochizuki from
Section 2.4. The matrix is given by

Φ =

 1 0 0

1 0 0

1 0 0

 . (4.3.6)

Comparing both matrices (4.3.5) and (4.3.6) for the single path way (4.3.4) shows
that they are identical. This means that their flux sensitivities behave in the same
way for this simple network, especially they show the same scaling behaviour.
Therefore, we can conclude that the flux sensitivities of both approaches are com-
parable. Note that in general the theory by Shinar, Mayo, Ji and Feinberg is not
able to give such precise matrix entries without numerical input and, in particular,
it is not able to predict which matrix entries are zero, and which are not.

Before we compare the main results with the help of an example, let us repeat both
theorems as a reminder. The main result by Fiedler and Mochizuki, Theorem 2.1
on structural sensitivity analysis of flux influences basically states that an external
perturbation at reaction j∗ either propagates downward along a directed path γ ′

starting with vertex m(j∗) = m∗ and edge j∗, or else spills over to a side branch γ ′

from j∗ ∈ γ0\γ ′.

Theorem 2.1. (Fiedler & Mochizuki). Let positivity and existence assumptions (4.2.3),
(4.2.4) hold for the monomolecular reaction network (2.1.1), (2.1.2) and (2.1.5). Moreover
assume the Jacobian determinant in (4.2.5) is nonzero, algebraically. Consider any pair of
edges j ′, j∗ ∈ E, not necessarily distinct.

Then j∗ influences j ′, i. e., the flux response Φj ′j∗ of reaction j ′ to a rate perturbation
(2.2.4) - (2.2.7) of reaction j∗ satisfies

Φj ′j∗ 6= 0 (4.3.7)
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algebraically, if, and only if, there exist two directed paths γ0 and γ ′ for which the follow-
ing four conditions all hold true:

(i) both paths emanate from the mother reactant m∗ = m(j∗) of reaction j∗;

(ii) one of the paths contains reaction j∗;

(iii) the exit path γ0 terminates at vertex 0, and the influence path γ ′ terminates with
reaction edge j ′ : m ′ //m ′ , but omitting the product vertex m ′ = m(j ′) of j ′;

(iv) except for their shared starting vertex m∗, the two paths γ0 and γ ′ are disjoint.

For an illustration of the conditions on the directed paths γ0 and γ ′ see Figure
2.3.1. Basically, the conditions on γ ′ describe some domain of influence of the
perturbation j∗. The conditions on the exit path γ0, however, are less intuitive. All
conditions are based on the stoichiometric graph structure only, and in that sense
the approach is function-free.

The main result of the approach by Shinar, Mayo, Ji and Feinberg is the Reciprocity
Theorem 3.3. For all injective mass action networks the theorem provides con-
straints on the diagonal entries of the flux sensitivity matrix to be nonnegative and
bounded from above by 1. Furthermore, for each pair of reciprocal off-diagonal
entries of the matrix, at least one element lies between −1 and 1. These conclu-
sions hold for any positive network equilibrium, since the injectivity assumption
is a condition imposed on the network structure alone.

Theorem 3.3. (Reciprocity Theorem; Shinar, Mayo, Ji & Feinberg). Consider an injec-
tive mass action network with metabolite set M and edge set E. At each positive network
equilibrium (x∗,k∗) ∈ E the following relations hold:

(i) For each reaction j∗ ∈ E,

0 6
∂ ln ¯Kj∗

∂ lnkj∗
(lnk∗) 6 1. (4.3.8)

(ii) For each pair of distinct reactions j ′ ∈ E and j∗ ∈ E,

− 1 6
∂ ln ¯Kj ′

∂ lnkj∗
(lnk∗) 6 1 or − 1 6

∂ ln ¯Kj∗

∂ lnkj ′
(lnk∗) 6 1. (4.3.9)

When comparing the results, we see that the structural sensitivity analysis by
Fiedler and Mochizuki provides us with a framework, which is able to derive
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0 A B 01

2

3

4

monomolecular and injective reaction network Γ

Figure 4.3.1: A reversible chemical reaction network containing two metabolites M =

{A,B} and four reactions E = {1, 2, 3, 4}, which possesses the injectivity prop-
erty, fulfills the regularity condition, and is monomolecular.

zero and nonzero flux changes, i. e., to determine zero and nonzero entries of
the flux sensitivity matrix. In contrast, the approach by Shinar et al. gives a priori
bounds on the diagonal elements of the flux sensitivity matrix to lie between 0 and
1, in addition to constraints on the off-diagonal elements that at least one entry
of a reciprocal pair lies in [−1, 1], for any positive network equilibrium. Another
interesting fact is that the theory by Fiedler and Mochizuki extracts its conclusions
predominantly from the graph structure of the network, where on the contrary the
approach by Shinar et al. is a purely analytical one.

To illustrate the theorems and gain a clear insight into the main results, we apply
both theorems to the innocent chemical reaction network given in Figure 4.3.1. The
monomolecular reaction network consists of two metabolites M = {A,B} and four
reactions E = {1, 2, 3, 4}. It fulfills the regularity condition (4.2.5), algebraically, as
can easily be checked via the existence of exit paths γ0 from every vertex m0 ∈M
to 0, by virtue of Lemma 2.4. Furthermore, the network possesses the injectivity
property (3.1.19) and therefore we will be able to apply the Reciprocity Theorem
3.3.

In order to compare both main results, we first derive the flux sensitivity matrix
according to the framework provided by the theory by Fiedler and Mochizuki, in
particular see Section 2.4 for a detailed introduction for the calculation of the flux
sensitivity matrix.

To calculate the flux sensitivity matrix Φ we start by determining the augmented
matrix A = (R, C). Since the network has E = 4 reactions, we deal with a 4× 4
matrix, and by M = 2 we know that the R-part of A occupies two columns. The
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remaining two columns are reserved by the C-part, which we determine via the
cycles in the network. Thus the augmented matrix A is given by

A =


0 0 −1 0

r2A 0 −1 −1

0 r3B 0 −1

0 r4B −1 0

 .

Proceeding as in Section 2.4 yields the flux sensitivity matrix Φ for our example:

Φ =


1 0 0 0

r3B+r4B
r4B

0 1 −r3Br4B
r3B
r4B

0 1 −r3Br4B
1 0 0 0

 . (4.3.10)

Therefore, we can use the flux sensitivity matrix, given by the approach by Fielder
and Mochizuki, to identify zero and nonzero flux responses, i. e., which reaction
fluxes are sensitive to a rate change, and which are not. To obtain precise numeri-
cal values for the entries of the matrix, the numerical values of the derivatives rjm
are necessary.

The Reciprocity Theorem 3.3 by Shinar et al. provides as first statement constraints
on the diagonal elements of the flux sensitivity matrix to lie between 0 and 1. Since
our example network is injective, we can apply this conclusion of the theorem.
Indeed the diagonal entries of the matrix (4.3.10) are all in the range [0, 1]. The
second statement of the Reciprocity Theorem tells us that in each pair of reciprocal
off-diagonal matrix entries at least one coefficient is constrained to lie in [−1, 1].
This conclusion also holds true, since in each pair Φj ′j∗ and Φj∗j ′ , with j∗ 6= j ′

one of the flux sensitivities is even zero. Hence, the Reciprocity Theorem acts
as intended in a flux sensitivity matrix, which we derived using the framework
provided by Fiedler and Mochizuki.

Therefore, for a monomolecular network which satisfies the assumptions of both
approaches, to be regular at steady states and injective, and thus for which both
main results apply, we see that both theories do not contradict each other. In the
next chapter we will examine further examples, but not one of them will yield a
contradiction. Even more examples can be found in the appendix.
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The chapter mainly concerns the presentation and discussion of more examples.
We will give six examples of monomolecular reaction networks satisfying the as-
sumptions of both approaches, to be regular at steady states and injective. After
checking on the assumptions on the network, we calculate the flux sensitivity ma-
trix and apply the main results of both approaches to verify their conclusions.
Furthermore, we investigate response patterns determined from the local struc-
ture of the network, i. e., motif rules. We provide the rules for three different
kind of patterns and examine their occurrence in the network, respectively in the
corresponding flux sensitivity matrix. The first pattern originates from the single
path way, which we already saw in Section 2.4. The other two patterns regard the
branching in a reaction network. Specifically, we provide new ideas for motif rules
with feedback and splitting behaviour as branching in the reaction network.

5.1 ideas on motif rules and characteristic response patterns

In the next two sections we will present three examples each section with attention
to different branching behaviours. In addition, we examine the conclusions of the
main results from the approaches by Fiedler and Mochizuki, and by Shinar, Mayo,
Ji and Feinberg.

For each example, individually, we will check the necessary assumptions of both
theories. According to the theory by Fiedler and Mochizuki, we need to check
the regularity condition (4.2.5) for monomolecular reaction networks to use their
framework and derive the flux sensitivity matrix Φ. This can easily be done in
virtue of Lemma 2.4, which tells us that the regularity of the network holds alge-
braically if, and only if, for every vertex m0 ∈ M there exists a directed exit path
γ0 from m0 to the zero vertex 0 in the corresponding graph Γ = (M ∪ {0}, E). To
apply the Reciprocity Theorem 3.3 from the theory by Shinar et al. to the matrix
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Φ we need to check on the injectivity property (4.2.6) of the network. Since this is
not a straightforward matter, we do not provide the tedious calculations. But the
curious reader may use the software ’Chemical reaction network toolbox’ [19] to
quickly verify the injectivity. For a detailed introduction into the assumptions of
both approaches, see Section 4.2.

We determine the flux sensitivity matrix Φ of the corresponding network by the
method explained in Section 2.4. Since we already gave an example how to cal-
culate the flux sensitivity matrix, we will just give the bare matrix in this chapter.
But basically, the calculation is straightforward: first set up the augmented matrix
A = (R, C), invert it to get the sensitivity matrix S = −A−1 and multiply the C-part
of A with the last N-rows of S to get Φ. Knowing the matrix Φ, we can verify the
constraints given by the Reciprocity Theorem from the approach by Shinar et al.
We will see that the flux sensitivity matrices of all examples satisfy the statements
that all diagonal elements lie in the range [0, 1], and one entry of each reciprocal
off-diagonal pair is bounded by −1 from below and 1 from above. Therefore, we
see that both approaches do not contradict each other.

Furthermore, we investigate three motif rules, i. e., response patterns in the flux
sensitivity matrix Φ determined from the local structure of the network. The first
rule is the single path way, which originates from the single child case that we
already discussed in Chapter 2. The other two motif rules, namely the feedback
behaviour and the splitting behaviour, which we are going to introduce, expand
the branching rule for the sensitivity matrix S given by Fielder and Mochizuki, in
terms of the flux sensitivity matrix Φ. Their motif rule states that the responses in
the chemical concentrations propagate directly downward or spills over to a side
branch [22].

Let us first take a closer look at the single path way rule. This motif rule describes
the behaviour in situations, where the mother vertex m(j∗) = m∗ has only one
child edge j∗, i. e., metabolic chain pieces of the network. According to the main
theorem 2.1 from Fielder and Mochizuki, we need for a nonzero flux response
Φj∗j∗ 6= 0 two different di-paths γ0 and γ ′, which are disjoint and emanate from
the same mother vertex m∗. But in the single child case, we only have a single
child edge of m∗, and hence a contradiction to these conditions. Therefore we
have a zero flux response

Φj ′j∗ = 0, (5.1.1)
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for all j ′ ∈ E. We already saw the example

Γ1 : 0
1 // A

2 // B
3 // C

4 // 0

of the single path way rule at the end of Section 2.4. We calculated the flux sensi-
tivity matrix as

Φ1 =


1 0 0 0

1 0 0 0

1 0 0 0

1 0 0 0

 .

In this network, any reaction j∗ other than the feed reaction 1 is a single child of
a mother vertex m = m(j∗). By the single path way rule, we therefore have for all
reactions j∗ 6= 1 and all j ′ ∈ E a zero flux response Φj ′j∗ = 0. Also see (2.3.3).

The two new motif rules are motivated by the following theorem from the theory
by Fiedler and Mochizuki. The theorem describes how the influence of a perturbed
reaction j∗ spreads to a reaction j ′ via di-cycles, bi-cycles and side branches.

Theorem 5.1 (Fiedler & Mochizuki). Let positivity and existence assumptions (2.2.1),
(2.2.2) hold for the monomolecular reaction network (2.1.1), (2.1.2), and (2.1.5). Moreover
assume the Jacobian determinant in (2.2.3) is nonzero, algebraically. Consider any pair of
distinct edges j ′, j∗ ∈ E. Let j∗ influence j ′ 6= j∗.

Then exactly one of the following three mutually exclusive cases can arise:

(i) The cycle c ′ of j ′ is directed and does not contain j∗. Then the influence di-path γ ′

need not be contained in c ′. The exit di-path γ0 intersects γ ′ ∪ c ′ at the mother
vertex m∗ of j∗, only.

(ii) The cycle c ′ of j ′ is directed and contains j∗. Then the influence di-path γ ′ also
contains j∗ and is contained in c ′. The cycle c ′ intersects the exit di-path γ0 only
at the mother vertex m∗ of j∗.

(iii) The cycle c ′ of j ′ is not directed. Then c ′ is a bi-cycle and contains j∗. The two
parallel directed arcs of the bi-cycle c ′ both emanate from the mother vertex m∗ of
j∗. One arc contains the influence di-path γ ′. The other arc is the intersection of the
exit di-path γ0 with c ′. The perturbed edge j∗ may be contained in either arc.

For the proof of Theorem 5.1 see Section 4 of [11]. See Figure 5.1.1 for an illustra-
tion of the three cases that can arise.
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m∗

j∗

γ0

γ ′

case (i)

0

j ′

m ′

j∗

or

c ′

case (ii)

0

c ′
m∗

j∗

j ′

m ′

γ ′

γ0

case (iii)
m∗

0

γ0

γ ′

m ′

j ′c ′

Figure 5.1.1: Illustrating the three cases of Theorem 5.1 with exit path γ0 and influence di-
path γ ′. Case (i): γ ′ not contained in di-cycle c ′. Case (ii): di-cycle c ′ contains
γ ′. Case (iii): one arc of bi-cycle c ′ contains γ ′. The figure is redrawn from
the reference paper [11].

Inspired by case (ii) of Theorem 5.1, we introduce the first new motif rule, the
feedback behaviour. The rule attempts situations in which the network looks like:

. . .

��

. . .oo

. . . //m1 // . . . // . . . //m2

j1

rr

j2 // . . .

(5.1.2)

I. e., the network branches at one vertex, here m2, and one of the branches needs
to return to the branching point in order to possess a directed exit path to the zero
vertex 0. In other words, if all possible directed exit paths starting with child edge
j1 of the branching point m2 need necessarily to pass through the branching point
m2 on their way to the zero vertex 0, we call the branch starting with j1 a feedback
branch. Note that the feedback branch does not necessarily need to possess any
vertices, in fact the simplest example is a reversible reaction like in Figure 4.3.1.
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This behaviour corresponds to the following pattern on the diagonal entries of the
flux sensitivity matrix:

Φ =

j1 j2



. . .
j1 1

. . .
j2 0

. . .

, (5.1.3)

where we omitted all but the interesting matrix entries. Therefore, the feedback
behaviour is characterized by a Φj1j1 = 1 on the diagonal of the flux sensitivity
matrix for the feedback branch j1, and by a Φj2j2 = 0 for the other branch j2,
without feedback behaviour. For a clear illustration, we give the matrix pattern
only for the particular case given in (5.1.2). Every additional feedback branch ji
just adds another 1 in the corresponding diagonal entry Φjiji = 1. When examin-
ing the flux sensitivity matrix, the 1 on the diagonal for the feedback branch may
not be confused with the 1 on the diagonal imposed by the feed reaction of the
network. Also see the discussion of the example in Section 2.4.

In summary we have the first conjectured motif rule:

Conjectured Motif Rule 1 (Feedback behaviour). Consider a reaction network which
branches at vertex m. If all possible directed exit paths starting with one of the child edges,
say j1, of the branching vertexm = m(j1) need to pass through the branching pointm on
their way to 0, we call the branch starting with j1 feedback branch. On the diagonal of the
corresponding flux sensitivity matrix, we can find an entry Φj1j1 = 1 for the edge j1 with
feedback behaviour, and further an entry Φj2j2 = 0 for the child edge j2 of m, without
feedback behaviour.

The second new motif rule, which we call splitting behaviour, describes the re-
sponse pattern in the flux sensitivity matrix that occurs in situations like:

m2 // . . .

. . . //m1
j2 //

j3

""

j1
<<

m3 // . . .

m4 // . . .

(5.1.4)
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The network splits at one vertex, here m1, into two or several branches, and each
branch possesses a direct exit path to the zero vertex 0 that does not return to
the branching point m1. Note that the branches later may reunite. This rule is
motivated by the third case of Theorem 5.1. We have to take two cases into account
for the splitting behaviour. The simple case like in (5.1.4), where the splitting
vertex is not influenced by another splitting vertex, and a more involved case. The
matrix pattern of the splitting behaviour for the simple case (5.1.4) is given by

Φ =

j1 j2 j3



. . .

j1
rj2m1+rj3m1

rj1m1+rj2m1+rj3m1
. . .

j2
rj1m1+rj3m1

rj1m1+rj2m1+rj3m1
. . .

j3
rj1m1+rj2m1

rj1m1+rj2m1+rj3m1
. . .

,

(5.1.5)
where rjm are the derivatives of the reaction rate functions for m = m(j), and we
omitted again all uninteresting matrix entries. We can characterize the splitting
behaviour in such simple cases on the diagonal of the flux sensitivity matrix by an
entry Φjiji for each splitting branch ji given by

Φjiji =

∑
j∈ES\{ji} rjmS∑
j∈ES rjmS

, (5.1.6)

where ES is the set of all edges that participate in the splitting, here ES = {j1, j2, j3},
and mS = m(j) the mother vertex of j ∈ ES, here m1. The more involved case
occurs in situations, where the splitting vertex is strongly connected to another
splitting vertex, like:

m2 //





. . .

. . . //m1 //

<<

m3 // . . .

(5.1.7)

I. e., if there is a di-path from splitting vertex m1 to splitting vertex m2, then there
also exists a di-path from m2 back to m1. We do not have a formula to predict the
diagonal entries of the flux sensitivity matrix for the splitting branches of m1 or
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m2, since they influence each other. However, summing over all diagonal entries
Φjiji for the N := |ES| branches of one splitting vertex yields

N∑
i=1

Φjiji = N− 1, (5.1.8)

in both cases. Therefore, the motif rule which describes splitting situations is still
valuable for predicting the diagonal entries of the flux sensitivity matrix, or the
other way around, for setting up the network diagram with given flux sensitivity
matrix.

Let us summarize the second conjectured motif rule:

Conjectured Motif Rule 2 (Splitting behaviour). Consider a reaction network which
branches at vertex m. If each branch possesses a direct exit path which starts with the
corresponding child edge ji of the branching vertex m = m(ji) and does not return to the
branching point m on its way to 0, we say that m shows splitting behaviour. We need to
consider the following two cases:

(i) In the simple case of the splitting behaviour, the splitting vertex is not influenced
by another splitting vertex. In this case, we can predict the corresponding diagonal
entry Φjiji of the flux sensitivity matrix for the splitting branch starting with the
child edge ji of the branching vertex m = m(ji) with the formula

Φjiji =

∑
j∈ES\{ji} rjmS∑
j∈ES rjmS

, (5.1.9)

where ES is the set of all edges that participate in the splitting.

(ii) In the more involved case, the splitting vertex is strongly connected to a different
splitting vertex, and we do not have such a formula.

However, if we take the sum over all diagonal entries Φjiji for the N := |ES| branches of
one splitting vertex, we obtain in both cases

N∑
i=1

Φjiji = N− 1. (5.1.10)

However, keep in mind that we just provide ideas on new motif rules. We check
for consistence of the new motif rules over several examples, see the following
sections and in the appendix, but do not prove them properly.
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5.2 examples with feedback behaviour

This section provides three examples, which we examine with regards to the as-
sumptions and the main results of the both approaches by Fiedler and Mochizuki,
and by Shinar et al., as explained in Section 5.1. Furthermore, the examples in this
section all show feedback behaviour, which we are going to investigate in detail.

The motif rule for the feedback behaviour claims that we can find an entryΦj1j1 =
1 on the diagonal of the flux sensitivity matrix Φ for the feedback branch j1,
and an entry Φj2j2 = 0 for the other child edge j2 of the branching point. A
feedback branch can be identified by looking for directed exit paths starting with
a child edge of the branching point. If all possible exit paths need to return to the
branching point on their way to the zero vertex 0, then the corresponding child
edge possesses feedback behaviour.

The reaction network of the first example is given in Figure 5.2.1. On the first
glance, we can see that all reactions in the network are monomolecular, and since
every vertex possesses a direct exit path to the zero vertex, we know by Lemma 2.4
that the network also fulfills the regularity condition (4.2.5). Furthermore, the net-
work is injective (4.2.1) and thus we can apply the main results of both approaches.
We use the framework and Theorem 2.1 provided by Fiedler and Mochizuki to de-
termine the flux sensitivity matrix as

Φ2 =



1 0 0 0 0 0

1+ r5C
r4C

0 0 −r5Cr4C 1 0

1+ r5C
r4C

0 0 −r5Cr4C 1 0

1 0 0 0 0 0
r5C
r4C

0 0 −r5Cr4C 1 0

r5C
r4C

0 0 −r5Cr4C 1 0


.

The Reciprocity Theorem 3.3 by Shinar et al. imposes constraints on the diagonal
elements of the flux sensitivity matrix Φ2, to be nonnegative and bounded from
above by 1, which in fact holds true. The second part of the reciprocity theorem
states that in each reciprocal off-diagonal pair one of the entries lies in the range
[−1, 1]. In Φ2 one element of each reciprocal off-diagonal pair is even zero.

Regarding the new motif rules, the reaction network Γ2 shows feedback behaviour
in the branching point C. Indeed, there is only one possible directed exit path



5.2 examples with feedback behaviour 75
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Γ 2

B 32
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Figure 5.2.1: A chemical reaction network Γ2, which contains four metabolites M =

{A,B,C,D}, six reactions E = {1, . . . , 6}, and shows feedback behaviour at
branching vertex C.

starting with the child edge 5 of the branching point C and this di-path needs to
return to C on its way to 0. Therefore, we expect a diagonal entry Φ55 = 1 for
the feedback branch, and Φ44 = 0 for the other branch that possesses a direct
exit path without returning to the branching point. Examining the flux sensitivity
matrix confirms our expectations.

The second example Γ3 in Figure 5.2.2 is taken from the reference papers [11, 22].
It fulfills the assumptions to be monomolecular, injective and regular at steady
states, as easily can be checked by virtue of Lemma 2.4. Indeed, every vertex
m0 ∈M possesses a directed exit path in Γ3 from m0 to the zero vertex 0. The flux
sensitivity matrix can be calculated as described in Section 2.4, which yields

Φ3 =



1 0 0 0 0 0 0 0 0

1+
(r5D+r8D)r6C

r4Cr5D
0 0 −r6Cr4C

r6Cr8D
r4Cr5D

1 0 r6C
r4C

0
(r5D+r8D)(r6C+r4C)

r4Cr5D
0 0 −r6Cr4C −

r8D(r6C+r4C)
r4Cr5D

1 0 1+ r6C
r4C

0

r5D+r8D
r5D

0 0 0 r8G
r5D

0 0 1 0

1 0 0 0 0 0 0 0 0
(r5D+r8D)r6C

r4Cr5D
0 0 −r6Cr4C −r6Cr8Dr4Cr5D

1 0 r6C
r4C

0
(r5D+r8D)r6C

r4Cr5D
0 0 −r6Cr4C −r6Cr8Dr4Cr5D

1 0 r6C
r4C

0

r8D
r5D

0 0 0 −r8Dr5D 0 0 1 0

r8D
r5D

0 0 0 −r8Dr5D 0 0 1 0



.

Since the matrix has only 0 and 1 entries on the diagonal and one element of
each reciprocal off-diagonal pair is 0, we see that the flux sensitivity matrix given
by the framework from Fiedler and Mochizuki is consistent with the Reciprocity
Theorem from the theory by Shinar, Mayo, Ji and Feinberg.

The example Γ3 has two branching points, the first one in C and the second in D.
We start with investigating the first point C. Looking for exit paths starting with
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Figure 5.2.2: A chemical reaction network Γ3, which contains six metabolites M =

{A, . . . , F}, nine reactions E = {1, . . . , 9}, and shows feedback behaviour at
branching vertex C and also in vertex D.

the child edge 6 of the branching vertex C, we note that all of them pass through
the branching point C again, leading to the zero vertex 0. Hence, 6 shows feedback
behaviour and the flux sensitivity matrixΦ3 has an entryΦ66 = 1 on the diagonal.
The other branch 4 at C possess a exit path directly to 0, without returning to C,
and thus is not a feedback branch. It has a matrix entry Φ44 = 0 on the diagonal.
The same procedure shows for the second branching point D that the child edge
8 is a feedback branch. Therefore, we have the diagonal entry Φ88 = 1 for the
feedback branch 8 and Φ55 = 0 for the other branch 5.

The last example for this section, shown in Figure 5.2.3 is also monomolecular,
injective (4.2.5), and fulfills the regularity condition (4.2.1), what can easily be
verified as we did before. The flux sensitivity matrix is given by

Φ4 =



1 0 0 0 0 0 0
r2A

r7A+r2A

r7A
r7A+r2A

0 0 0 0 − r2A
r7A+r2A

1+ r6D
r4D

0 0 −r6Dr4D 0 1 0

1 0 0 0 0 0 0
r7A

r7A+r2A
+ r6D
r4D

− r7A
r7A+r2A

0 −r6Dr4D 0 1 r2A
r7A+r2A

r6D
r4D

0 0 −r6Dr4D 0 1 0

r7A
r7A+r2A

− r7A
r7A+r2A

0 0 0 0 r2A
r7A+r2A


.

Examining the flux sensitivity matrix Φ4 for the example verifies, one more time,
the consistence of the conclusions of the Reciprocity Theorem by Shinar et al. in the
framework provided by Fiedler and Mochizuki. Indeed, the diagonal entries are
all nonnegative and bounded by 1 from above, and one element of each reciprocal
off-diagonal pair lies in the range [−1, 1].
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Figure 5.2.3: A chemical reaction network Γ4, which contains four metabolites M =

{A,B,C,D} and seven reactions E = {1, . . . , 7}. We can observe feedback be-
haviour at branching vertex D, as well as splitting behaviour at branching
point A.

The example of the reaction network Γ4 in Figure 5.2.3 has the two branching
points A and D. We can observe feedback behaviour in vertex D, since every
possible exit path starting with child edge 6 needs to pass through the vertex D
before it can reach the zero vertex 0. According to the corresponding motif rule,
we get on the diagonal of the flux sensitivity matrix Φ4 an entry Φ66 = 1 for the
feedback branch 6 and another entry Φ44 = 0 for the other branch 4 originating
at the vertex D. In contrast to the previous examples, we also encounter splitting
behaviour in the branching vertex A. This motif rule accounts for the diagonal
entries Φ22 = r7A

r7A+r2A
and Φ77 = r2A

r7A+r2A
of the flux sensitivity matrix. We will

investigate this behaviour in more detail in the next section.

5.3 examples with splitting behaviour

We discuss another three examples in this section. Again, we examine the exam-
ples with regards to the assumptions and main results of the theories by Fiedler
and Mochizuki, and by Shinar et al. For a detailed comparison of the approaches
see Chapter 4. The example in this section all possess splitting behaviour, which
we want to investigate further.

The splitting behaviour is a motif rule, which applies in situations where the net-
work splits at one vertex into two or several branches, and each branch possesses
a direct exit path that does not return to the branching point on its way to the zero
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vertex. In the simple case (5.1.4), the rule now claims that we can find entries of
the form

Φjiji =

∑
j∈ES\{ji} rjmS∑
j∈ES rjmS

,

on the diagonal of the flux sensitivity matrix, for each child edge ji originating
at the branching vertex mS. We denote the set of all edges that participate in the
splitting ES. In the more involved case (5.1.7), we do not have such a prediction
on the diagonal elements of the flux sensitivity matrix. However, in both cases we
know that summing over all diagonal entries Φjiji for the N := |ES| branches of
one splitting vertex yields

N∑
i=1

Φjiji = N− 1.

The first two examples in this section show the simple case of the splitting be-
haviour and the last example shows the more involved case.

The first example for this section is the reaction network Γ5, illustrated in Figure
5.3.1. The network is monomolecular and possesses the injectivity property (4.2.1).
By Lemma 2.4 is the network regular at steady states, since each vertex in Γ5

possesses a directed exit path to the zero vertex. According to the method from
the approach by Fiedler and Mochizuki, explained in Section 2.4, computing the
flux sensitivity matrix yields

Φ5 =



1 0 0 0 0
r2A

r5A+r2A

r5A
r5A+r2A

0 0 − r2A
r5A+r2A

r2A
r5A+r2A

r5A
r5A+r2A

0 0 − r2A
r5A+r2A

1 0 0 0 0
r5A

r5A+r2A
− r5A
r5A+r2A

0 0 r2A
r5A+r2A


.

We note that all diagonal entries of the matrixΦ5 are nonnegative and bounded by
1 from above. Therefore, the matrix verifies the first statement of the Reciprocity
Theorem 3.3 from the approach by Shinar et al. The second statement of the the-
orem claims that one element of each reciprocal off-diagonal pair in the matrix
lies between −1 and 1, which is indeed the case. Hence, both approaches do not
contradict each other.

The example reaction network Γ5 has one branching point A, showing splitting
behaviour in the simple case. The splitting vertex A has two child edges, 2 and



5.3 examples with splitting behaviour 79

0 A B C 01 2 3 4

Γ 5

5

Figure 5.3.1: A chemical reaction network Γ5, which contains three metabolites M =

{A,B,C} and five reactions E = {1, . . . , 5}. We can observe splitting behaviour
at branching vertex A.

5, which both possess a direct exit path to the zero vertex that does not return
to A. Therefore, we can find by the splitting rule two diagonal entries, Φ22 =
r5A

r5A+r2A
for edge 2 and Φ55 = r2A

r5A+r2A
for edge 5 in the flux sensitivity matrix Φ5.

Furthermore, if we sum up both diagonal entries Φ22 and Φ55 we get N− 1 = 1,
i. e., the number of splitting branches minus 1.

An illustration of the second example Γ6 is given in Figure 5.3.2. The network
fulfills the assumptions to be monomolecular, injective and regular at steady states.
The flux sensitivity matrix is given by

Φ6 =



1 0 0 0 0 0 0
r2A

r3A+r2A

r3A
r3A+r2A

− r2A
r3A+r2A

0 0 0 0

− r3A
r3A+r2A

− r3A
r3A+r2A

r2A
r3A+r2A

0 0 0 0

r2Ar4B
α

r3Ar4B
α −r2Ar4Bα

r5B
r4B+r5B

− r4B
r4B+r5B

0 0

r2Ar5B
α

r3Ar5B
α −r2Ar5Bα − r5B

r4B+r5B

r4B
r4B+r5B

0 0
r2Ar4B+r3A(r4B+r5B)

α −r3Ar5Bα
r2Ar5B
α

r5B
r4B+r5B

− r4B
r4B+r5B

0 0

1 0 0 0 0 0 0


,

where α := (r3A + r2A)(r4B + r5B). According to the Reciprocity Theorem 3.3 we
expect the diagonal entries of the flux sensitivity matrix to lie in the range [0, 1]
and the reciprocal off-diagonal pairs in [−1, 1], which indeed holds true.

Example Γ6 shows two branching points with splitting behaviour in the simple
case, A and B. We can easily verify the splitting behaviour by looking for the exis-
tence of directed exit paths, which do not return to the branching point, for each
splitting branch. The splitting in the vertex A accounts for the diagonal entries
Φ22 =

r3A
r3A+r2A

and Φ33 = r2A
r3A+r2A

in the flux sensitivity matrix Φ6, and the child
edges 4 and 5 of branching point B for Φ44 = r5B

r5B+r4B
and Φ55 = r4B

r5B+r4B
. Further-

more, the diagonal entries for both splitting situations sum up to 1, separately.
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Figure 5.3.2: A chemical reaction network Γ6, which contains four metabolites M =

{A,B,C,D} and seven reactions E = {1, . . . , 7}. We can observe splitting be-
haviour at branching vertex A and also at B.

The last example Γ7, shown in Figure 5.3.3, has an interesting behaviour regarding
the new motif rules. But first we check the assumptions of both approaches in
order to use the framework by Fiedler and Mochizuki and apply the Reciprocity
Theorem from the approach by Shinar et al. As explained in Section 5.1, we can
easily see that the network is monomolecular, regular at steady states and possess
the injectivity property. The flux sensitivity matrix is given by

Φ7 =



1 0 0 0 0 0 0
r2A(r3B+r4B)

α
r5A(r3B+r4B)

α
r2Ar4B
α −r2Ar3Bα −

r2A(r3B+r4B)
α 0 0

r2Ar3B
α

r5Ar3B
α

r4B(r2A+r5A)
α −

r3B(r2A+r5A)
α −r2Ar3Bα 0 0

r2Ar4B
α

r5Ar4B
α −r4Br5Aα

r3Br5A
α −r2Ar4Bα 0 0

r3B+r4B
α −r5Ar4Bα

r4Br5A
α −r3Br5Aα

r2Ar4B
α 0 0

r3B+r4B
α −r5Ar4Bα

r4Br5A
α −r3Br5Aα

r2Ar4B
α 0 0

1 0 0 0 0 0 0


,

where α := r2Ar4B + r5Ar3B + r5Ar4B. Once again, the conclusions of the Reci-
procity Theorem 3.3 by Shinar er al. hold true.

The vertex A of the example Γ7 obviously shows splitting behaviour, since each
branch of the splitting has a directed exit path which do not pass through the
vertex A itself. On the first glance, the branching at vertex B seems to possess
feedback behaviour. However, since the pretended feedback branch 3 possesses a
directed exit path through vertex C andD, which thus do not need to return to the
branching point B, we in fact have splitting behaviour in B. Another observation is
that the two splitting vertices A and B are strongly connected, even reversible, and
therefore can we not use (5.1.6) to predict the diagonal entries of the flux sensitivity
matrix. However, the second part of the splitting rule, which says that summing
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0 A B D 01 4 7

2

3

C5 6

Γ 7

Figure 5.3.3: A chemical reaction network Γ7, which contains four metabolites M =

{A,B,C,D} and seven reactions E = {1, . . . , 7}. We can observe splitting be-
haviour at branching vertex A and also at B.

over the diagonal entries of the N child edges that participate in a splitting yields
N− 1, still holds true.

In this chapter, we saw six examples of reaction networks which satisfied the
assumptions of both approaches and also showed that the conclusions of their
main results hold true. Hence, the both theories do not contradict each other. Even
more examples can be found in the appendix, but not one of them will yield a
contradiction.





6
S U M M A RY A N D D I S C U S S I O N

In this thesis we gave an introduction and a detailed comparison of two recent ap-
proaches to flux sensitivity analysis in chemical reaction networks. The structural
approach by Fiedler and Mochizuki (2015) [11, 22] provided a sensitivity analysis
based on the directed graph structure of the network for the case of monomolec-
ular reactions. Their approach enabled us to determine zero and nonzero flux re-
sponses, without any numerical input. Another intriguing approach to this issue,
proposed by Shinar, Mayo, Ji and Feinberg (2011) [29, 30], revealed a connection
between the structure of a mass action network and constraints in the order of
magnitude on the sensitivity of their steady state fluxes against a rate perturba-
tion.

In order to give a clear and precise comparison of both approaches, we wanted
to stay consistent in the notation. Therefore we adopted the notation from the
approach by Fiedler and Mochizuki into the setting provided by Feinberg, Shi-
nar, Mayo, and Ji. We saw that the setting of both theories is very similar in their
construction of the reaction network diagrams, in fact their graph representations
coincide, as well as their view on the dynamics of the concentrations of metabo-
lites. Also we identified corresponding notions in both theories of all the basic
principles.

The differences that make the approaches complementary came in with the as-
sumptions that are necessary to apply the main results, and the restrictions they
impose. We saw that the approach by Fiedler and Mochizuki can only deal with
monomolecular reaction networks, where the approach by Shinar et al. does not
have such limitations. But in a very recent advance Brehm and Fiedler [3] were
able to enhance the theory for regular multimolecular reaction networks. In fact,
in some sense, they provide a completely different approach which is more pow-
erful.

On the other hand, the approach by Shinar et al. also has a fundamental limitation
regarding the variety of reaction rate kinetics that can be chosen. The reaction
rate functions are restricted to mass action kinetics. In contrast, the approach by

83
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Fiedler and Mochizuki allows a very general class of reaction rate functions, with
exception for pure mass action kinetics.

In both theories, positivity assumptions on the reaction rates and the existence of
a positive steady state are present. In addition, Fiedler and Mochizuki assume that
the reaction network is regular at steady states, i. e., that the Jacobian of the ODE
vector field is nonsingular at steady states. Shinar et al. impose, in contrast, an in-
jectivity property on the network. Injectivity is network property that, regardless
of the rate constants, precludes two different stoichiometrically compatible com-
positions to give rise to production rates that are completely identical. Albeit these
two assumptions seems to be different on the first glance, if we forget about the re-
strictions on the reaction rates for a moment, we can show that injectivity implies
the regularity assumption. Another interesting observation in this illegal settingis
that the framework by Fiedler and Mochizuki, especially Lemma 2.4, provides a
simple way to check for noninjectivity, which otherwise is not a straightforward
matter. Also notable is that all assumptions of both approaches rely on the under-
lying network structure, only.

The main result by Fiedler and Mochizuki on structural sensitivity analysis of flux
influences basically states that an external perturbation either propagates directly
downward in the reaction network, or else spills over to a side branch. I. e., it
provides certain conditions to determine which reaction fluxes are sensitive to a
rate change, in other words, whether the flux response is nonzero, or not. Since
no numerical data is required, their results are function-free.

In contrast, the Reciprocity Theorem from the approach by Shinar et al. provides
constraints on the diagonal entries of the flux sensitivity matrix to be nonnegative
and bounded from above by 1, for any positive network equilibrium. Furthermore,
for each pair of reciprocal off-diagonal entries of the matrix, at least one element
lies between −1 and 1.

When comparing the results, we can see that the theory by Fiedler and Mochizuki
extracts its conclusions predominantly from the graph structure of the network,
whereas on the contrary the approach by Shinar et al. is a purely analytical one.
To gain further insight into both approaches, we applied the theorems to several
examples. All of the reaction networks in the examples fulfilled the assumptions
to be monomolecular, regular at steady states and injective. So we were able to cal-
culate the flux sensitivity matrix according to the framework provided by Fiedler
and Mochizuki, and afterwards verify the statements of the Reciprocity Theorem
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on the matrix entries. Since all statements hold true, we concluded that both ap-
proaches do not contradict each other.

Furthermore, we examined the flux sensitivity matrices with regards to character-
istic behaviour. We were able to identify three response patterns determined from
the local structure of the network, i. e., motif rules. The first one is the single path
way rule, which states that the flux influence of a single child edge is zero, for all
reactions of the network. Regarding the branching in a reaction network, we gave
ideas for two new motif rules, namely the feedback behaviour and the splitting
behaviour.

The feedback behaviour occurs in situations, where the network branches at one
point and for one of the branches every possible exit path starting with a child
edge of the branching vertex needs to pass through the branching vertex on its
way to the zero vertex. We call the branch, starting with this child edge, feedback
branch. In such situations we can find a matrix entry 1 on the diagonal of the flux
sensitivity matrix for each feedback child edge, and a zero entry on the diagonal
for the other branch, which possesses a direct exit path.

The splitting behaviour describes the branching of a reaction network, where all
branches possess a direct exit path that does not return to the branching vertex.
For this motif rule we need to consider two cases. In the simple case, the splitting
vertex is not influenced by another splitting vertex, and we can provide a formula,
giving detailed predictions on the diagonal entries of the flux sensitivity matrix
for the child edges of the branching vertex. The more involved case occurs if the
splitting vertex is strongly connected to another splitting vertex. At present, we
do not have a formula that gives predictions on the diagonal entries for the more
involved case. However, summing over all diagonal entries for the N branches of
one splitting vertex yields N− 1, in both cases. Therefore, the motif rule, which
describes splitting situations is still valuable for predicting the diagonal entries of
the flux sensitivity matrix, or the other way around, for setting up the network
diagram with given flux sensitivity matrix.

We checked for consistence of these new motif rules over several examples, but
do not have proper proofs at present. A proof of the feedback behaviour and the
splitting behaviour, as well as finding a formula that combines both cases of the
splitting behaviour is still open.





A
A P P E N D I X : F U RT H E R E X A M P L E S

We provide here further examples of monomolecular reaction networks, which
are injective (4.2.1) and satisfy the regularity condition (4.2.5). All of them show
the consistence of both approaches, i. e., that the flux sensitivity matrix, which is
derived in the framework and Theorem 2.1 by Fiedler and Mochizuki shows also
the conclusions of the Reciprocity Theorem 3.3 by Shinar, Mayo, Ji and Feinberg.
We provide the reaction network Γ i with its corresponding flux sensitivity matrix
Φi, calculated as explained in Section 2.4. For each example, if existent, we give
comments on its branching behaviour according to Conjectured Motif Rule 1 for
the feedback behaviour and Conjectured Motif Rule 2 for the splitting behaviour,
see Section 5.1. For this purpose, we denote the diagonal entry of the flux sensi-
tivity matrix Φi for the affected child edge j of the branching vertex m = m(j) by
Φijj. For examples investigated in detail, see Chapter 5.
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a.1 feedback behaviour

0 A B C 01
2

3 4

Γ 8 5

Figure A.1.1: Reaction network Γ8 with feedback behaviour at branching vertex B. In par-
ticular, see the diagonal entries Φ855 = 1 for the feedback branch 5 and
Φ833 = 0 for the other branch 3. Note that one matrix entry of each recipro-
cal off-diagonal pair is zero.

Φ8 =



1 0 0 0 0

1+ r5B
r3B

0 −r5Br3B 0 1

1 0 0 0 0

1 0 0 0 0
r5B
r3B

0 −r5Br3B 0 1



0 A
B

C 01 6

Γ 9

2

3

4
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Figure A.1.2: Reaction network Γ9 with feedback behaviour at branching vertices B and C.
In particular, see the diagonal entries Φ933 = 1 for the feedback branch 3 and
Φ944 = 0 for the other branch 4 of vertex B, and the diagonal entries Φ955 = 1

for the feedback branch 5 and Φ966 = 0 for the other branch 6 of vertex C.
Note that one matrix entry of each reciprocal off-diagonal pair is zero.

Φ9 =



1 0 0 0 0 0

1+
r3B(r5C+r6C)
r4Br6C

0 1 −r3Br4B
r3B
r4B

−r3Br5Cr4Br6C
r3B(r5C+r6C)
r4Br6C

0 1 −r3Br4B
r3B
r4B

−r3Br5Cr4Br6C
r5C+r6C
r6C

0 0 0 1 −r5Cr6C
r5C
r6C

0 0 0 1 −r5Cr6C
1 0 0 0 0 0





A.1 feedback behaviour 89

0 A B C 01 2 3 4

Γ 10

5

Figure A.1.3: Reaction network Γ10 with feedback behaviour at branching vertex C. In
particular, see the diagonal entries Φ1055 = 1 for the feedback branch 5 and
Φ1044 = 0 for the other branch 4. Note that one matrix entry of each reciprocal
off-diagonal pair is zero.

Φ10 =



1 0 0 0 0

1+ r5C
r4C

0 0 −r5Cr4C 1

1+ r5C
r4C

0 0 −r5Cr4C 1

1 0 0 0 0
r5C
r4C

0 0 −r5Cr4C 1



0 A1

Γ 11

C 05

B

2

43

Figure A.1.4: Reaction network Γ11 with feedback behaviour at branching vertex C. In
particular, see the diagonal entries Φ1144 = 1 for the feedback branch 4 and
Φ1155 = 0 for the other branch 5. Note that one matrix entry of each reciprocal
off-diagonal pair is zero.

Φ11 =



1 0 0 0 0

1+ r4C
r5C

0 0 1 −r4Cr5C
r4C
r5C

0 0 1 −r4Cr5C
r4C
r5C

0 0 1 −r4Cr5C
1 0 0 0 0


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0 A B C1 2 3 4

Γ 12
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Figure A.1.5: Reaction network Γ12 with feedback behaviour at branching vertex D. In
particular, see the diagonal entries Φ1255 = 1 for the feedback branch 5 and
Φ1277 = 0 for the other branch 7. Note that one matrix entry of each reciprocal
off-diagonal pair is zero.

Φ12 =



1 0 0 0 0 0 0

1+ r5D
r7D

0 0 0 1 0 −r5Dr7D
1+ r5D

r7D
0 0 0 1 0 −r5Dr7D

1+ r5D
r7D

0 0 0 1 0 −r5Dr7D
r5D
r7D

0 0 0 1 0 −r5Dr7D
r5D
r7D

0 0 0 1 0 −r5Dr7D
1 0 0 0 0 0 0


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Figure A.1.6: Reaction network Γ13 with feedback behaviour at branching vertex A. In
particular, see the diagonal entries Φ1322 = 1 for the feedback branch 2 and
Φ1344 = 0 for the other branch 4. Note that one matrix entry of each reciprocal
off-diagonal pair is zero.

Φ13 =


1 0 0 0
r2A
r4A

1 0 −r2Ar4A
r2A
r4A

1 0 −r2Ar4A
1 0 0 0


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Figure A.1.7: Reaction network Γ14 with feedback behaviour at branching vertex B. In
particular, see the diagonal entries Φ1433 = 1 for the feedback branch 3 and
Φ1444 = 0 for the other branch 4. Note that one matrix entry of each reciprocal
off-diagonal pair is zero.

Φ14 =



1 0 0 0 0

1+ r3B
r4B

0 1 −r3Br4B
r3B
r4B

r3B
r4B

0 1 −r3Br4B
r3B
r4B

1 0 0 0 1

0 0 0 0 1


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Figure A.1.8: Reaction network Γ15 with feedback behaviour at branching vertices A and
B. In particular, see the diagonal entries Φ1566 = 1 for the feedback branch
6 and Φ1533 = 0 for the other branch 3 of vertex A, and the diagonal entries
Φ1544 = 1 and Φ1577 = 1 for the feedback branches 4 and 7, and Φ1588 = 0 for
the other branch 8 of vertex B. Note that one matrix entry of each reciprocal
off-diagonal pair is zero. Define α := r4B + r7B, β := r3A + r6A, and ω :=

r8B +α.

Φ15 =



1 0 0 0 0 0 0 0
r3Aα+r6Aω
r3Ar8B

0 −r6Ar3A
β
r3A

0 1 β
r3A

− αβ
r3Ar8B

ω
r8B

0 0 1 0 0 1 − α
r8B

r4B
r8B

0 0 1 0 0 0 −r4Br8B
r3Ar4B+r6Aω

r3Ar8B
0 −r6Ar3A

β
r3A

0 1 r6A
r3A

−
(r3Ar4B+r6Aα)

r3Ar8B
r6Aω
r3Ar8B

0 −r6Ar3A
r6A
r3A

0 1 r6A
r3A

− r6Aα
r3Ar8B

r7B
r8B

0 0 0 0 0 1 −r7Br8B
1 0 0 0 0 0 0 0


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Figure A.1.9: Reaction network Γ16 with feedback behaviour at vertices C andD. In partic-
ular, see the diagonal entries Φ1677 = 1 for the feedback branch 7 and Φ1644 = 0

for the other branch 4 of vertex C, and the diagonal entries Φ1666 = 1 for the
feedback branch 6 and Φ1655 = 0 for the other branch 5 of vertex D. Note that
one matrix entry of each reciprocal off-diagonal pair is zero.

Φ16 =



1 0 0 0 0 0 0
r5Dr4C+r7C(r5D+r6D)

r5Dr4C
0 0 −r7Cr4C −r7Cr6Dr4Cr5D

r7C
r4C

1

−r6Dr5D 0 0 −r7Cr4C −
r6D(r7C+r4C)
r4Cr5D

r7C+r4C
r4C

1

r5D+r6D
r5D

0 0 0 −r6Dr5D 1 0

1 0 0 0 0 0 0
r6D
r5D

0 0 0 −r6Dr5D 1 0
r7C(r5D+r6D)

r5Dr4C
0 0 −r7Cr4C −r7Cr6Dr4Cr5D

r7C
r4C

1


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Figure A.1.10: Reaction network Γ17 with feedback behaviour at branching vertex C. In
particular, see the diagonal entries Φ1744 = 1 and Φ1766 = 1 for the feedback
branches 4 and 6, and Φ1733 = 0 for the other branch 3. Note that one matrix
entry of each reciprocal off-diagonal pair is zero.

Φ17 =



1 0 0 0 0 0 0
r3C+r4C+r6C
r2Ar3C

0 −r4C+r6Cr3C
1 0 1 0

1 0 0 0 0 0 0
r4C
r3C

0 −r4Cr3C 1 0 0 0

r4C
r3C

0 −r4Cr3C 1 0 0 0

r6C
r3C

0 −r6Cr3C 0 0 1 0

r6C
r3C

0 −r6Cr3C 0 0 1 0


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Figure A.1.11: Reaction network Γ18 with feedback behaviour at branching vertex C. In
particular, see the diagonal entries Φ1877 = 1 for the feedback branch 7 and
Φ1866 = 0 for the other branch 6. Note that one matrix entry of each recipro-
cal off-diagonal pair is zero.

Φ18 =



1 0 0 0 0 0 0

0 1 0 0 0 0 0

1 0 0 0 0 0 0
r7C
r6C

1+ r7C
r6C

0 0 0 −r7Cr6C 1

1+ r7C
r6C

1+ r7C
r6C

0 0 0 −r7Cr6C 1

1 1 0 0 0 0 0
r7C
r6C

r7C
r6C

0 0 0 −r7Cr6C 1


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a.2 splitting behaviour in the simple case

0 A1

Γ 19
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Figure A.2.1: Reaction network Γ19 with splitting behaviour in the simple case at branch-
ing vertex A. In particular, see the diagonal entries Φ1922 and Φ1955 character-
izing the splitting branches 2 and 5 in the matrix. Note that only the entries
Φ1925 and Φ1952 do not have one matrix entry of each reciprocal off-diagonal
pair be zero, but still fulfill the conclusions of the Reciprocity Theorem 3.3.

Φ19 =



1 0 0 0 0 0
r2A

r2A+r5A

r5A
r2A+r5A

0 0 − r2A
r2A+r5A

0

r2A
r2A+r5A

r5A
r2A+r5A

0 0 − r2A
r2A+r5A

0

1 0 0 0 0 0
r5A

r2A+r5A
− r5A
r2A+r5A

0 0 r2A
r2A+r5A

0

r5A
r2A+r5A

− r5A
r2A+r5A

0 0 r2A
r2A+r5A

0


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Figure A.2.2: Reaction network Γ20 with splitting behaviour in the simple case at branch-
ing vertex A. In particular, see the diagonal entries Φ2022 and Φ2033 character-
izing the splitting branches 2 and 3 in the matrix. Note that only the entries
Φ2023 and Φ2032 do not have one matrix entry of each reciprocal off-diagonal
pair be zero, but still fulfill the conclusions of the Reciprocity Theorem 3.3.

Φ20 =



1 0 0 0 0 0 0
r2A

r2A+r3A

r3A
r2A+r3A

− r2A
r2A+r3A

0 0 0 0

r3A
r2A+r3A

− r3A
r2A+r3A

r2A
r2A+r3A

0 0 0 0

0 0 0 1 0 0 0
r2A

r2A+r3A

r3A
r2A+r3A

− r2A
r2A+r3A

0 0 0 0

r3A
r2A+r3A

− r3A
r2A+r3A

r2A
r2A+r3A

0 0 0 0

1 0 0 1 0 0 0


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Figure A.2.3: Reaction network Γ21 with splitting behaviour in the simple case at branch-
ing vertex A. In particular, see the diagonal entries Φ2122 and Φ2144 character-
izing the splitting branches 2 and 4 in the matrix. Note that only the entries
Φ2124 and Φ2142 do not have one matrix entry of each reciprocal off-diagonal
pair be zero, but still fulfill the conclusions of the Reciprocity Theorem 3.3.

Φ21 =



1 0 0 0 0
r2A

r2A+r4A

r4A
r2A+r4A

0 − r2A
r2A+r4A

0

r2A
r2A+r4A

r4A
r2A+r4A

0 − r2A
r2A+r4A

0

r4A
r2A+r4A

− r4A
r2A+r4A

0 r2A
r2A+r4A

0

r4A
r2A+r4A

− r4A
r2A+r4A

0 r2A
r2A+r4A

0


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Figure A.2.4: Reaction network Γ22 with splitting behaviour in the simple case at branch-
ing vertex A. In particular, see the diagonal entries Φ2222 and Φ2244 character-
izing the splitting branches 2 and 4 in the matrix. Note that only the entries
Φ2224 and Φ2242 do not have one matrix entry of each reciprocal off-diagonal
pair be zero, but still fulfill the conclusions of the Reciprocity Theorem 3.3.

Φ22 =


1 0 0 0
r2A

r2A+r4A

r4A
r2A+r4A

0 − r2A
r2A+r4A

r2A
r2A+r4A

r4A
r2A+r4A

0 − r2A
r2A+r4A

r4A
r2A+r4A

− r4A
r2A+r4A

0 r2A
r2A+r4A


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Figure A.2.5: Reaction network Γ23 with splitting behaviour in the simple case at branch-
ing vertex A. In particular, see the diagonal entries Φ2322 and Φ2355 character-
izing the splitting branches 2 and 5 in the matrix. Note that only the entries
Φ2325 and Φ2352 do not have one matrix entry of each reciprocal off-diagonal
pair be zero, but still fulfill the conclusions of the Reciprocity Theorem 3.3.

Φ23 =



1 0 0 0 0 0
r2A

r2A+r5A

r5A
r2A+r5A

0 0 − r2A
r2A+r5A

0

r2A
r2A+r5A

r5A
r2A+r5A

0 0 − r2A
r2A+r5A

0

r2A
r2A+r5A

r5A
r2A+r5A

0 0 − r2A
r2A+r5A

0

r5A
r2A+r5A

− r5A
r2A+r5A

0 0 r2A
r2A+r5A

0

r5A
r2A+r5A

− r5A
r2A+r5A

0 0 r2A
r2A+r5A

0


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Figure A.2.6: Reaction network Γ24 with splitting behaviour in the simple case at branch-
ing vertex A. In particular, see the diagonal entries Φ2422, Φ2433, and Φ2444 char-
acterizing the splitting branches 2, 3, and 4 in the matrix. Note that only the
entries Φ2423, Φ2432, Φ2424, Φ2442, Φ2434, and Φ2443 do not have one matrix entry of
each reciprocal off-diagonal pair be zero, but still fulfill the conclusions of
the Reciprocity Theorem 3.3. Define ω := r2A + r3A + r4A.

Φ24 =



1 0 0 0 0 0 0
r2A
ω

r3A+r4A
ω −r2Aω −r2Aω 0 0 0

r3A
ω −r3Aω

r2A+r4A
ω −r3Aω 0 0 0

r4A
ω −r4Aω −r4Aω

r2A+r3A
ω 0 0 0

r2A
ω

r3A+r4A
ω −r2Aω −r2Aω 0 0 0

r3A
ω −r3Aω

r2A+r4A
ω −r3Aω 0 0 0

r4A
ω −r4Aω −r4Aω

r2A+r3A
ω 0 0 0


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Figure A.2.7: Reaction network Γ25 with splitting behaviour in the simple case at branch-
ing vertices A and C. In particular, see the diagonal entries Φ2522 and Φ2533 for
the splitting branches 2 and 3 of vertex A, and the diagonal entries Φ2555 and
Φ2566 for the splitting branches 5 and 6 of vertex C. Note that only the entries
Φ2523, Φ2532 and Φ2556, Φ2565 do not have one matrix entry of each reciprocal
off-diagonal pair be zero, but still fulfill the conclusions of the Reciprocity
Theorem 3.3. Define α := (r2A + r3A)(r5C + r6C).

Φ25 =



1 0 0 0 0 0 0
r2A

r2A+r3A

r3A
r2A+r3A

− r2A
r2A+r3A

0 0 0 0

r3A
r2A+r3A

− r3A
r2A+r3A

r2A
r2A+r3A

0 0 0 0

r2A
r2A+r3A

r3A
r2A+r3A

− r2A
r2A+r3A

0 0 0 0

r3Ar5C
α −r3Ar5Cα

r2Ar5C
α 0 r6C

r5C+r6C
− r5C
r5C+r6C

0

r3Ar6C
α −r3Ar6Cα

r2Ar6C
α 0 − r6C

r5C+r6C

r5C
r5C+r6C

0

r3Ar6C
α −r3Ar6Cα

r2Ar6C
α 0 − r6C

r5C+r6C

r5C
r5C+r6C

0


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Figure A.2.8: Reaction network Γ26 with splitting behaviour in the simple case at branch-
ing vertex A. In particular, see the diagonal entries Φ2622, Φ2644, Φ2666, and Φ2688
characterizing the splitting branches 2, 4, 6, and 8 in the matrix. Note that
the entries Φ2624, Φ2642, Φ2626, Φ2662, Φ2628, Φ2682, Φ2646, Φ2664, Φ2648, Φ2684, Φ2668, and
Φ2686 do not have one matrix entry of each reciprocal off-diagonal pair be
zero, but still fulfill the conclusions of the Reciprocity Theorem 3.3. Define
α := r2A + r4A + r6A + r8A.

Φ26 =



1 0 0 0 0 0 0 0 0
r2A
α

r4A+r6A+r8A
α 0 −r2Aα 0 −r2Aα 0 −r2Aα 0

r2A
α

r4A+r6A+r8A
α 0 −r2Aα 0 −r2Aα 0 −r2Aα 0

r4A
α −r4Aα 0 r2A+r6A+r8A

α 0 −r4Aα 0 −r4Aα 0
r4A
α −r4Aα 0 r2A+r6A+r8A

α 0 −r4Aα 0 −r4Aα 0
r6A
α −r6Aα 0 −r6Aα 0 r2A+r4A+r8A

α 0 −r6Aα 0
r6A
α −r6Aα 0 −r6Aα 0 r2A+r4A+r8A

α 0 −r6Aα 0
r8A
α −r8Aα 0 −r8Aα 0 −r8Aα 0 r2A+r4A+r6A

α 0
r8A
α −r8Aα 0 −r8Aα 0 −r8Aα 0 r2A+r4A+r6A

α 0


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Figure A.2.9: Reaction network Γ27 with splitting behaviour in the simple case at branch-
ing vertices A and B. In particular, see the diagonal entries Φ2733 and Φ2744 for
the splitting branches 3 and 4 of vertex A, and the diagonal entries Φ2766 and
Φ2777 for the splitting branches 6 and 7 of vertex B. Note that only the entries
Φ2734, Φ2743 and Φ2767, Φ2776 do not have one matrix entry of each reciprocal
off-diagonal pair be zero, but still fulfill the conclusions of the Reciprocity
Theorem 3.3. Define α := (r3A + r4A)(r6B + r7B)

Φ27 =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

1 0 r4A
r3A+r4A

− r3A
r3A+r4A

0 0 0 0

r4A
r3A+r4A

0 − r4A
r3A+r4A

r3A
r3A+r4A

0 0 0 0

r3A
r3A+r4A

1 r4A
r3A+r4A

− r3A
r3A+r4A

0 0 0 0

r4Ar6B
α 0 −r4Ar6Bα

r3Ar6B
α 0 r7B

r6B+r7B
− r6B
r6B+r7B

0

r4Ar7B
α 0 −r4Ar7Bα

r3Ar7B
α 0 − r7B

r6B+r7B

r6B
r6B+r7B

0
r4Ar6B+r3A(r6B+r7B)

α 1 r4Ar7B
α −r3Ar7Bα 0 r7B

r6B+r7B
− r6B
r6B+r7B

0


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Figure A.2.10: Reaction network Γ28 with splitting behaviour in the simple case at branch-
ing vertices A and B. In particular, see the diagonal entries Φ2822, Φ2833, and
Φ2866 for the splitting branches 2, 3, and 6 of vertex A, and the diagonal en-
tries Φ2844 and Φ2877 for the splitting branches 4 and 7 of vertex B. Note that
the entries Φ2823, Φ2832, Φ2826, Φ2862, Φ2836, Φ2863, and Φ2847, Φ2874 do not have one
matrix entry of each reciprocal off-diagonal pair be zero, but still fulfill the
conclusions of the Reciprocity Theorem 3.3. Define α := r2A + r3A + r6A
and β := r4B + r7B.

Φ28 =



1 0 0 0 0 0 0 0
r2A
α

r3A+r6A
α −r2Aα 0 0 −r2Aα 0 0

r3A
α −r3Aα

r2A+r6A
α 0 0 −r3Aα 0 0

r3Ar4B
αβ −r3Ar4Bαβ

r4B(r2A+r6A)
αβ

r7B
β 0 −r3Ar4Bαβ −r4Bβ 0

r6Aβ+r3Ar4B
αβ −r6Aβ+r3Ar4Bαβ

r4Br2A−r6Ar7B
αβ

r7B
β 0 r2Aβ+r4Br7B

αβ −r4Bβ 0

r6A
α −r6Aα −r6Aα 0 0 r2A+r3A

α 0 0
r3Ar7B
αβ −r3Ar7Bαβ

r7B(r2A+r6A)
αβ −r7Bβ 0 −r3Ar7Bαβ

r4B
β 0

1 0 0 0 0 0 0 0


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Figure A.2.11: Reaction network Γ29 with splitting behaviour in the simple case at branch-
ing vertices A and B. In particular, see the diagonal entries Φ2922 and Φ2977
for the splitting branches 2 and 7 of vertex A, and the diagonal entries
Φ2933 and Φ2966 for the splitting branches 3 and 6 of vertex B. Note that only
the entries Φ2927, Φ2972 and Φ2936, Φ2963 do not have one matrix entry of each
reciprocal off-diagonal pair be zero, but still fulfill the conclusions of the
Reciprocity Theorem 3.3. Define ω := (r2A + r7A)(r3B + r6B).

Φ29 =



1 0 0 0 0 0 0
r2A

r2A+r7A

r7A
r2A+r7A

0 0 0 0 − r2A
r2A+r7A

r2Ar3B
ω

r7Ar3B
ω

r6B
r3B+r6B

0 0 − r3B
r3B+r6B

−r2Ar3Bω
r2Ar3B+r7A(r3B+r6B)

ω −r7Ar6Bω
r6B

r3B+r6B
0 0 − r3B

r3B+r6B

r2Ar6B
ω

1 0 0 0 0 0 0
r2Ar6B
ω

r7Ar6B
ω − r6B

r3B+r6B
0 0 r3B

r3B+r6B
−r2Ar6Bω

r7A
r2A+r7A

− r7A
r2A+r7A

0 0 0 0 r2A
r2A+r7A


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Figure A.3.1: Reaction network Γ30 with splitting behaviour in the more involved case at
branching vertices A and B, which are strongly connected. In particular, see
the diagonal entries Φ3044 and Φ3055 for the splitting branches 4 and 5 of vertex
A, and the diagonal entries Φ3022 and Φ3033 for the splitting branches 2 and 3
of vertex B. Define α := r2Br5A + r3Br4A + r3Br5A.

Φ30 =



1 0 0 0 0 0
r4Ar2B
α

r3B(r5A+r4A)
α −

r2B(r5A+r4A)
α

r2Br5A
α −r2Br4Aα 0

r4Ar3B
α −r3Br5Aα

r2Br5A
α

r3Br5A
α −r3Br4Aα 0

r4A(r3B+r2B)
α

r3Br4A
α −r2Br4Aα

r5A(r2B+r3B)
α −

r4A(r2B+r3B)
α 0

r5A(r3B+r2B)
α

r3Br5A
α −r2Br5Aα −r5Ar3Bα

r4Ar3B
α 0

r5A(r3B+r2B)
α

r3Br5A
α −r2Br5Aα −r5Ar3Bα

r4Ar3B
α 0


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Figure A.3.2: Reaction network Γ31 with splitting behaviour in the more involved case at
branching vertices B and D, which are strongly connected. In particular, see
the diagonal entries Φ3144 and Φ3177 for the splitting branches 4 and 7 of vertex
B, and the diagonal entriesΦ3166 andΦ3188 for the splitting branches 6 and 8 of
vertex D. Define α := r4B + r7B, β := r6D + r8D, and ω := r6Dr7B +αr8D.

Φ31 =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0
αβ
ω

r6Dr4B
ω 0 r7Bβ

ω 0 r8Dr4B
ω −r4Bβω −r6Dr4Bω

r6Dr4B
ω

r6Dr4B
ω 0 r7Bβ

ω 0 r8Dr4B
ω −r4Bβω −r6Dr4Bω

1+ r6Dr4B
ω

αβ
ω 0 r7Bβ

ω 0 r8Dr4B
ω −r4Bβω

r6Dr4B
ω

r6Dr7B
ω

r6Dα
β 0 r7Br6D

ω 0 r8Dα
ω −r4Br6Dω −r6Dαω

r6Dr7B
ω

r6Dr7B
ω 0 −r7Br8Dω 0 r8Dr7B

ω
r4Br8D
ω −r6Dr7Bω

r8Dα
ω

r8Dα
ω 0 r7Br8D

ω 0 −r7Br8Dω −r8Dr4Bω
r6Dr7B
ω


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Figure A.3.3: Reaction network Γ32 with splitting behaviour in the more involved case at
branching vertices B and C, which are strongly connected. In particular, see
the diagonal entries Φ3233 and Φ3266 for the splitting branches 3 and 6 of vertex
B, and the diagonal entries Φ3244 and Φ3255 for the splitting branches 4 and 5
of vertex C. Define ω := r3Br5C + r6B(r4C + r5C).

Φ32 =



1 0 0 0 0 0 0

1+ r3Br4C
ω 0 r6Br4C

ω
r5C(r3B+r6B)

ω −
r4C(r3B+r6B)

ω
r3Br4C
ω 0

r3B(r4C+r5C)
ω 0

r6B(r4C+r5C)
ω

r3Br5C
ω −r4Cr3Bω

r3B(r4C−r5C)
ω 0

r3Br4C
ω 0 r6Br4C

ω
r4C(r3B+r6B)

ω −
r4C(r3B+r6B)

ω
r3Br4C
ω 0

r6Br5C
ω 0 r6Br5C

ω −r6Br5Cω
r6Br4C
ω −r3Br5Cω 0

r6B(r4C+r5C)
ω 0 −r6Br5Cω

r6Br5C
ω −r6Br4Cω

r3Br5C
ω 0

r6B(r4C+r5C)
ω 0 −r6Br5Cω

r6Br5C
ω −r6Br4Cω

r3Br5C
ω 0


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a.4 feedback behaviour and splitting behaviour
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Figure A.4.1: Reaction network Γ33 with feedback behaviour at branching vertex C and
splitting behaviour in the more involved case at branching vertices A and B,
which are strongly connected. In particular, see the diagonal entries Φ3355 = 1

for the feedback branch 5 and Φ3388 = 0 for the other branch 8 of vertex C.
Further, see the diagonal entries Φ3333 and Φ3366 for the splitting branches 3
and 6 of vertex A, and the diagonal entries Φ3344 and Φ3377 for the splitting
branches 4 and 7 of vertex B. Define α := r4B + r7B, β := r5C + r8C, γ :=

r3A + r6A, and ω := r4Br3A + r6Aα.

Φ33 =



1 0 0 0 0 0 0 0
r5Cω+r7Br3Aβ

r8Cω
0 r6Ar7B

ω −r7Bγω 1+ r3Ar7B
ω −r3Ar7Bω

r4Bγ
ω −r5Cω+r7Br3Ar5C

r8Cω
r3Aαβ
r8Cω

0 r6Aα
ω −r7Br3Aω

r3Aα
ω −r3Aαω

r4Br3A
ω

r3Ar5Cα
r8Cω

r3Ar4Bβ
r8Cω

0 r6Ar4B
ω

r7Br6A
ω

r3Ar4B
ω −r3Ar4Bω −r4Br6Aω −r3Ar5Cr4Br8Cω

r5C
r8C

0 0 0 1 0 0 0

r6Aαβ
r8Cω

0 −r6Ar4Bω −r7Br6Aω
r6Aα
ω

r3Ar4B
ω

r4Br6A
ω −r6Ar5Cαr8Cω

r7Br3Aβ
r8Cω

0 r6Ar7B
ω −r7Bγω

r3Ar7B
ω −r3Ar7Bω

r4Bγ
ω −r7Br3Ar5Cr8Cω

1 0 0 0 0 0 0 0


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Figure A.4.2: Reaction network Γ34 with feedback and splitting behaviour in the simple
case at branching vertex C. In particular, see the diagonal entries Φ3444 = 1

for the feedback branch 4, and Φ3455 and Φ3466 characterizing the splitting
branches 5 and 6 in the matrix. Note that only the entries Φ3456 and Φ3465 do
not have one matrix entry of each reciprocal off-diagonal pair be zero, but
still fulfill the conclusions of the Reciprocity Theorem 3.3.

Φ34 =



1 0 0 0 0 0 0 0

1+ r4C
r5C+r6C

0 0 1 − r4C
r5C+r6C

− r4C
r5C+r6C

0 0

1+ r4C
r5C+r6C

0 0 1 − r4C
r5C+r6C

− r4C
r5C+r6C

0 0

r4C
r5C+r6C

0 0 1 − r4C
r5C+r6C

− r4C
r5C+r6C

0 0

r5C
r5C+r6C

0 0 0 r6C
r5C+r6C

− r5C
r5C+r6C

0 0

r6C
r5C+r6C

0 0 0 − r6C
r5C+r6C

r5C
r5C+r6C

0 0

r5C
r5C+r6C

0 0 0 r6C
r5C+r6C

− r5C
r5C+r6C

0 0

r6C
r5C+r6C

0 0 0 − r6C
r5C+r6C

r5C
r5C+r6C

0 0


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miscellaneous

0 A C 01 3 5

Γ 350 B2 4

Figure A.4.3: Reaction network Γ35. Note that one matrix entry of each reciprocal off-
diagonal pair is zero.

Φ35 =



1 0 0 0 0

0 1 0 0 0

1 0 0 0 0

0 1 0 0 0

1 1 0 0 0



0 A1 2Γ 36 0

Figure A.4.4: Reaction network Γ36 from section 2.1. Note that one matrix entry of each
reciprocal off-diagonal pair is zero.

Φ36 =

(
1 0

1 0

)
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