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Abstract. This paper continues the study of fundamental properties of elementary func-

tions on the Sierpinski gasket (SG) related to the Laplacian defined by Kigami: harmonic

functions, multiharmonic functions, and eigenfunctions of the Laplacian. We describe the

possible point singularities of such functions, and we use the description at certain periodic

points to motivate the definition of local derivatives at these points. We study the global

behavior of eigenfunctions on all generic infinite blow-ups of SG, and construct eigenfunc-

tions that decay at infinity in certain directions. We study the asymptotic behavior of normal

derivatives of Dirichlet eigenfunctions at boundary points, and give experimental evidence for

the behavior of the normal derivatives of the heat kernel at boundary points.

§1. Introduction.

In this paper we continue the study of fundamental properties of elementary functions
on the Sierpinski gasket (SG). In [NSTY], which we will refer to as part I, the growth
properties of monomials, analogous to xn/n! on the unit interval, were described, and this
information was used to give a theory of power series and analytic functions on SG. Recall
that SG is the unique nonempty compact set in the plane satisfying

(1.1) K =
2⋃

i=0

FiK,

where Fix = 1
2x + 1

2qi and q0, q1, q2 are the vertices of an equilateral triangle considered
the boundary of K with a self-similar and symmetric energy form E(u, v), measure µ and
Laplacian ∆ as described in [Ki1,2]. (See also [S2].)

The self-similar properties are

(1.2) E(u, v) =
5
3

2∑
i=0

E(u ◦ Fi, v ◦ Fi),

(1.3) µ =
1
3

2∑
i=0

µ ◦ F−1
i ,

and

(1.4) ∆(u ◦ Fi) =
1
5
(∆u) ◦ Fi,

or more generally

(1.5) E(u, v) =
(

5
3

)m ∑
|w|=m

E(u ◦ Fw, v ◦ Fw),

(1.6) µ =
1

3m

∑
|w|=m

µ ◦ F−1
w ,
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and

(1.7) ∆(u ◦ Fw) =
1

5m
(∆u) ◦ Fw,

where w = (w1, w2, . . . , wm) denotes a word of length |w| = m in the digits (0, 1, 2) and
Fw = Fw1Fw2 · · ·Fwm . The Laplacian may be defined by the weak formulation u ∈ dom ∆
and ∆u = f if u ∈ dom E , f is continuous, and

(1.8) −E(u, v) =
∫

fvdµ for all v ∈ dom0 E ,

where the subscript 0 indicates that the function vanishes on the boundary. There are also
local derivatives defined at the boundary points. At q0, the normal derivative is defined
by

(1.9) ∂nu(q0) = lim
m→∞

(
5
3

)m [
2u(q0)− u(Fm

0 q1)− u(Fm
0 q2)

]
and the tangential derivative by

(1.10) ∂T u(q0) = lim
m→∞

5m
[
u(Fm

0 q1)− u(Fm
0 q2)

]
,

with similar definitions at q1 and q2 by cyclic permutation of the indices. These local
derivatives exist if u ∈ dom ∆. Then (1.8) extends to the Gauss-Green formula

(1.11)
∫

v ∆u dµ = −E(u, v) +
2∑

i=0

v(qi)∂nu(qi)

for all v ∈ dom E , u ∈ dom ∆.
The space of harmonic functions on K, solutions of ∆u = 0, is 3-dimensional, each

harmonic function being determined by its 3 boundary values. More generally, a function
is called multiharmonic if ∆k+1u = 0 for some k ≥ 0. These are the analogs of polynomials
on the unit interval. In part I, a family of multiharmonic functions, analogous to the
monomials xn/n! on the unit interval, was described and studied. Choose a boundary
point, say q0. Then the functions P

(0)
jk for k = 1, 2, 3 and j ≥ 0 satisfy ∆j+1P

(0)
jk = 0 and

are characterized by the conditions

(1.12)


∆mP

(0)
jk (q0) = δmjδk1,

∂n∆mP
(0)
jk (q0) = δmjδk2,

∂T ∆mP
(0)
jk (q0) = δmjδk3.

These functions are related by the identity

(1.13) ∆P
(0)
(j+1)k = P

(0)
jk .
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If R0 denotes the reflection symmetry of K that fixes q0 and interchanges q1 and q2, then
P

(0)
j1 and P

(0)
j2 are symmetric while P

(0)
j3 is skew-symmetric with respect to R0. The decay

properties of these functions near q0 are described by the following scaling identities:

(1.14)


P

(0)
j1 (Fm

0 x) = 5−jmP
(0)
j1 (x),

P
(0)
j2 (Fm

0 x) =
(

3
5

)m

5−jmP
(0)
j2 (x),

P
(0)
j3 (Fm

0 x) = 5−(j+1)mP
(0)
j3 (x).

In section 4 of this paper, we will see that if we consider solutions of ∆j+1u = 0 in
K \ q0 with possible singularity at q0, then we add another family P

(0)
j4 . These functions

are skew-symmetric with respect to R0 and satisfy (1.13) and the scaling identity

(1.15) P
(0)
j4 (Fm

0 x) = 3m · 5−jmP
(0)
j4 (x).

We observe from (1.15) that while P
(0)
04 has a pole at q0, all the other P

(0)
j4 functions are

continuous, and in fact vanish at q0. This is reminiscent of the terms in expansions that
hold for solution of ordinary differential equations in a neighborhood of a regular singular
point. We also have experimental evidence for the asymptotic behavior of P

(0)
j4 as j →

∞, namely that lim
j→∞

(
−5λ

(5)
0

)j

P
(0)
j4 exists and equals an eigenfunction with eigenvalue

5λ
(5)
0 ≈ 279.4291373 . . . . (The notation is from [GRS].) This is similar to the asymptotic

behavior of P
(0)
j2 established in part I, while P

(0)
j1 and P

(0)
j3 have superexponential decay in

j.
We are also interested in functions with point singularities at other types of points. We

begin by considering just harmonic functions. In section 2, we show that if the singularity
occurs at a junction point the space of harmonic functions is 7-dimensional, while at a
generic point it is 6-dimensional. We are also able to localize singularities and describe the
space of harmonic functions with a finite number of singularities.

In section 3, we specialize to the case of harmonic functions with a singularity at a
periodic point z, meaning that z is the fixed-point of Fw for some finite word w of length
m. (So z has the address w, w, w, . . . .) We describe a specific basis

{
P

(z)
0k

}
k=1,2,... ,6

for

this space, characterized by the scaling identities

(1.16) P
(z)
0k ◦ (Fw)n = σn

k P
(z)
0k ,

for certain constants σk. When k = 1, 2, 3, these functions are globally harmonic (have
removable singularities) with typically 1 = σ1 > σ2 > σ3. (There is at least one exception,
when w = (1, 2, 3), where σ2 and σ3 are complex conjugate pairs with |σ2| = |σ3| < 1.)
The remaining functions P

(z)
0k for k = 4, 5, 6 have true singularities at z, although P

(z)
04

is continuous since σ4 =
(

3
5

)m
< 1, while P

(z)
05 and P

(z)
06 have poles since 1 < σ5 < σ6.

In fact P
(z)
04 is closely related to the Green’s function at the point z. Using information
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derived from these functions we define local derivatives ∂2f(z) and ∂3f(z) analogous to
the normal and tangential derivatives (1.9) and (1.10) at a boundary point, and show that
these derivatives exist if f ∈ dom ∆. We also identify ∆P

(z)
0k for k = 4, 5, 6 as “distributions

supported at the point z,” with ∆P
(z)
04 a multiple of δz, ∆P

(z)
05 a multiple of ∂2δz, and ∆P

(z)
06

a multiple of ∂3δz.
It is natural to try to extend the family

{
P

(z)
0k

}
of harmonic functions to a family

{
P

(z)
jk

}
of monomials with

(1.17) ∆P
(z)
jk = P

(z)
(j−1)k on K \ {z}

and

(1.18) P
(z)
jk ◦ (Fw)n =

(
5−jmσk

)n
P

(z)
jk .

To keep the complexity manageable we restrict attention to the case w = (0, 1) in section 5.
The idea is to construct P

(z)
jk first on the complement of the level m cell C containing z.

We split K \ C into a finite union of cells and use the bases of monomials from part I
on each cell. We then use (1.18) to extend P

(z)
jk to K \ {z}. In the process we require

certain matching conditions, and this leads to a complicated set of linear equations with
the number of equations equal to the number of free parameters in the construction. It is
not clear how to obtain a proof of existence and uniqueness for these equations, but in the
case w = (0, 1) we were able to write a program to solve these equations numerically.

Another important class of elementary functions are the eigenfunctions of the Laplacian,

(1.19) −∆u = λu.

Global solutions to (1.19) are described by the method of spectral decimation [F5]. (See
also [T1] and [DSV].) To each λ there exists a sequence {λm} for m ≥ m0 (called the
“generation of birth”) such that

(1.20) λ = lim
m→∞

3
2
5mλm

and

(1.21) λm = λm+1(5− λm+1) for m ≥ m0.

Then u|Vm is a discrete eigenfunction on Γm with eigenvalue λm for m ≥ m0. Moreover
λm does not equal any of the exceptional values 2, 5, 6 for m > m0, while λm0 is one of the
exceptional values unless m0 = 1. The case m0 = 1 is called generic. Note that we can
solve (1.21),

(1.22) λm+1 =
5 + εm

√
25− 4λm

2
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for εm = ±1, and we must have εm = −1 for all but a finite number of m’s in order that
the limit in (1.20) exists. We can also solve the discrete eigenvalue equation to extend the
values of u from Vm−1 to Vm. This is a local extension algorithm, so that if |w| = m − 1
we have

(1.23) u(FwF0q1) =
(4− λm)

(2− λm)(5− λm)
[
u(Fwq0) + u(Fwq1)

]
+

2
(2− λm)(5− λm)

u(Fwq2)

and similar identities at FwF1q2 and FwF2q0, so the values of u on the boundary of a cell
of level m are obtained from the values of u on the boundary of the cell of level m − 1
containing it by multiplying by a certain 3 × 3 matrix. (The matrix depends on λm and
the position of the cells.) By inverting the matrix we can similarly expand outward from
the small cell to the large cell. Note that λm 6= 2, 5 is required for (1.23) to be meaningful,
and λm 6= 6 is required for the matrix to be invertible.

In section 6, we show how to modify the method of spectral decimation to describe all
solutions of the eigenvalue equation (1.19) allowing a singularity at a boundary point, for
generic eigenvalues. Allowing the singularity increases the dimension of solutions from 3
to 4, so we just need to describe one additional eigenfunction. We show that it is skew-
symmetric with respect to R0 and has a pole with the same rate of growth as P

(0)
04 . In

principle there should be a 6-dimensional space of solutions to (1.19) with a singularity
at a nonjunction point. For the periodic point z discussed in section 5, we can use power
series

∞∑
j=0

(−λ)jP
(z)
jk for k = 1, 2, . . . , 6

to give a basis, provided |λ| is small enough and the growth rates suggested in section 5
are valid. Nevertheless, it would still be desirable to give a spectral decimation description
in this case.

In part I there is a description of the solutions to the eigenvalue equation (1.19) on
the infinite blow-up

⋃∞
n=0 F−n

0 K of SG. However, this is only one of uncountably many
distinct infinite blow-ups of SG. For any infinite word w, one can form the blow-up

SGw =
∞⋃

n=0

F−1
w1

F−1
w2
· · ·F−1

wn
K (increasing union),

and words that differ for all but a finite number of places yield distinct blow-ups. The one
studied in part I is characterized as having a boundary point. If the word w omits one
digit, say 2, then the blow-up has a bottom line. It is easy to extend the method of spectral
decimation to all infinite blow-ups, allowing the index m to range over all integers, and
allowing m0 = −∞. (These will be the generic ones.) As in part I, we will be interested in
picking out specific eigenfunctions with different boundedness and asymptotic behaviors
“at infinity.”

In section 7, we study the case of generic eigenvalues. We show that in the case that the
blow-up has a bottom line, there exists an eigenfunction that is constant along this line.
This is closely related to the observation in [DSV] that certain Dirichlet eigenfunctions are
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constant along the “inner triangle” in SG, and may be explained by symmetry considera-
tions as mentioned in [ASST]. For a blow-up in which all digits occur in any large enough
segment, we are able to construct a basis of eigenfunctions where each eigenfunction goes
to infinity in one “direction,” and goes to zero in the other two directions. For this we need
to assume not only that the eigenvalue is generic, but also that it is non-Julia, meaning
that the discrete eigenvalues λj do not belong to the Julia set J of the polynomial z(5−z).
This consideration is equivalent to saying |λj | goes to infinity as j → −∞.

In section 8, we study some of the eigenvalues omitted in section 7. For nongeneric λ,
many cases are described in [T1] since they contribute to the L2 spectrum of the blow-up.
We are able to give a complete description, including the case when some λm = 2 not
considered in [T1]. When λm ∈ J the situation is more subtle. The fixed point 4 ∈ J
seems to be special. If λm = 4 then all eigenfunctions are bounded. We conjecture that
if λm ∈ J but λm 6= 4 (for all m ≤ m0) then there are no bounded eigenfunctions (for
a blow-up with no boundary point). We are able to prove that there are no bounded
eigenfunctions if λm = 3±

√
3. (This is the two-cycle in J .)

To put these matters in context, we should consider what happens in the theory of
Riemannian manifolds without boundary. The L2 spectral resolution of the Laplacian
typically gives rise to many bounded eigenfunctions, and we can obtain more by taking a
suitable closure. Are there any more bounded eigenfunctions? The answer depends a lot
on the particular manifold. (In general, the answer is unknown.) For Euclidean space, the
answer is no. For hyperbolic space, the answer is yes, and in fact there is a whole analytic
family of them. So the case of SGw seems to fall in between these extremes.

In section 9, we study normal derivatives at the boundary for Dirichlet eigenfunctions
and heat kernels. For comparison, note that on the unit interval the functions

{
1√
2

sinπjx
}

form an orthonormal basis of Dirichlet eigenfunctions with eigenvalue (πj)2 and normal
derivatives −πj/

√
2 and (−1)j+1πj/

√
2 at 0 and 1, so that |∂nu| = c

√
λ exactly. On SG

we are able to compute the normal derivatives of all normalized Dirichlet eigenfunctions
using spectral decimation and some results about inner products from [OSS]. The answer
is given in terms of infinite products involving the sequence {λm} given by (1.20) and
(1.21). Using this we are able to prove the upper bound

(1.24) |∂nu| ≤ c
√

λ,

but this is far from the entire story. For most eigenvalues, the normal derivatives are
actually much smaller than the bound in (1.24). By looking at graphs of the ratio ∂nu/

√
λ

versus λ we see that there is a very rich self-similar structure to the data. Also, there is
a large space of joint Dirichlet-Neumann eigenfunctions for which the normal derivatives
are zero.

We are also interested in normal derivatives of the Dirichlet heat kernel

(1.25) pt(x, y) =
∑

e−λjtuj(x)uj(y),

where {uj} denotes an orthonormal basis of Dirichlet eigenfunctions with eigenvalues {λj}.
In particular, we want to take normal derivatives with respect to both variables at the same
boundary point (say q0), so

(1.26) ∂n∂npt(q0, q0) =
∑

e−λjt(∂nuj(q0))2.
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This quantity plays an important role in analysis on the product space SG×SG developd
in [S6]. Sharp estimates for the heat kernel and its time derivatives are known (see [Ba],
[Ki2] and references there), but nothing is known about (1.26). Certain estimates were
conjectured in [S6], namely

(1.27) ∂n∂npt(q0, q0) ≤ ct− log(25/3)/ log 5 for 0 < t ≤ 1.

Here we give strong experimental evidence that (1.27) holds. It is important to note that
the estimate (1.24) is not adequate to prove (1.27). In fact, our evidence suggests that
tlog(25/3)/ log 5∂n∂npt(q0, q0) behaves asymptotically like a periodic function of log 1/t as
t → 0. This suggests that a similar statement will hold for the on diagonal heat kernel
pt(x, x) (with a different exponent of t).

Taken together, the results of this paper and part I give us a reasonably detailed un-
derstanding of some elementary special functions on SG. On the other hand, this is not
enough. Because of the negative results in [BST], we cannot compose any of these func-
tions with a nonlinear real-valued function and stay within dom ∆. For example, here is
a challenging problem that apparently cannot be solved using just these elementary func-
tions: find the analog on SG to the famous theorem of Borel that there exist C∞ functions
on the line with any prescribed Taylor expansion. A solution to this problem might pave
the way for a full-fledged theory of distributions on SG.

§2. Harmonic functions with point singularity.

A harmonic function on K is defined to be a continuous function h satfisfying the
discrete harmonic condition

(2.1) ∆mh(x) = 0 for all x ∈ Vk \ V0 for all k and m with m ≥ k.

The boundary points are treated exceptionally, since if we tried to impose (2.1) at boundary
points (this is equivalent to imposing Neumann boundary conditions) the only harmonic
functions would be the constants. On the other hand, the requirement that h be continuous
at boundary points is a condition of a different nature than the continuity on K\V0. Indeed,
the discrete harmonic condition (2.1) already implies that h is continuous on V∗ \ V0 and
extends continuously to K \ V0. (One should delete the cases of (2.1) that involve values
on V0.) But it has been known since [DSV] that there exist functions that are unbounded
in a neighborhood of points in V0 that are otherwise harmonic. These are the prototypes
of the functions we study in this section.

We begin with a more general situation. Let Ω be any open subset of K, and let
S = K \ Ω be its closed complement (the singularity set).

Definition 2.1. A function h on Ω is said to be harmonic on Ω if h is continuous on Ω
and h satisfies (2.1) at every point x ∈ Vk ∩Ω \V0 for all m large enough that Um(x) ⊆ Ω.
Recall that Um(x) is the standard neighborhood consisting of the two cells of level m
having x as boundary point. Since Ω is open, we have Um(x) ⊆ Ω for all large enough m.

The results of [DSV] as elaborated in [KSS] says that if Ω = K \ {q0} then the space of
harmonic functions Ω is 4-dimensional, with a basis h1, h2, h3, h4, and h1, h2, h3 span the
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3-dimensional space of harmonic functions of K. The functions h1 and h2 are even with
respect to R0, with h1 ≡ 1 and h2 having boundary values h2(q0) = 0, h2(q1) = h2(q2) = 1.
The functions h3 and h4 are odd with respect to R0, with h3 having boundary values
h3(q0) = 0, h3(q1) = −h3(q2) = 1, while h4 satisfies

h4(Fm
0 q1) = −h4(Fm

0 q2) = 3m.

Note that h4 just barely fails to be integrable on K. The functions hj are all harmonic on
F1K ∪ F2K and are uniquely determined by their boundary values at the four boundary
points (q1, q2, F0q1, F0q2). The most important property of these functions is the scaling
identity

(2.2) hj(Fm
0 x) = σm

j hj(x) for σ1 = 1, σ2 =
3
5
, σ3 =

1
5
, σ4 = 3.

It is useful to be able to localize the definition. Suppose Ω is an open subset of any
cell FwK. Then a continuous function h on Ω is harmonic on Ω in FwK if (2.1) holds for
x ∈ Vk ∩ Ω \ FwV0 provided Um(x) ⊆ Ω. It is easy to see that this is equivalent to saying
that h ◦ F−1

w is harmonic on F−1
w Ω in K.

Our first result is a simple extension theorem.

Theorem 2.2. Suppose S is closed in FwK and S is disjoint from the boundary FwV0.
Then any harmonic function on FwK \S in FwK extends uniquely to a harmonic function
on K \ S.

a b

c d

F0K

(a+b+c+d)
1—
4

Figure 2.1

Proof. It clearly suffices to prove this for F0K. So let h be harmonic on F0K \ S. By
hypothesis F0q1 and F0q2 are disjoint from S, so the values h(F0q1) = c and h(F0q2) = d
are specified. If we choose values h(q1) = a and h(q2) = b then this will determine a
unique harmonic function on F1K ∪ F2K, and the extension will be harmonic on K \ S if
and only if the normal derivatives satisfy the matching conditions at F0q1 and F0q2. (See
Figure 2.1.) This gives us two linear equations in a and b, so we can reasonably expect a
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unique solution. Note that h(F1q2) = 1
4 (a + b + c + d), so the normal derivative at F0q1

with respect to the F1K cell is 5
3

(
2c− a− a+b+c+d

4

)
and similarly the normal derivative

at F0q2 with respect to the F2K cell is 5
3

(
2d− b− a+b+c+d

4

)
, and by inspection these are

linearly independent in the (a, b) variables. Q.E.D.

It is not difficult to see that even if S intersects FwV0, the extension is still possible,
but the uniqueness fails.

We may use this extension theorem to localize the description of harmonic functions
with singularities. The following is a typical application.

Corollary 2.3. Let {x1, x2, . . . , xN} be any finite set of distinct nonjunction points in
K. Then any harmonic function in K \ {x1, x2, . . . , xN} may be written

∑N
n=1 un for un

harmonic in K \ {xn}, and moreover un is unique modulo global harmonic functions.

Proof. Since the points xj are not junction points, we can find cells Fw(j)K containing xj

but no other xk (k 6= j). Let h be the harmonic function on K \ {x1, x2, . . . , xn}. Then
h restricted to Fw(1)K is harmonic on Fw(1)K \ {x1}. We take u1 to be the extension
to a harmonic function on K \ {x1}. Then h − u1 vanishes on Fw(1)K so it is harmonic
on K \ {x2, x3, . . . , xN}. Then for u2 we take the harmonic extension of h − u1 from
Fw(2)K\{x2} to K\{x2}. Thus h−u1−u2 is harmonic on K\{x3, x4, . . . , xN}. Continuing
in this way we obtain existence. To show uniqueness assume

∑
un and

∑
u′n are two such

representations, with un and u′n both harmonic in K\{xn}. Then uk−uk′ =
∑

n6=k(u′n−un)
is both harmonic in K \{xk} and K \{x1, x2, . . . , x̂k, . . . , xN}, hence is a global harmonic
function. Q.E.D.

This localization is also valid if we allow junction point singularities, as we will see later.

Theorem 2.4. Let x0 be any nonboundary junction point. Then the space of harmonic
functions on K \ {x0} is 7-dimensional.

F1F2q1

q 0

q1

F2F1 q 0

q2

F2F1K

F1F2q0

F1F2K

F1q2 F2F1q2

Figure 2.2
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Proof. By Theorem 2.2 it suffices to prove this for a level 1 junction point, say x0 = F1q2 =
F2q1. Let H denote the space of harmonic functions on K \ {F1q2}. We also consider the
space F0K ∪ F1F0K ∪ F1F1K ∪ F2F0K ∪ F2F2K (that is K with the interior of F1F2K ∪
F2F1K deleted) as a fractafold with boundary {q0, q1, q2, F1F2q0, F1F2q1, F2F1q0, F2F1q2}.
See Figure 2.2. Let H1 denote the 7-dimensional space of harmonic functions on this
fractafold. Clearly, restriction maps H to H1. To complete the proof we need to show
that this is invertible, and we do this by exhibiting an explicit, unique extension from
H1 to H. Let h ∈ H1. Because the functions in H are unrestricted at F1q2, we simply
have to extend the function h restricted to F1F0K ∪ F1F1K to a function harmonic on
F1K \{F1q2}, and also the function h restricted to F2F0K∪F2F2K to a function harmonic
on F2K\{F2q1}, with no compatibility requirement on the two extensions. Of course, both
extension problems are localized versions of the extension from F1K∪F2K to K \{q0}, and
this has a unique solution that can be given explicitly by the basis h1, h2, h3, h4 described
above. Q.E.D.
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The 7-dimensional space for K \ {F1q2} splits into a 4-dimensional space symmetric
with respect to R0 and a 3-dimensional skew-symmetric space. In addition to h1, h2

(symmetric) and h3 (skew-symmetric) which generate global harmonic functions, we can
complete a basis with h̃4 (continuous symmetric), h̃5 (bounded, discontinuous at F1q2,
skew-symmetric), h̃6 (unbounded, symmetric) and h̃7 (unbounded, skew-symmetric) as
shown in Figure 2.3.

Another way to describe H is in terms of restrictions to F1K \ {F1q2} and F2K \
{F2q1}. Each of these restriction spaces is 4-dimensional, which means there must be a
1-dimensional space of obstructions to extending to F0K. But in fact we know that h4

does not extend to a neighborhood of q0, and in fact the 8-dimensional space generated by
h1, h2, h3, h4, h̃4, h̃5, h̃6, h̃7 gives the space of harmonic functions on K \ {q0, F1q2}.

Theorem 2.5. Let x0 be any nonjunction point. Then the space of harmonic functions
on K \ {x0} is 6-dimensional, with each such function determined uniquely by the values
of h(qj) and ∂nh(qj), j = 0, 1, 2.

Proof. Let (w1, w2, . . . ) denote the infinite word uniquely representing x0, so
x0 ∈ Fw1Fw2 · · ·FwmK for all m. Let Fm denote the fractafold obtained by deleting
the interior of Fw1Fw2 · · ·FwmK from K, where m is large enough that the sequence
(w1, w2, . . . , wm) is not constant. Then Fm has 6 boundary points, qj and Fw1Fw2 · · ·Fwmqj

for j = 0, 1, 2. Let Hm denote the 6-dimensional space of harmonic functions on Fm. We
claim that the data {h(qj), ∂nh(qj)} = {aj , nj} for j = 0, 1, 2 uniquely determine h ∈ Hm.

a1
(a1+a2+a1+a2)

1—
4

a2

a0

a1 a2

Figure 2.4

First we show that {aj , nj} uniquely determines {h(Fw1qj), ∂nh(Fw1qj)} = {a′j , n′j}. For
simplicity assume w1 = 0. Then {a0, n0} = {a′0, n′0}. For h to be harmonic at F1q2 = F2q1

we must have

(2.3) h(F1q2) =
1
4
(a1 + a2 + a′1 + a′2)
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(see Figure 2.4). By the definition of normal derivative we have

(2.4)


3
5
n1 = 2a1 − a′1 −

1
4
(a1 + a2 + a′1 + a′2)

3
5
n2 = 2a2 − a′2 −

1
4
(a1 + a2 + a′1 + a′2)

and the matching conditions for normal derivatives at F0q1 and F0q2 yield

(2.5)


−3

5
n′1 = 2a′1 − a1 −

1
4
(a1 + a2 + a′1 + a′2)

−3
5
n′2 = 2a′2 − a2 −

1
4
(a1 + a2 + a′1 + a′2).

More precisely, any h ∈ Hm satisfies (2.4) and (2.5), and conversely, if (2.4) and (2.5) hold,
there exists a harmonic function on F1K ∪ F2K satisfying {h(qj), ∂nh(qj)} = {aj , nj} for
j = 1, 2 and {h(Fjq0), ∂nh(Fjq0)} = {a′j , n′j}. But it is easy to see that the equations (2.4)
and (2.5) allow a unique solution for primed variables in terms of unprimed variables, and
vice versa.

By iterating the above argument we see that for f ∈ Hm the initial data uniquely
determines the data {h(Fw1Fw2 · · ·Fwmqj), ∂nh(Fw1Fw2 · · ·Fwmqj)}, and vice versa, and
in fact there exists f ∈ Hm with any initial data. Now if h ∈ H then its restriction to Fm

is in Hm, and conversely, if the restriction of h to Fm is in Hm for all m, then h ∈ H. This
allows us to construct a function in H from any initial data by successively defining it on
Fm, so H is at least 6-dimensional. But if the initial data is zero, then h must vanish on
all Fm, hence h is zero, so H is exactly 6-dimensional. Q.E.D.

Theorem 2.6. Given distinct points {x1, x2, . . . , xN}, let N = N1 + N2 + N3 where N1

is the number of boundary points (N1 ≤ 3), N2 is the number of nonboundary junction
points, and N3 is the number of nonjunction points. The space of harmonic functions on
K \ {x1, x2, . . . , xN} has dimension 3 + N1 + 4N2 + 3N3.

Proof. For each sufficiently large m, let Fm denote the fractafold obtained from K by
removing a level m neighborhood of each xj as follows: (i) if xj is a boundary point (say
xj = qj) remove the interior of Fm

j K and also the point qj ; (ii) if xj is a nonboundary
junction point, remove Um(xj); (iii) if xj is a nonjunction point determined by the infinite
word (w1, w2, . . . ), remove the interior of Fw1Fw2 · · ·FwmK.

Let Hm denote the space of harmonic functions on Fm. Note that once m is large enough
that the deleted neighborhoods have disjoint closures (not containing any boundary points
in cases (ii) and (iii)), the boundary of Fm consists of exactly 3 + N1 + 4N2 + 3N3 points,
so this is the dimension of Hm. Reasoning as before, each function in Hm has a unique
extension to a function in Hm+1, and any function in H restricted to Fm yields a function
in Hm. The rest of the argument is the same as before. Q.E.D.
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§3. Harmonic functions with singularity at a periodic point.

Let w denote a word of finite length m. A periodic point z is a point with address
(w, w, w, . . . ), or equivalently, the fixed-point of Fw. We would like describe in detail the
6-dimensional space of functions harmonic on K \ {z}. We want to find a basis

{
P

(z)
0k

}
,

k = 1, 2, . . . , 6, characterized by the scaling identity

(3.1) P
(z)
0k ◦ (Fw)n = σn

k P
(z)
0k

for specific factors σk. For k = 1, 2, 3, these functions will be globally harmonic, while
for k = 4, 5, 6 they will have nonremovable singularities. According to Theorem 2.5, the
values {h(qj)} and {∂nh(qj)} uniquely determine a harmonic function on K \ {z}. We
need to understand the linear transformation that describes the mapping h → h ◦ Fw in
these coordinates.

We begin by considering just the 3-dimensional space H0 of global harmonic functions.
Then we know

(3.2) n = Da, where n =

 ∂nh(q0)
∂nh(q1)
∂nh(q2)

 , a =

 h(q0)
h(q1)
h(q2)

 and D =

 2 −1 −1
−1 2 −1
−1 −1 2

 .

Let a′j = h(Fw1qj) and n′j = ∂nh(Fw1qj) = 5
3∂n(h ◦ Fw1)(qj). Then

(3.3)


a′ = Aw1a

n′ =
5
3
DAw1a,

where Ai are the harmonic extension matrices, A0 =
1
5

 5 0 0
2 2 1
2 1 2

, etc. More generally,

by iteration

(3.4)


ã = (AwmAwm−1 · · ·Aw1)a

ñ =
(

5
3

)m

D(AwmAwm−1 · · ·Aw1)a,

where ãj = h(Fwqj) and ñ = ∂nh(Fwqj).
If a(k) is an eigenvector for the matrix AwmAwm−1 · · ·Aw1 with eigenvalue σk, then h

will satisfy (3.1). Let σ1 = 1, σ2, σ3 denote the eigenvalues of this matrix. (σ1 corresponds

to the eigenvector

 1
1
1

.) Since detAwmAwm−1 · · ·Aw1 =
(

3
25

)m, we have σ2σ3 =
(

3
25

)m,

and also

(3.5)
(

1
5

)m

< |σk| <
(

3
5

)m

for k = 1, 2, 3.
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The strict inequalities in (3.5) of course require that not all wj are equal. Typically, these
will be two distinct real eigenvalues, so we may order them, σ1 > σ2 > σ3. There is at least
one case w = (0, 1, 2), when σ2 and σ3 are complex conjugate pairs, with |σ2| =

(√
3

5

)m

.
It does not appear that a multiplicity 2 eigenspace (or even generalized eigenspace) ever
occurs. In the typical case, we will define P

(z)
0k for k = 1, 2, 3 by taking initial values

a = a(k). Note that P
(z)
01 ≡ 1, while P

(z)
02 (z) = P

(z)
03 (z) = 0, but the rate of vanishing is

faster for P
(z)
03 .

Next we examine what happens when we allow a singularity at z. This means (3.2) is no
longer valid. It is convenient to define a perturbation vector N to measure the deviation
of n from Da:

(3.6) n = Da + N.

Similarly, n′ = 5
3Da′ + N ′ and ñ =

(
5
3

)m
Dã + Ñ . We need to find the analog of (3.3).

For simplicity set w1 = 0. That means z ∈ F0K, so h is harmonic in F1K ∪ F2K, so
h(F1q2) = 1

4 (a1 + a2 + a′1 + a′2). Computing normal derivatives at q1 and q2 using the cells
F1K and F2K yields

n1 =
5
3

[
2a1 − a′1 −

1
4
(a1 + a2 + a′1 + a′2)

]

n2 =
5
3

[
2a2 − a′2 −

1
4
(a1 + a2 + a′2 + a′2)

]
.

This allows us to solve for a′1 and a′2 in terms of a1, a2, N1, N2 (using (3.6)). Of course,
a′0 = a0. We may write the solution in matrix notation

(3.7) a′ = A0a +
3
5
B0N

for

(3.8) B0 =


0 0 0

0 −5
6

1
6

0
1
6
−5

6

 .

We may also compute the normal derivatives n′1 and n′2 using the cells F1K and F2K
(and taking the negative):

n′1 = −5
3

[
2a′1 − a1 −

1
4
(a1 + a2 + a′1 + a′2)

]

n′2 = −5
3

[
2a′2 − a2 −

1
4
(a1 + a2 + a′2 + a′2)

]
.
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Using (3.7) to eliminate a′1 and a′2 and expressing the answer in terms of N ′1 and N ′2 we
obtain

N ′1 =
10
3

N1 −
5
3
N2

N ′2 = −5
3
N1 +

10
3

N2.

Also, since n′0 = n0 we have N ′0 = N0 − 2
3N1 − 2

3N2. In matrix form this is simply

(3.9) N ′ = (Atr
0 )−1N.

Iterating this argument, we obtain

(3.10) ã = (Awm
Awm−1 · · ·Aw1)a + B̃N

(3.11) Ñ = ((AwmAwm−1 · · ·Aw1)
tr)−1N

for a certain matrix B̃. In order to have (3.1) hold we need ã = σka and Ñ =
(

5
3

)m
σkN .

Of course, the eigenvalues of ((AwmAwm−1 · · ·Aw1)
tr)−1 are 1, σ−1

1 , σ−1
2 . Write N (4), N (5),

N (6) for corresponding eigenvectors. Then for σ4 =
(

3
5

)m, σ5 =
(

3
5

)m
σ−1

2 , σ6 =
(

3
5

)m
σ−1

3 ,
we take N = N (k) and determine a(k) by solving ã = σka and (3.10):

(3.12)
(
σkI −AwmAwm−1 · · ·Aw1

)
a = B̃N.

We can check (using (3.5)) that σiσj 6=
(

3
5

)m for i, j ≤ 3, so (3.12) is solvable. We thus
obtain P

(z)
0k for k = 4, 5, 6 satisfying (3.1). Note that σ4 < 1 while σ5 > 1 and σ6 > 1, so

P
(z)
04 has a bounded singularity (in fact lim

x→z
P

(z)
04 (x) = 0) while P

(z)
05 and P

(z)
06 have poles.

Next we define local derivatives ∂2 and ∂3 at the point z. We will be motivated by the
requirements

(3.13)

{
∂2P

(z)
01 (z) = ∂2P

(z)
03 (z) = 0 ∂2P

(z)
02 (z) = 1

∂3P
(z)
01 (z) = ∂3P

(z)
02 (z) = 0 ∂3P

(z)
03 (z) = 1.

Note that N (5) is orthogonal to a(1) and a(3), while N (6) is orthogonal to a(1) and a(2),
since they are left and right eigenvectors for the same matrix. We normalize them so that
N (5) · a(2) = N (6) · a(3) = 1.

Definition 3.1. ∂2 and ∂3 are defined by

(3.14)


∂2f(z) = lim

n→∞
σ−n

2

2∑
i=0

N
(5)
i f(Fn

wqi)

∂3f(z) = lim
n→∞

σ−n
3

2∑
i=0

N
(6)
i f(Fn

wqi)

provided the limits exist.

It is clear that (3.13) holds, and in fact it is not necessary to take the limit.
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Theorem 3.2. Let f ∈ dom ∆. Then ∂2f(z) and ∂3f(z) exist.

Proof. We may write

(3.15) f(x) = h(x) +
∫

G(x, y)g(y)dµ(y)

for h harmonic and g continuous. Since ∂2h(z) and ∂3h(z) exist, it suffices to show that
the local derivatives exist for the integral term in (3.15). At least formally, we expect

(3.16) ∂k

∫
G(z, y)g(y)dµ(y) =

∫
(∂kG(z, y))g(y)dµ(y),

for k = 2, 3. For every y 6= z, G( · , y) is harmonic in a neighborhood of z, so ∂kG(z, y)
is well defined. Moreover, it is a harmonic function of y in K \ {z}, so it must be a
linear combination of P

(z)
01 , P

(z)
02 , . . . , P

(z)
06 . Each of these functions is integrable, because

the lower bound in (3.5) is strict, so the right side of (3.16) is well defined. For the left
side, we observe that

σ−n
2

2∑
i=0

N
(5)
i

∫
G(Fn

wqi, y)g(y)dµ(y)

= σ−n
2

2∑
i=0

N
(5)
i

∫
K\F n

wK

G(Fn
wqi, y)g(y)dµ(y) + σ−n

2

2∑
i=0

N
(5)
i

∫
F n

wK

G(Fn
wqi, y)g(y)dµ(y)

=
∫

K\F n
wK

∂2G(z, y)g(y)dµ(y) + σ−n
2

2∑
i=0

N
(5)
i

∫
F n

wK

G(Fn
wqi, y)g(y)dµ(y)

because G( · , y) is harmonic in Fn
wK for y ∈ K \ Fn

wK. So to prove (3.16) for k = 2, we
need

(3.17) lim
n→∞

σ−n
2

2∑
i=0

N
(5)
i

∫
F n

wK

G(Fn
wqi, y)g(y)dµ(y) = 0.

This is easy, since σ−n
2 ≤ (5/

√
3)mn and µ(Fn

wK) =
(

1
3

)mn, with 5
3
√

3
< 1. But the same

estimate will not work for σ3 in place of σ2. Instead we use a Hölder estimate on the
Green’s function, since

∑3
i=1 N

(6)
i = 0. Note that G(Fn

wqi, y)−G(Fn
wqj , y) is a sum of only

nm terms, and each is bounded by a constant times
(

3
5

)nm. So

σ−n
3

2∑
i=0

N
(6)
i

∫
FwK

G(Fn
wqi, y)g(y)dµ(y)

= σ−n
3

2∑
i=0

N
(6)
i

∫
FwK

(G(Fn
wqi, y)−G(Fn

wq1, y))g(y)dµ(y)
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is bounded by a multiple of

σ−n
3 · nm

(
3
5

)nm

·
(

1
3

)nm

and this goes to zero as n → ∞ by the strict lower bound in (3.5). So this proves (3.16)
for k = 3 also. Q.E.D.

We can define “distributions” δ(z), ∂2δ
(z) and ∂3δ

(z) supported at the point z, as
bounded linear functionals on the test space (dom ∆)00, the space of functions in dom ∆
vanishing in a neighborhood of the boundary, by

(3.18)
〈
δ(z), ϕ

〉
= ϕ(z),

〈
∂kδ(z), ϕ

〉
= −∂kϕ(z) for k = 2, 3.

We can also define ∆P
(z)
0k for k = 4, 5, 6 in the “distribution sense” by

(3.19)
〈
∆P

(z)
0k , ϕ

〉
=

∫
P

(z)
0k ∆ϕdµ

for ϕ ∈ (dom ∆)00, since P
(z)
0k is integrable. Since ∆P

(z)
0k = 0 in K \ {z}, the distribu-

tions ∆P
(z)
0k will be supported at z, so we expect to be able to identify them with linear

combinations of δ(z), ∂2δ
(z) and ∂3δ

(z).

Theorem 3.3. There exist nonzero constants c4, c5, c6 such that

(3.20) ∆P
(z)
04 = c4δ

(z), ∆P
(z)
05 = c5∂2δ

(z), ∆P
(z)
06 = c6∂3δ

(z).

Proof. Because P
(z)
0k is integrable, we have∫

K

P
(z)
0k ∆ϕdµ = lim

n→∞

∫
K\F n

wK

P
(z)
0k ∆ϕdµ.

Because ∆P
(z)
0k = 0 on K \ Fn

wK we have∫
K\F n

wK

P
(z)
0k ∆ϕdµ =

∫
K\F n

wK

(
P

(z)
0k ∆ϕ− ϕ∆P

(z)
0k

)
dµ =

∑
∂F n

wK

(
ϕ∂nP

(z)
0k − P

(z)
0k ∂nϕ

)
.

Here we have used the Gauss-Green formula (the sign change is due to the fact that the
outward normals on K \ Fn

wK become inward normals on Fn
wK) and the fact that ϕ and

∂nϕ vanish on ∂K. Thus

(3.21)

∫
K

P
(z)
0k ϕdµ = lim

n→∞

[
σn

k

(
5
3

)mn

N (k) ·
(
ϕ|∂F n

wK

)
+ σn

k

((
5
3

)mn

Da(k) ·
(
ϕ|∂F n

wK

)
− a(k)

(
∂nϕ|∂F n

wK

))]
.
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Next we claim that the second term on the right side of (3.21) vanishes. Consider the
difference ϕ−h̃, where h̃ is harmonic on Fn

wK with h̃|∂F n
wK = ϕ|∂F n

wK . We have ∆(ϕ−h̃) =
∆ϕ on Fn

wK and (ϕ− h̃)|∂F n
wK = 0. Therefore∣∣∣∣∣∣

∑
∂F n

wK

h∂n(ϕ− h̃)

∣∣∣∣∣∣ =

∣∣∣∣∣
∫

F n
wK

h∆ϕdµ

∣∣∣∣∣ ≤M

(
1
3

)nm

for any harmonic function h on Fn
wK. Of course, ∂nh̃|∂F n

wK = Dh̃|∂F n
wK = Dϕ|∂F n

wK .
Thus (

5
3

)mn

σn
k a(k) ·

(
Dϕ|∂F n

wK

)
− σn

k a(k) ·
(
∂nϕ|∂F n

wK

)
= O

[
σn

k

(
1
3

)nm]
,

and this goes to zero by (3.5).
So in place of (3.21) we have

(3.22)
∫

K

P
(z)
0k ϕdµ = lim

n→∞
σn

k

(
5
3

)mn

N (k) ·
(
ϕ|∂F n

wK

)
.

When k = 5 or 6 this gives (3.20) with c5 = c6 = 1 in view of (3.14). When k = 4,

σn
k

(
5
3

)mn, so we have (3.20) with c4 = N (4) ·

 1
1
1

. We know this is not zero because

N (4) is not zero and is orthogonal to a(2) and a(3). Q.E.D.

Table 3.1 shows the values of σj for some choices of w. Note that for w = (0, 1, 2), σ2

and σ3 are complex conjugate pairs. Table 3.2 show the values of a(j), for j = 1, 2, . . . , 6
and N (j) for j = 4, 5, 6 for the choice w = (0, 1).

We also observe that we can compute the distributional Laplacian of the harmonic
functions with singularity at the junction point F1q2 shown in Figure 2.3. Since h̃4 is the
Green’s function,

(3.23) ∆h̃4 = δF1q2 .

Next

〈∆h̃5, v〉 =
∫

K

h̃5∆vdµ

=
2∑

i=0

∫
FiK

h̃5∆vdµ

=
2∑

i=0

2∑
j=0

h̃5(Fiqj)∂nv(Fiqj)− ∂nh̃5(Fiqj)v(Fiqj)
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w σ1 σ2 σ3 σ4 σ5 σ6

(0, 1) 1
7 +
√

13
50

7−
√

13
50

9
25

7−
√

13
2

7 +
√

13
2

0.212111 0.0678889 0.36 1.697244 5.3027756

(0, 1, 1) 1
8 +
√

37
125

8−
√

37
125

27
125

8−
√

37 8 +
√

37

0.112664 0.0153379 0.216 1.9172375 14.082763

(0, 1, 2) 1
5 +
√

2i

125
5−
√

2i

125
27
125

5 +
√

2i 5−
√

2i

|σ2| = |σ3| =
√

27
125

|σ5| = |σ6| =
√

27

0.0415692 0.216 5.1961524

(0, 1, 2, 1) 1
11 + 2

√
10

625
11− 2

√
10

625
81
625

11− 2
√

10 11 + 2
√

10

0.0277192 0.0074807115 0.1296 4.6754447 17.3245553

(0, 0, 1, 1) 1
17 + 4

√
13

625
17− 4

√
13

625
81
625

17− 4
√

13 17 + 4
√

13

0.0502755 0.0041244718 0.1296 2.5777949 31.422205

(0, 0, 0, 1) 1
43 + 5

√
61

1250
43− 5

√
61

1250
81
625

43− 5
√

61
2

43 + 5
√

61
2

0.0656409 0.0031590013 0.1296 1.9743758 41.025624

Table 3.1

A1A0=
1
25

 16 5 4
10 10 5
13 6 6



a(1)=

 1
1
1

 a(2)=

 25 + 7
√

13
−55− 15

√
13

2

 a(3)=

 25− 7
√

13
−55 + 15

√
13

2



a(4)=
1
81

 12
20
17

 a(5)=
1

1548

 −71 + 311
√

13
−662− 40

√
13

1243− 361
√

13

 a(6)=
1

1548

 −71− 311
√

13
−662 + 40

√
13

1243 + 361
√

13



N (4)=
1
27

 15
7
5

 N (5)=

 1−
√

13
2

−3 +
√

13

 N (6)=

 1 +
√

13
2

−3−
√

13



Table 3.2. w = (0, 1)
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since h̃5 is harmonic on each FiK. But v and ∂nv vanish at qi and the terms at F0q1 = F1q0

and F0q2 = F2q0 cancel, so〈
∆h̃5, v

〉
=h̃5(F1q2)∂nv(F1q2) + h̃5(F2q1)∂nv(F2q1)

− ∂nh̃5(F1q2)v(F1q2)− ∂nh̃5(F2q1)v(F2q1).

Now v(F2q1) = v(F1q2), ∂nv(F2q1) = −∂nv(F1q2), h̃5(F1q2) = 1, h̃5(F2q1) = −1, ∂nh̃5(F1q2) =
3 and ∂nh̃5(F2q1) = −3, so 〈

∆h̃5, v
〉

= 6∂nv(F1q2),

which we may write as

(3.24) ∆h̃5 = −6∂nδF1q2 .

For h̃6 and h̃7, we must interpret them as Cauchy principal integrals, since they are not
integrable functions, but do possess cancellation near the pole. Let Um = F2F

m−1
1 K ∪

F1F
m−1
2 K denote the standard neighborhood system around F1q2. Then

(3.25)
〈
h̃j , v

〉
= lim

m→∞

∫
K\Um

h̃jvdµ, j = 6, 7

is well defined for v ∈ (dom ∆)00. We want to compute

(3.26)
〈
∆h̃j , v

〉
=

〈
h̃j ,∆v

〉
= lim

m→∞

∫
K\Um

h̃j∆vdµ.

Since h̃j is harmonic on K \ Um we have

(3.27)
∫

K\Um

h̃j∆vdµ =
∑
∂Um

(
v∂nh̃j − h̃j∂nv

)
.

(The sign change occurs because the normal derivatives on the boundary of Um are the
negatives of the normal derivatives on the boundary of K \Um.) Note that ∂Um consists of
4 points that we group into 2 pairs, (F1F

m−1
2 q0, F1F

m−1
2 q1) and (F2F

m−1
1 q0, F2F

m−1
1 q2),

that we treat separately. The contribution to the right side of (3.27) coming from the first
pair is

(3.28)
v(F1F

m−1
2 q0)∂nh̃j(F1F

m−1
2 q0) + v(F1F

m−1
2 q1)∂nh̃j(F1F

m−1
2 q1)

−∂nv(F1F
m−1
2 q0)h̃j(F1F

m−1
2 q0)− ∂nv(F1F

m−1
2 q1)h̃j(F1F

m−1
2 q1).

When j = 6, we have h̃6(F1F
m−1
2 q0) = −h̃6(F1F

m−1
2 q1) = 3m−1 and ∂nh̃6(F1F

m−1
2 q0) =

−∂nh̃6(F1F
m−1
2 q1) = −

(
5
9

)
5m, so (3.28) becomes

−
(

5
9

)
5m

[
v(F1F

m−1
2 q0)− v(F1F

m−1
2 q1)

]
− 1

3
3m

[
∂nv(F1F

m−1
2 q0)− ∂nv(F1F

m−1
2 q1)

]
.
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Of course, limm→∞ 5m[v(F1F
m−1
2 q0)− v(F1F

m−1
2 q1)] = ∂T v(F1q2) by definition. But also

limm→∞ 3m[∂nv(F1F
m−1
2 q0) − ∂nv(F1F

m−1
2 q1)] = 3

2∂T v(F1q2). A similar analysis of the
terms coming from the second pair produces the tangential derivative with respect to the
other cell F2K. Thus we have

(3.29) ∆h̃6 = c6(∂T δF2q1 − ∂T δF1q2).

(This is actually symmetric with respect to R0 because of the definition of the two tan-
gential derivatives is skew-symmetric.) A similar analysis yields

(3.30) ∆h̃7 = c7(∂T δF2q1 + ∂T δF1q2).

§4. Monomials with boundary point singularity.

In part I, we described a monomial basis
{

P
(0)
jk

}
, j = 0, 1, . . . , k = 1, 2, 3, for the space

of polynomials, “centered” at the point q0. In this section, we will describe another class
of monomials,

{
P

(0)
j4

}
, j = 0, 1, . . . that completes a basis for polynomials with singularity

at q0. We take P
(0)
04 = h4 described in section 2, and then we want

(4.1) ∆P
(0)
j4 = P

(0)
(j−1)4 on K \ {q0} for j ≥ 1.

We may interpret (4.1) either as saying

(4.2) E
(
P

(0)
j4 , v

)
= −

∫
P

(0)
(j−1)4vdµ

for all v ∈ dom E vanishing at q1, q2 and in a neighborhood of q0, or as

(4.3) P
(0)
j4 (x) = −

∫
G(x, y)P (0)

(j−1)4(y)dµ(y) + h(x)

for h harmonic on K \ {q0}. We note that although P
(0)
04 is not integrable, the product

G(x, y)P (0)
04 (y) is integrable because G(x, y) vanishes as y approaches q0, so (4.3) exists

as an ordinary integral. Of course, (4.1) does not uniquely determine P
(0)
j4 for j ≥ 1. To

obtain uniqueness, we adjoin the scaling identity

(4.4) P
(0)
j4 ◦ Fm

0 =
(

3
5j

)m

P
(0)
j4 .

Note that it suffices to have (4.4) hold for m = 1, and then the general case follows by
iteration.
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Theorem 4.1. There exists a unique solution to (4.1) and (4.4).

Proof. We give an argument that allows us to effectively compute P
(0)
j4 . The idea is to find

the restriction to F2K. Because P
(0)
j4 is skew-symmetric, this determines P

(0)
j4 on F1K by

odd reflection, and in fact (4.1) will continue to hold on F1K ∪ F2K if it holds on F2K.
Since this is an inductive argument, we begin with

(4.5) P
(0)
04 ◦ F2 = b0P

(1)
02 + c0P

(1)
03 .

We know such an identity must hold because P
(0)
04 (F2q1) = 0 by the skew-symmetry, and

P
(0)
04 ◦ F2 is harmonic. Of course, we find b0 = −4, c0 = −2, because we know P

(0)
04

explicitly. Next, we write

(4.6) P
(0)
14 ◦ F2 =

1
5
b0P

(1)
12 +

1
5
c0P

(1)
13 + b1P

(1)
02 + c1P

(1)
03 ,

since this is the most general solution of

∆
(
P

(0)
14 ◦ F2

)
=

1
5
P

(0)
04

that vanishes at q1. Iterating this argument, we arrive at the representation

(4.7) P
(0)
j4 ◦ F2 =

j∑
k=0

5k−j
(
bkP

(1)
(j−k)2 + ckP

(1)
(j−k)3

)
as the most general solution to (4.1) in F2K that vanishes at F2q1.

Next, we want to see how (4.4) inductively determines the coefficients. Note that (4.4)
yields an extension from F1K ∪F2K to F0F1K ∪F0F2K. We need to check the matching
conditions, both for the value and normal derivatives at F2q0 = F0q2 (the conditions will
be the same at F1q0 = F0q1 by skew-symmetry), as these will be necessary and sufficient
for (4.1) to hold on F1K ∪ F2K ∪ F0F1K ∪ F0F2K. Once we have solved this extension
problem, we can inductively use (4.4) to extend P

(0)
j4 to (F0)nF1K ∪ (F0)nF2K, and the

matching conditions will be the same.
The matching condition P

(0)
j4 ◦ F2(q0) = P

(0)
j4 ◦ F0(q2), using (4.4) says

(4.8) P
(0)
j4 ◦ F2q0 =

3
5j

P
(0)
j4 ◦ F2(q2).

Using the data from Part I, this becomes

j∑
k=0

5k−j(bkβj−k − ckγj−k) = 3
j∑

k=0

5k−2j(bkβj−k + ckγj−k),
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which may be rewritten as

(4.9)
1
2
(1− 3.5−j)bj +

1
2
(1 + 3.5−j)cj

=
j−1∑
k=0

[(
5k−j − 3.5k−2j

)
bkβj−k −

(
5k−j + 3.5k−2j

)
ckγj−k

]
.

The matching condition for normal derivatives is

∂n

(
P

(0)
j4 ◦ F2

)
(q0) + ∂n

(
P

(0)
j4 ◦ F0

)
(q2) = 0.

But
∂n

(
P

(0)
j4 ◦ F0

)
(q2) = 3.5−j∂nP

(0)
j4 (q2) = 51−j∂n

(
P

(0)
j4 ◦ F2

)
(q2)

by (4.4). Thus we obtain

(4.10)
j∑

k=0

5k−j
[(

bk∂nP
(1)
(j−k)2(q0) + ck∂nP

(1)
(j−k)3(q0)

)
+ 51−j

(
bk∂nP

(1)
(j−k)2(q2) + ck∂nP

(1)
(j−k)3(q2)

)]
= 0.

Using data from Part I, this becomes

(4.11)
1
2

(
1 + 51−j

)
bj +

3
2

(
1− 51−j

)
cj

=
j−1∑
k=0

5k−j
[
−

(
1 + 51−j

)
bkαj−k + 3

(
1− 51−j

)
cknj−k+1

]
.

It is clear from inspection that (4.9) and (4.11) may be uniquely solved for bj and cj in
terms of bk and ck for k < j, since

1
2

(
1 + 51−j

)
· 1
2

(
1 + 3.5−j

)
− 3

2
(
1− 51−j

)
· 1
2

(
1− 3.5−j

)
6= 0.

This shows that (4.1) and (4.4) have a unique solution. Q.E.D.

The values of bj and cj for small values of j are displayed in Table 4.1. The data shows

that both constants behave asymptotically like
(
−5λ

(5)
0

)−j

, where 5λ
(5)
0 ≈ 279.4291373

is the eigenvalue generated by λ2 = 5 and all εm = −1. The computations were done in
rational arithmetic to avoid the possibility of instability in the algorithm. In Tables 4.2, 4.3
and 4.4, we display the values of P

(0)
j4 at the points F2q0, q2, F2F0q1, F2F0q2 and F2F2q1.

Again the eigenvalue 5λ
(5)
0 shows up in the values at F2F0q1 and F2F0q2, namely

P
(0)
j4 (F2F0q1) ≈ −P

(0)
j4 (F2F0q2) ≈ c

(
−5λ

(5)
0

)−j

.

The larger eigenvalues λ
(6)
0 ≈ 677.8606 (generated by λ2 = 6 and all εm = −1) and

5λ
(6)
0 show up at q2, F2F2q1 and F2q0. We also observe the relationship P

(0)
j4 (q2) ≈

−2P
(0)
j4 (F2F2q1). At present, we have no explanation for this.
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j bj cj bj/bj−1 cj/cj−1

0 −4.0 −2.0

1 0.2666666667 −0.03555555556 −15.0 56.25000000

2 0.01517037037 −0.01512427984 17.57812500 2.350892468

3 0.0001041086130 −0.0002748737126 145.7167657 55.02264911

4 2.225528997× 10−7 −1.244014207× 10−6 467.7926604 220.9570527

5 2.669865631× 10−10 −2.094686014× 10−9 833.5734094 593.8905394

6 7.435735448× 10−14 −1.972569325× 10−12 3590.587172 1061.907426

7 3.340879006× 10−16 −6.947039102× 10−16 222.5682353 2839.438926

8 −9.672270389× 10−19 −1.398455022× 10−18 −345.4079416 496.7652867

9 3.522400164× 10−21 3.649070802× 10−21 −274.5931734 −383.2359245

10 −1.259441447× 10−23 −1.332178061× 10−23 −279.6795494 −273.9176472

11 4.507418377× 10−26 4.754296157× 10−26 −279.4152532 −280.2051066

12 −1.613085359× 10−28 −1.700385430× 10−28 −279.4283857 −279.6010877

13 5.772796277× 10−31 6.083557903× 10−31 −279.4287692 −279.5050950

14 −2.065925824× 10−33 −2.176896188× 10−33 −279.4290196 −279.4601753

15 7.393381122× 10−36 7.790156743× 10−36 −279.4290988 −279.4418982

16 −2.645887800× 10−38 −2.787830399× 10−38 −279.4291248 −279.4343854

17 9.468904584× 10−41 9.976800851× 10−41 −279.4291332 −279.4312968

18 −3.388660439× 10−43 −3.570411164× 10−43 −279.4291359 −279.4300262

19 1.212708337× 10−45 1.277750245× 10−45 −279.4291368 −279.4295033

20 −4.339949475× 10−48 −4.572714100× 10−48 −279.4291371 −279.4292880

21 1.553148508× 10−50 1.636448199× 10−50 −279.4291372 −279.4291994

22 −5.558291175× 10−53 −5.856397314× 10−53 −279.4291373 −279.4291629

23 1.989159481× 10−55 2.095843386× 10−55 −279.4291373 −279.4291478

24 −7.118654482× 10−58 −7.500446712× 10−58 −279.4291373 −279.4291416

25 2.547570576× 10−60 2.684203493× 10−60 −279.4291373 −279.4291391

Table 4.1
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j P
(0)
j4 (F2q0)

P
(0)
j4 (F2q0)

P
(0)
(j−1)4

(F2q0)
P

(0)
j4 (q2)

P
(0)
j4 (q2)

P
(0)
(j−1)4

(q2)

0 3 1

1 −0.07333333333 −40.90909091 −0.1222222222 −8.181818183

2 −0.002098765432 34.94117647 −0.01748971193 6.988235294

3 −0.000009252316072 226.8367634 −0.0003855131697 45.36735267

4 −1.592196961× 10−8 581.1037390 −3.317077001× 10−6 116.2207478

5 −1.412709980× 10−11 1127.051542 −1.471572896× 10−8 225.4103083

6 −7.469101008× 10−15 1891.405644 −3.890156775× 10−11 378.2811288

7 −2.590083509× 10−18 2883.729803 −6.745009138× 10−14 576.7459607

8 −6.289308978× 10−22 4118.232254 −8.189204398× 10−17 823.6464509

9 −1.121385078× 10−25 5608.518520 −7.300684100× 10−20 1121.703704

10 −1.521915038× 10−29 7368.250198 −4.954150514× 10−23 1473.650039

11 −1.618487611× 10−33 9403.315958 −2.634257179× 10−26 1880.663192

12 −1.379087423× 10−37 11735.93192 −1.122304218× 10−29 2347.186384

13 −9.634433733× 10−42 14314.15132 −3.920261122× 10−33 2862.830263

14 −5.513153728× 10−46 17475.35840 −1.121653997× 10−36 3495.071682

15 −2.876372999× 10−50 19167.03338 −2.925997924× 10−40 3833.406674

16 −6.533814579× 10−55 44022.87460 −3.323269948× 10−44 8804.574921

17 −1.806057139× 10−58 3617.723071 −4.593040821× 10−47 723.5446140

18 4.011288381× 10−62 −4502.436543 5.100616939× 10−50 −900.4873089

19 −1.223998676× 10−65 3277.199935 −7.781974003× 10−53 −655.4399870

20 3.600440326× 10−69 −3399.580510 1.144549156× 10−55 −679.9161017

21 −1.062555271× 10−72 −3388.473451 −1.688886120× 10−58 −677.6946903

22 3.134970652× 10−76 −3389.362737 2.491450828× 10−61 −677.8725476

23 −9.249612755× 10−80 −3389.299352 −3.675465884× 10−64 −677.8598705

24 2.729060127× 10−83 −3389.303396 5.422155315× 10−67 −677.8606791

25 −8.051979996× 10−87 −3389.303163 −7.998923457× 10−70 −677.8606326

Table 4.2
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j P
(0)
j4 (F2F0q1)

P
(0)
j4 (F2F0q1)

P
(0)
(j−1)4

(F2F0q1)
P

(0)
j4 (F2F0q2)

P
(0)
j4 (F2F0q2)

P
(0)
(j−1)4

(F2F0q2)

0 1.4 1.6

1 −0.07191111111 −19.46847960 −0.09742222222 −16.42335766

2 −0.003314396708 21.69659140 −0.006677702058 14.58918373

3 −0.00001816503087 182.4602849 −0.00007714925602 86.55562480

4 −3.063788440× 10−8 592.8944255 −3.554734207× 10−7 217.0324180

5 −3.143318796× 10−11 974.6986032 −8.120323792× 10−10 437.7576926

6 −3.807810424× 10−15 8254.924605 −1.122276712× 10−12 723.5580765

7 −4.442594124× 10−17 85.71141810 −9.513367661× 10−16 1179.683948

8 1.383662940× 10−19 −321.0748800 −7.568099567× 10−19 1257.035214

9 −4.986994304× 10−22 −277.4542852 2.163804580× 10−22 −3497.589218

10 1.782124292× 10−24 −279.8342588 −1.880299126× 10−24 −115.0776783

11 −6.375286834× 10−27 −279.5363312 6.348529025× 10−27 −296.1787083

12 2.281164104× 10−29 −279.4751514 −2.281749050× 10−29 −278.2308171

13 −8.163109719× 10−32 −279.4479289 8.163005180× 10−32 −279.5231657

14 2.921271755× 10−34 −279.4368482 −2.921273307× 10−34 −279.4331212

15 −1.045430938× 10−36 −279.4323038 1.045430919× 10−36 −279.4324575

16 3.741292262× 10−39 −279.4304387 −3.741292264× 10−39 −279.4304334

17 −1.338902998× 10−41 −279.4296725 1.338902998× 10−41 −279.4296726

18 4.791561667× 10−44 −279.4293575 −4.791561667× 10−44 −279.4293575

19 −1.714767529× 10−46 −279.4292279 1.714767529× 10−46 −279.4292279

20 6.136680364× 10−49 −279.4291746 −6.136680364× 10−49 −279.4291746

21 −2.196148937× 10−51 −279.4291526 2.196148937× 10−51 −279.4291526

22 7.859412616× 10−54 −279.4291437 −7.859412616× 10−54 −279.4291436

23 −2.812667505× 10−56 −279.4291398 2.812667505× 10−56 −279.4291399

24 1.006576308× 10−58 −279.4291384 −1.006576308× 10−58 −279.4291383

25 −3.602259651× 10−61 −279.4291377 3.602259651× 10−61 −279.4291377

Table 4.3
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j P
(0)
j4 (F2F2q1)

P
(0)
j4 (F2F2q1)

P
(0)
(j−1)4

(F2F2q1)

0 1

1 −0.079555555556 −12.56983240

2 −0.006348971193 12.53046409

3 −0.00007717717964 82.26487704

4 −3.545338022× 10−7 217.6863790

5 −8.150707352× 10−10 434.9730482

6 −1.111396727× 10−12 733.3751444

7 −9.902175453× 10−16 1122.376323

8 −6.177245608× 10−19 1603.008215

9 −2.812999139× 10−22 2195.964273

10 −9.931688197× 10−26 2832.347415

11 −2.502488523× 10−29 3968.724774

12 −8.400870671× 10−33 2978.844242

13 2.718952861× 10−36 −3089.744876

14 −5.708435539× 10−39 −476.3043819

15 8.172891988× 10−42 −698.4596820

16 −1.208758569× 10−44 −676.1393216

17 1.782872299× 10−47 −677.9838184

18 −2.630175292× 10−50 −677.8530330

19 3.880109822× 10−53 −677.8610433

20 −5.724052603× 10−56 −677.8606157

21 8.444291203× 10−59 −677.8606357

22 −1.245726742× 10−61 −677.8606349

23 1.837732828× 10−64 −677.8606351

24 −2.711077666× 10−67 −677.8606349

25 3.999461728× 10−70 −677.8606348

Table 4.4

–11 –1 1

00

0

00

0

0

0

0
0

0

Figure 4.1. Values on V2 of an eigenfunction with eigenvalue 5λ(5)
0
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Conjecture 4.2. The limit as j → ∞ of
(
−5λ

(5)
0

)j

P
(0)
j4 exists and is a multiple of the

eigenfunction with eigenvalue 5λ
(5)
0 shown in Figure 4.1.

§5. Monomials with periodic point singularity.

Let w and z be as in section 3. We wish to extend the family
{

P
(z)
0k

}
, k = 1, 2, . . . , 6 of

harmonic functions on K \ {z} to
{

P
(z)
jk

}
, for j = 0, 1, 2, . . . of multiharmonic functions.

We want

(5.1) ∆P
(z)
jk = P

(z)
(j−1)k on K \ {z},

and

(5.2) P
(z)
jk ◦ (Fw)n =

(
5−jmσk

)n
P

(z)
jk .

We will consider the case w = (0, 1). We want to keep track of the functions P
(z)
jk on each

of the cells F1K, F2K, F02K and F00K by expanding in bases of monomials centered at
the points F1q2, F2q1, F0F2q2 and F0F0q2, respectively. (See Figure 5.1.) In other words,

P
(z)
jk ◦ F1 =

j∑
l=0

3∑
n=1

alnk5l−jP
(2)
(j−l)n,(5.3)

P
(z)
jk ◦ F2 =

j∑
l=0

3∑
n=1

blnk5l−jP
(1)
(j−l)n,(5.4)

P
(z)
jk ◦ (F0F2) =

j∑
l=0

3∑
n=1

clnk52(l−j)P
(2)
(j−l)n,(5.5)

P
(z)
jk ◦ (F0F0) =

j∑
l=0

3∑
n=1

dlnk52(l−j)P
(2)
(j−l)n.(5.6)

In order to have ∆k+1P
(z)
jk = 0 in K \ F0F1K, we must have (5.3)–(5.6) and in addition

matching conditions for the functions and normal derivatives at the points F1q2 = F2q1,
F2q0 = F0F2q2, and F0F2q0 = F0F0q2. It might appear that the coefficients in (5.3)–(5.6)
should also depend on j, but we have set up the right hand sides in such a way that if we
have satisfied (5.1) for j′ < j then we can reuse the same coefficients for l < j and only
have to determine new coefficients for l = j.

Since we have already determined P
(z)
0k in section 3, we may compute the coefficients

for l = 0. Assume we have determined the coefficients for all l < j so that (5.1) holds
on K \ F0F1K. Then (5.1) for l = j on K \ F0F1K is automatic, provided we verify the
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F0F0q1

q2

q0 q1

F1K

F0F 2 q1

F0F0K

F1q0

F 2 K

F0F 2 K

F 2 q0  =   F0F 2 q2 F1q2   =   F 2 q1

F0F 2 q0  =   F0F0q2

Figure 5.1

matching conditions P
(z)
jk ◦ F1(q2) = P

(z)
jk ◦ F2(q1)

∂n

(
P

(z)
jk ◦ F1

)
(q2) = −∂n

(
P

(z)
jk ◦ F2

)
(q1),

(5.7)

 P
(z)
jk ◦ F2(q0) = P

(z)
jk ◦ (F0F2)(q2)

3
5
∂n

(
P

(z)
jk ◦ F2

)
(q0) = −∂n

(
P

(z)
jk ◦ (F0F2)

)
(q2),

(5.8)

 P
(z)
jk ◦ (F0F2)(q0) = P

(z)
jk ◦ (F0F0)(q2)

∂n

(
P

(z)
jk ◦ (F0F2)

)
(q0) = −∂n

(
P

(z)
jk ◦ (F0F0)

)
(q2).

(5.9)

When we substitute (5.3)–(5.6) into (5.7)–(5.9), some of the expressions simplify because
only one term is non-zero. Thus

(5.10)



P
(z)
jk ◦ F1(q2) = aj1k, ∂n

(
P

(z)
jk ◦ F1

)
(q2) = aj2k,

P
(z)
jk ◦ F2(q1) = bj1k, ∂n

(
P

(z)
jk ◦ F2

)
(q1) = bj2k,

P
(z)
jk ◦ (F0F2)(q2) = cj1k, ∂n

(
P

(z)
jk ◦ (F0F2)

)
(q2) = cj2k,

P
(z)
jk ◦ (F0F0)(q2) = dj1k, ∂n

(
P

(z)
jk ◦ (F0F0)

)
(q2) = dj2k.

However, the other four expressions do not simplify, and require the transplantation com-
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putations from Part I. For the left side of (5.8) we need to use

P
(1)
(j−l)n(q0) = P

(0)
(j−l)n(q2) =


αj−l if n = 1
βj−l if n = 2
−γj−l if n = 3

(5.11)

∂nP
(1)
(j−l)n(q0) = ∂nP

(0)
(j−l)n(q2) =



nj−l if n = 1
−αj−l if n = 2, l 6= j

1
2
− α0 if n = 2, l = j

−3nj−l+1 if n = 3.

(5.12)

For the left side of (5.9), we need to use

P
(2)
(j−l)n(q0) = P

(0)
(j−l)n(q1) =


αj−l if n = 1
βj−l if n = 2
γj−l if n = 3

(5.13)

∂nP
(2)
(j−l)n(q0) = ∂nP

(0)
(j−l)n(q1) =



nj−l if n = 1
−αj−l if n = 2, l 6= j

1
2
− α0 if n = 2, l = j

3nj−l+1 if n = 3.

(5.14)

For fixed k and j, (5.7)–(5.9) give six linear equations in twelve unknowns, already explicitly
solved for aj1k, aj2k, cj1k, cj2k, dj1k, dj2k, in terms of aj3k, bj1k, bj2k, bj3k, cj3k, dj3k, and
earlier coefficients with l < j.

Now we assume that (5.2) has been established for all j′ < j. We then take (5.2) as a
definition for extending P

(z)
jk from K \F1F1K to F0F1K \ (F0F1)2K, and then inductively

from (F0F1)n−1K \ (F0F1)nK to (F0F1)nK \ (F0F1)n+1K. This will of course guarantee
that (5.2) holds, and (5.1) will hold on K \ {z} provided matching conditions hold for
each extension. But it suffices to establish this for n = 1, at the points F1q0 = F0F1q1,
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F0F2q1 = F0F1q2, and F0F0q1 = F0F1q0. Specifically,

P
(z)
jk ◦ F1(q0) = P

(z)
jk ◦ (F0F1)(q1)

= 5−2jσkP
(z)
jk ◦ F1(q1)

3
5
∂n

(
P

(z)
jk ◦ F1

)
(q0) = −∂n

(
P

(z)
jk ◦ (F0F1)

)
(q1)

= −
(

5
3

)
5−2jσk∂n

(
P

(z)
jk ◦ F1

)
(q1),

(5.15)



P
(z)
jk ◦ (F0F2)(q1) = P

(z)
jk ◦ (F0F1)(q2)

= 5−2jσkP
(z)
jk ◦ F2(q2)

∂n

(
P

(z)
jk ◦ (F0F2)

)
(q1) = −∂n

(
P

(z)
jk ◦ (F0F1)

)
(q2)

= −
(

5
3

)
5−2jσk∂n

(
P

(z)
jk ◦ F2

)
(q2),

(5.16)



P
(z)
jk ◦ (F0F0)(q1) = P

(z)
jk ◦ (F0F1)(q0)

= 5−2jσkP
(z)
jk ◦ (F0F0)(q0)

3
5
∂n

(
P

(z)
jk ◦ (F0F0)

)
(q1) = −∂n

(
P

(z)
jk ◦ (F0F1)

)
(q0)

= −
(

5
3

)2

5−2jσk∂n

(
P

(z)
jk ◦ (F0F0)

)
(q0),

(5.17)

where the first equality is the matching condition and the second equality is (5.2). Substi-
tuting (5.3)–(5.6) in (5.15)–(5.17) and using transplantation formulas analogous to (5.11)–
(5.14) we obtain six more linear equations for the twelve coefficients with l = j.

Conjecture 5.1. The twelve linear equations in twelve unknowns have a unique solution,
hence there is a unique solution to (5.1) and (5.2).

As evidence for the conjecture, we have numerically solved the equations for all j ≤ 15.
The numerical data exhibits an exponential decay given by the number r = 5.351906737 . . . .
The evidence is that

(5.18) lim
j→∞

rjP
(z)
jk

exists for all k = 1, 2, . . . , 6, and the limits are all multiples of a single function u, which
satisfies the eigenvalue equation

(5.19) −∆u = −ru on F1K ∪ F2K.

It is clear from (5.2) that u must vanish on the boundary of F0F1K, but the evidence
indicates that u does not have vanishing normal derivatives at these points, so u does not
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extend to an eigenfunction on K. Indeed, because the eigenvalue in (5.19) is negative, this
would not be possible. Specifically, we found the values

(5.20)
{

u(q1) = 1, u(F1q2) = 2.650890858 . . . ,
u(q2) = 6.206573634 . . . , u(F2q0) = 5.356932520 . . . .

Computing the discrete eigenvalue on level 1 at the point F1q2 from these values we obtain
λ1 = −0.739352477, which leads to λ = −r if we choose all εj = −1.

These results are quite puzzling. It is not clear why the eigenvalue is negative, why the
behavior of all six families is the same, and it is not clear what the significance of this
particular eigenvalue and eigenfunction might be.

§6. Spectral decimation with point singularity.

To describe all eigenfunctions with “generic” eigenvalue we have the method of spectral
decimation. In this section, we show how to modify the method to allow eigenfunctions
with point singularity for the case of a boundary point. In principle, the same idea should
work for any point singularity, but the details are more complicated.

Recall that the eigenvalue λ may be written uniquely as

(6.1) λ = lim
m→∞

3
2
5mλm

where

(6.2) λm = λm+1(5− λm+1).

Of course, (6.2) means

(6.3) λm+1 =
5 + εm

√
25− 4λm

2

for εm = ±1, and εm = −1 for all but a finite number of m’s, so that the limit (6.1) exists.
Then λ is called “generic” if no λm equals 2, 5, or 6. If u is a λ-eigenfunction on any cell
of level m − 1, say FwK, then the boundary values u(Fwqi) determine u uniquely in the
generic case, and in fact

(6.4) u(FwF0q1) =
4− λm

(2− λm)(5− λm)
[u(Fwq0) + u(Fwq1)] +

2
(2− λm)(5− λm)

u(Fwq2)

and similar identities determine the boundary values of u on the subcells FwFiK of level
m.

Now suppose we allow u to have a singularity at q0. Then there will be a 4-dimensional
space of eigenfunctions in the generic case. Since we already know two global eigenfunctions
that are R0-symmetric and one that is skew-symmetric, we need to identify one more skew-
symmetric eigenfunction on K \ {q0}. Let us write cj = u

(
F j

0 q1

)
= −u

(
F j

0 q2

)
. We will

regard c0, c1 as “initial data” for u, and determine all the other cj values in terms of c0,
c1 by a recursive formula.
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Lemma 6.1. Let u be an eigenfunction on K \ {q0} with generic eigenvalue, and assume
u is skew-symmetric with respect to R0. Then

(6.5) (2− λj) [(5− λj)cj − cj−1] = (6− λj) [(5− λj−1)cj−1 − cj−2] for j ≥ 2.

Moreover, u has a removable singularity if and only if (5− λ1)c1 = c0, in which case

(6.6) cj−1 = (5− λj)cj for all j ≥ 1.

Proof. By the skew-symmetry u(Fn
0 F1q2) = 0 for every n. Applying the spectral decima-

tion method to F1K we find

u(F1F0q1) =
(4− λ2)(c0 + c1)
(2− λ2)(5− λ2)

and u(F1F0q2) =
(4− λ2)c1 + 2c0

(2− λ2)(5− λ2)
.

Thus the λ2-eigenfunction equation on level 2 at F0q1 yields

(4− λ2)c1 = c2 +
2(4− λ2)c1

(2− λ2)(5− λ2)
+

(6− λ2)c0

(2− λ2)(5− λ2)
.

Multiplying by (2− λ2)(5− λ2) and rearranging terms yields

(2− λ2)[(5− λ2)c2 − c1] + (2− λ2)c1 + 2(4− λ2)c1 =

(6− λ2)[(5− λ1)c1 − c0] + (2− λ2)(5− λ2)(4− λ2)c1 − (6− λ2)(5− λ1)c1.

We may check that

(2− λ2) + 2(4− λ2) = (2− λ2)(5− λ2)(4− λ2)− (6− λ2)(5− λ1)

by using (6.2), so this establishes (6.5) for j = 2. By iterating this argument, we obtain
(6.5) for all j ≥ 2. If u has a removable singularity at q0 then u(q0) = 0 and we may apply
the λ1-eigenvalue equation on level 1 at F0q1 to obtain (5−λ1)c1 = c0. Then (6.6) follows
for all j by (6.5). Q.E.D.

To obtain a solution with a true singularity we have to take (5 − λ1)c1 6= c0. Let us
write c̃j = (5 − λj)cj − cj−1. We want to describe the asymptotic behavior of c̃j and cj .
Note that it follows from (6.5) that

(6.7) c̃j = 3j · 1
3

(
j∏

k=2

1− λk

6

1− λk

2

)
c̃1.

Define the constant A (depending on λ) by

(6.8) A =
1
3

( ∞∏
k=2

1− λk

6

1− λk

2

)
c̃1.

It is easy to see that the infinite product converges since

(6.9) λk =
2λ

3
5−k + o

(
5−k

)
as k →∞

by (6.1).
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Theorem 6.2. We have the estimates

(6.10) c̃j = A3j − λ

18
A

(
3
5

)j

+ o

((
3
5

)j
)

as j →∞

and

(6.11) cj =
3
14

A3j +
11λ

420
A

(
3
5

)j

+ o

((
3
5

)j
)

as j →∞.

Proof. We have exactly

(6.12) c̃j = A3j
∞∏

k=j+1

1− λk

2

1− λk

6

.

Let

Rj =
∞∏

k=j+1

1− λk

2

1− λk

6

.

Then

log Rj =
∞∑

k=j+1

[
log

(
1− λk

2

)
− log

(
1− λk

6

)]
= −1

3

∞∑
k=j+1

λk + O
(
5−2j

)
.

Using (6.9) we obtain

−1
3

∞∑
k=j+1

λk = −2λ

9

∞∑
k=j+1

5−k + o
(
5−j

)
= − λ

18
5−j + o

(
5−j

)
.

This yields

Rj = 1− λ

18
5−j + o

(
5−j

)
,

and together with (6.12) we obtain (6.10).
If we assume that

cj = A13j + B1

(
3
5

)j

+ o

((
3
5

)j
)

and substitute this and (6.10) into the definition of c̃j using (6.9), we obtain

A3j − λ

18
A

(
3
5

)j

+ o

((
3
5

)j
)

= (5− λj)

[
A13j + B1

(
3
5

)j

+ o

((
3
5

)j
)]

−
[
A13j−1 + B1

(
3
5

)j−1

+ o

((
3
5

)j
)]

=
14
3

A13j +
(

10
3

B1 −
2λ

3
A1

) (
3
5

)j

+ o

((
3
5

)j
)

.
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This shows that

A1 =
3
14

A and B1 =
3
10

(
− λ

18
A

)
+

λ

5
A1 =

11λ

420
A.

To actually show that (6.11) holds, we define the remainder rj by

cj =
3
14

A3j +
11λ

420
A

((
3
5

)j
)

+ rj ,

and substitute this and (6.10) into the definition of c̃j . Using (6.9) this yields

(6.13) (5− λj)rj − rj−1 = o

((
3
5

)j
)

.

It is a routine matter to show that (6.13) implies rj = o
((

3
5

)j
)

because 1
5 < 3

5 . Q.E.D.

An entirely different approach to the problem is to note that the general skew-symmetric
eigenfunction on K \ {q0} can be expanded as

(6.14) u(x) = α

∞∑
k=0

λkP
(0)
k4 (x) + β

∞∑
k=0

λkP
(0)
k3 (x)

for constants α and β. This will converge in a neighborhood of q0. (The size of the
neighborhood depends on λ.) As long as α 6= 0 the singularity will not be removable. It
is clear from (6.14) that (6.11) is just the beginning of an infinite asymptotic expansion
involving terms of order

(
3 · 5−l

)j for l = 0, 1, . . . and 5−lj for l = 1, 2, . . . . (If β = 0, these
terms will be absent.)

§7. Generic eigenfunctions on blow-ups.

Fix an infinite word w, and consider the blow-up

(7.1) SGw =
∞⋃

n=0

F−1
w1

F−1
w2
· · ·F−1

wn
K (increasing union)

(See [S1].) If all wi are equal, say wi = 0 (or all but a finite number), then the blow-up
contains a boundary point (q0). If all wi omit a value, say wi = 0 or 1 (or all but a finite
number), then the blow-up contains a “bottom line” (the line joining q0 and q1). In [T1],
Teplyaev has identified all L2 eigenfunctions on all blow-ups. In part I, we studied generic
eigenfunctions on the blow-up with boundary point. In this section, we study generic
eigenfunctions on all blow-ups. We will pay attention to the “behavior at infinity” of the
eigenfunctions, more precisely in the three different “directions to infinity.”

We begin with an observation about the blow-up studied in part I that extends to
all bottom line blow-ups. In the notation of part I, we defined a basis C−λ, S−λ and
Q−λ for the eigenspace −∆u = λu for λ negative, and also a decaying eigenfunction
E−λ = C−λ − S−λ. Actually, the definitions are valid for any generic eigenvalue, but the
asymptotic properties depend on |λj | → ∞ as j → −∞. This condition is equivalent to
the statement that λ0 does not belong to the Julia set J for the polynomial z(5− z). This
Julia set is a subset of the real axis interval [0, 5]. We will refer to such eigenvalues as
non-Julia generic.
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Definition 7.1. The level eigenfunction L−λ is defined to be

(7.2) L−λ(x) = C−λ(x) +
λ

3
Q−λ(x)

Theorem 7.2. L−λ(x) = 1 along the bottom line.

Proof. From (6.15) and (6.18) in part I, we have C−λ(xn) = 1− λn

4 and Q−λ(xn) = 3λn

4λ ,
where xn = Fn

0 q1 and n ≤ 0, so L−λ(xn) = 1. But the same argument works for n ≥ 1.
In fact, we know more. Since L−λ(q0) = L−λ(q1) = 1, L−λ restricted to K must be
symmetric with respect to the symmetry R2 that interchanges q0 and q1. In particular,
L−λ(F1F0q1) = L−λ(F0F0q1) = 1. By similar reasoning, we find that L−λ(x) = 1 for every
junction point on the bottom line, and since these are dense in the line, the result follows.

Q.E.D.

It also follows from (7.2) that

L−λ (Fn
0 q2) =

(
1− λn

4

)
− λn

4
= 1− λn

2

because C−λ is symmetric and Q−λ is skew-symmetric with respect to the R0 symmetry.
This function also has a “translational” symmetry: if C denotes any cell of level n that
lies along the bottom line, then L−λ is equal to 1 at the two vertices of C that lie on the
bottom line, and is equal to 1 − λn

2 at the third vertex of C. The values inside C are
then determined by spectral decimation. Note that this description makes sense for any
blow-up that has a bottom line. The function L−λ is not bounded for a non-Julia generic
eigenvalue, since λn is unbounded as n→∞.

Next, we describe eigenfunctions that decay in two directions and blow up in the third
direction, namely along the sequences F−1

w1
F−1

w2
· · ·F−1

wn
qi as n→∞ for fixed i. For this we

will require a genericity condition on the blow-up. We say that w is generic in direction
i if there exists N such that for every j, the segment wj+1, wj+2, . . . , wj+N of length N
contains the digit i.

Lemma 7.3. For w generic in direction 0,

(7.3) lim
m→∞

E−λ

(
F−m

0 FwmFwm−1 · · ·Fw1x
)

E−λ

(
F−m

0 FwmFwm−1 · · ·Fw1q0

)
exists uniformly on compact sets, for non-Julia generic eigenvalues. The limit, which we
denote by E

(0)
−λ(x), is a λ-eigenfunction.

Proof. For x in a compact subset of SGw we have FwmFwm−1 · · ·Fw1x ∈ K for m large
enough, so

am =
E−λ

(
F−m

0 FwmFwm−1 · · ·Fw1x
)

E−λ

(
F−m

0 FwmFwm−1 · · ·Fw1q0

)
is well defined. We need to compare am+1 and am. Note that

(7.4) E−λ

(
F−m

0 x
)

= E−5mλ(x).
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Indeed, both sides of (7.4) are 5mλ-eigenfunctions that are equal to 1 at x = q0 and have
limit zero as n → ∞ for x = F−n

0 qi for i = 1, 2, and such a function is unique. Thus we
have

(7.5) am =
E−5mλ(zm)
E−5mλ(z′m)

for zm = Fwm
Fwm−1 · · ·Fw1x and z′m = Fwm

Fwm−1 · · ·Fw1q0. If wm+1 = 0 then am+1 =
am. If wm+1 = 1 (a similar analysis holds if wm+1 = 2) then

(7.6) am+1 =
E−5mλ

(
F−1

0 F1zm

)
E−5mλ

(
F−1

0 F1z′m
) .

Now we claim that

(7.7) E−5mλ

(
F−1

0 F1z
)

= − 1
λ−m

E−5mλ(z) + O

(
1

λ−m−1

)
for z ∈ K. Also note that

1
λ−m−1

= −
(

1
λ−m

)2

+ O

(
1

λ−m−2

)
for large m and λ0 6∈ J . First we verify (7.7) at the boundary points. We know
E−5mλ(q0) = 1 and E−5mλ(q1) = E−5mλ(q2) = − 1

λ−m
+O

(
1

λ−m−1

)
while E−5mλ

(
F−1

0 q1

)
=

E−5mλ

(
F−1

0 q2

)
= − 1

λ−m−1
+ O

(
1

λ−m−2

)
by Theorem 6.5 of part I. Then by spectral dec-

imation E−5mλ

(
F−1

0 F1q2

)
= − 2

λ−m−1
+ O

(
1

λ−m−2

)
. Thus

− 1
λ−m

+ O

(
1

λ−m−1

)
= E−5mλ(q1) = E−5mλ

(
F−1

0 F1q0

)
= − 1

λ−m
E−5mλ(q0) + O

(
1

λ−m−1

)
,

− 1
λ−m−1

+ O

(
1

λ−m−2

)
= E−5mλ

(
F−1

0 q1

)
= E−5mλ

(
F−1

0 F1q1

)
= − 1

λ−m
E−5mλ(q1) + O

(
1

λ−m−2

)
,

and

− 2
λ−m−1

+ O

(
1

λ−m−2

)
= E−5mλ

(
F−1

0 F1q2

)
= − 1

λ−m
E−5mλ(q2) + O

(
1

λ−m−1

)
.
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This verifies (7.7) at boundary points of K, and it follows for all points by spectral deci-
mation, since the cumulative multiplication factor for the error is bounded by

∞∏
j=−∞

(
2|4− λj |+ 2
|2− λj ||5− λj |

)
,

which depends only on λ.
Using (7.7) for z = zm and z′m in (7.6) yields

am+1 = am +
O

(
1

λ−m

)
E−5mλ(z′m)

.

Thus to establish the existence of the limit in (7.3) we need to show that

(7.8)
∞∑

m=1

O
(

1
λ−m

)
|E−5mλ(z′m)|

is finite. Under the generic assumption, the points z′m for large m are confined to a subset
of K of the form

⋃
Fw′K where each w′ is of length N and contains the digit 0. On such

a subset we have an upper bound for (|E−5mλ(z)||λ−m|)−1 that decays exponentially, so
(7.8) converges. Q.E.D.

We could obtain the same conclusion under somewhat weaker genericity assumptions,
but it is not clear whether or not such assumptions can be dispensed with entirely.

We may similarly define eigenfunctions E
(1)
−λ(x) and E

(2)
−λ(x) if w is generic in direction

1 or 2 by permuting the boundary points.
In order to describe the decay of these eigenfunctions we introduce the notion of a chain

of cells of fixed level l. The chain C is a sequence {Cn} of cells that may be finite, infinite
in one direction, or infinite in both directions, such that consecutive cells intersect at a
single point. A finite chain is called a cycle if the first and last cell also intersect at a single
point. If we fix the initial cell C1, then there are three canonical infinite chains that pass
through the points F−1

w1
F−1

w2
· · ·F−1

wm
qi for fixed i, for all large m. (Here we only need to

assume that the blow-up does not have a boundary point.) Indeed, if we have a finite chain
Cm connecting C1 to a cell containing F−1

w1
F−1

w2
· · ·F−1

wm
qi, we may continue it to a chain

Cm+1 by traveling in a straight line from F−1
w1

F−1
w2
· · ·F−1

wm
qi to F−1

w1
F−1

w2
· · ·F−1

wm
F−1

wm+1
qi

along one side of the cell F−1
w1

F−1
w2
· · ·F−1

wm+1
FiK. (If wm+1 = i, then take Cm+1 = Cm.)

Then the chain C(i) is the union of all Cm.

Theorem 7.4. Assume w is generic in direction 0. Then E
(0)
−λ vanishes at infinity along

the chains C(1) and C(2), and is unbounded along the chain C(0).
Proof. Consider the cell F−1

w1
F−1

w2
· · ·F−1

wm+1
K for large m, and the portion of the chain C(1)

or C(2) that lies along the line connecting F−1
w1

F−1
w2
· · ·F−1

wm
qi to F−1

w1
F−1

w2
· · ·F−1

wm
F−1

wm+1
qi.

Using (7.5) we see that E
(0)
−λ(x) is the ratio of E−5mλ(zm) with zm lying in F−1

0 F1K ∪



40 NITSAN BEN-GAL, ABBY SHAW-KRAUSS, ROBERT STRICHARTZ, CLINT YOUNG

F−1
0 F2K, to E−5mλ(z′m) with z′m lying in a subset of K as described in Lemma 7.3. Since
|E−5mλ(zm)| = O

(
1

λ−m

)
we obtain the desired decay. On the other hand, the chain

C(0) contains the points F−1
w1

F−1
w2
· · ·F−1

wm
q0 where the numerator in (7.5) is 1, and the

denominator tends to 0. So the ratio is unbounded. Q.E.D.

We can describe the rate of decay in quantitative terms. To do this we need to observe
that E−5mλ on a cell Fw′K of order N , where at least one digit of w′ is 1, is bounded
below by a multiple of 1

|λ−m|1−2−N . (This may be established by induction using spectral

decimation.) Thus the rate of decay is |λ−m|−2−N

.
If w is generic in all three directions, then we have a basis E

(0)
−λ, E

(1)
−λ, E

(2)
−λ, for the space

of eigenfunctions, each decaying along two of the three chains C(i). On the other hand,
if the blow-up has a bottom line (say wi 6= 2) and w is generic in the directions 0 and 1,
then E

(0)
−λ, E

(1)
−λ and L−λ form a basis.

Finally, for the blow-up with boundary point q0, we consider the 4-dimensional space
of eigenfunctions with singularity at q0. We could obtain a basis by adjoining any of
the eigenfunctions constructed in section 6, since these extend to the blow-up by spectral
decimation using (6.5) to determine cj for negative values of j. But we would like to pick
out one solution for which cj → 0 as j → −∞. This is clearly unique (up to a constant
multiple) since all these functions are skew-symmetric, and Q−λ(x) blows up along F−j

0 q1.
Since (6.5) tells us that

c̃j−1 =
(

2− λj

6− λj

)
c̃j

and 2−λj

6−λj
→ 1 rapidly as j → −∞, we may conclude that c̃j is bounded and tends to a

limit as j → −∞. We may take the limit to be 1. Then

(7.9) c̃j =
j∏

n=−∞

(
6− λn

2− λn

)
.

Note that (7.9) is consistent with (6.7), and substituting (7.9) for j = 1 into (6.8) gives a
formula for A in terms of the values {λj}. We also note that (6.5) may be written (using
λj−1 = λj(5− λj))

(7.10)
cj

λj
=

c̃j

λj−1
+

cj−1

λj−1
.

If we want limj→−∞ cj = 0 we should take

(7.11) cj = λj

∞∑
k=1

c̃−k+1

λj−k
.

Indeed, the infinite series in (7.11) converges, because the numerators are bounded and
denominators go to infinity rapidly. Then we can check that (7.10) holds, and

(7.12) lim
j→−∞

cj = 0

because the ratios λj/λj−k tend to zero rapidly. Although all the equations are explicit, it
seems difficult to determine the values of α and β in (6.14) for this particular eigenfunction.
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§8. Nongeneric eigenfunctions on blow-ups.

Continuing the notation of section 7, we consider what happens if λ is nongeneric or
λ0 ∈ J . In the nongeneric case, we have λm0 = 2, 5 or 6 for some m0. Some of these
eigenfunctions are described in [T1] because they contribute to the L2 spectrum of the
blow-up. Note that if λm0 = 6 then λm0+1 = 2 or 3. For simplicity of notation, we will
take m0 = 0, since the general case just requires a rescaling.

Case 8.1: λ0 = 6 and λ1 = 3.
In this case, the space of eigenfunctions is infinite dimensional, and there is a one-to-one

correspondence with the space of functions on V−1. In other words, we may specify u(x)
for x ∈ V−1 in any way. Then we extend u to V0 using the λ = 6 spectral decimation
formula,

(8.1) u(x) =
1
2
[u(a)− u(b)− u(c)] for x ∈ V0 \ V−1,

where a is the opposite vertex and b and c are the closer vertices of the level −1 cell
containing x. Of course, (8.1) guarantees that u satisfies the 6-eigenfunction equation on
level 0 for points in V0 \ V−1. But it is also easy to verify that the same equation holds
at points in V−1. Indeed, suppose a ∈ V−1 and b, c and b′, c′ are the other vertices of the
two level −1 cells containing a. Let x, y and x′, y′ be the neighboring vertices in V0 \ V−1.
Then u(x) + u(y) = 1

2 [u(b) − u(a) − u(c)] + 1
2 [u(c) − u(a) − u(b)] = −u(a) by (8.1), and

similarly u(x′) + u(y′) = −u(a), and so u(x) + u(y) + u(x′) + u(y′) = −2u(a), which is the
6-eigenvalue equation at a.

We may then continue to extend u to Vm for all m ≥ 1 by spectral decimation since
we never again encounter 2, 5 or 6 for λm. When u|V−1 ∈ l2(V−1), we obtain an L2

eigenfunction as described in [T1] (using slightly different normalization conventions). If
u|V−1 ∈ l∞(V−1), then we obtain a bounded eigenfunction.

Case 8.2: λ0 = 6 and λ1 = 2.
In this case, the eigenspace is 3-dimensional. As we will see, spectral decimation holds

at all levels except level 0, and a modified version goes from V−1 to V1.
Consider a cell of level −1, and suppose the values of u are given on the boundary.

Then spectral decimation determines the values on the three points in V0 \ V−1 in the
cell, so that the 6-eigenvalue equation at level 0 holds at these three points. It turns out
that there is a unique extension to the points in V1 \ V0 so that the 2-eigenvalue equation
on level 1 holds at all the points in V1 \ V−1 in the cell. That extension is shown in
Figure 8.1 for boundary values (6, 0, 0). It is easy to check that the 2-eigenvalue equation
is satisfied, and it may be checked that this is the unique extension with this property.
Note that at a boundary point a with neighbors x, y on level 1, the extension algorithm
implies u(x)+u(y) =

[
−1

3u(a) + 1
3u(c)

]
+

[
− 1

3u(a) + 1
3u(b)

]
, where b, c are the other level

−1 vertices. The analogous result holds on the other level −1 cell containing a, so the
2-eigenvalue equation on level 1 at a becomes 10u(a) = u(b) + u(c) + u(b′) + u(c′), where
b, c, b′, c′ are the neighboring points to a on level −1. But this is exactly the −6-eigenvalue
equation on level −1 at a, and −6 = λ−1. In other words, if u|V−1 is a −6-eigenfunction
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Figure 8.1. The extension to all points in V1 from boundary values
(6, 0, 0) satisfying the 2-eigenvalue equation at all points except the
boundary.

and we perform the extension exhibited in Figure 8.1 on every cell of level −1, then the
extension is a 2-eigenfunction on level 1.

To actually construct a global eigenfunction we would start with the 2-eigenfunction
on level 1 shown in Figure 8.1 on a cell of level −1. We can then use outward spectral
decimation to extend it inductively to a λn-eigenfunction on level n on a cell Cn of level
n for n = −2,−3, . . . . Then we use inward spectral decimation to extend it to a −6-
eigenfunction on level −1 on all the V−1 vertices in Cn. Then we use the modified spectral
decimation of Figure 8.1 to extend to a 2-eigenfunction on level 1 on all V1 vertices in Cn.
When we take the union over all negative n we obtain a 2-eigenfunction on level 1 on all of
V1 and after that inward spectral decimation produces a λ-eigenfunction on SGw. If we do
the same with the other two rotations of Figure 8.1, we obtain three linearly independent
λ-eigenfunctions. We can then find special eigenfunctions using the methods of section 7,
just as in the non-Julia generic case.

Case 8.3: λ0 = 5.
In this case, it is known ([T1]) how to construct an eigenfunction supported in any

cell Cn of level n ≤ −2. In fact, the support is the cycle of level −1 cells that goes
around the inner triangular loop. The case n = −3 is illustrated in Figure 8.2. Each
level −1 cell intersects the support of only 3 such functions, corresponding to the inner
triangular loops containing the 3 sides of the triangle containing the cell. Thus any infinite
linear combination of these functions defines a λ-eigenfunction. The function is L2 if and
only if the suitably normalized coefficients are in l2, and is bounded if and only if the
nonnormalized coefficients are bounded.

This does not quite exhaust the λ-eigenspace, however. In fact, the above is a sub-
space of codimension 2. To construct the missing eigenfunctions, we consider the doubly
infinite chain of cells of level −1, connecting C(0) and C(1). We easily construct a λ-
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1
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Figure 8.2. The 5-eigenfunction on level 0 on V0 in a cell of level −3.
(Unmarked vertices have value 0.)

eigenfunction supported in the chain by imitating the construction in Figure 8.2. We can
do the same construction replacing the pair

(
C(0), C(1)

)
with

(
C(1), C(2)

)
to get the second

missing eigenfunction. We do not get anything new using the pair
(
C(0), C(2)

)
because it

is a linear combination of the previous two and the finite loop eigenfunctions.

Case 8.4: λ0 = 4.
In this case, the eigenvalue is generic, so there is a 3-dimensional space of eigenfunctions,

but λ0 ∈ J . In fact, 4 is an expanding fixed point of the polynomial, so λn = 4 for all n ≤ 0.
The spectral decimation formula for λ0 = 4 is the same going outward and inward, namely
u(x) = −u(a) if x ∈ V0 \ V−1 and a ∈ V−1 is the vertex opposite x in the level −1 cell
containing x. Since the same is true on any level n ≤ 0, it follows that all eigenfunctions
are bounded, but none tend to zero along any path to infinity. In fact, the restriction to
every cell of level 0 is identical to one of a finite number of functions. This is a kind of
quasi-periodic behavior.

In the case of the blow-up with boundary point q0, the eigenfunctions with singularity
at q0 may be described explicitly as in section 7. In this case, (6.5) tells us that c̃j−1 = −c̃j

for j ≤ 0, so we may take

c̃j = (−1)j and cj =
{ 1 j even

0 j odd

for j ≤ 0. In particular, the eigenfunction remains bounded away from the singularity, but
does not decay at infinity.

Case 8.5: λ0 = 0.
In this case, we are dealing with harmonic functions. In [S3], it was shown that there

are no nonconstant harmonic functions that are bounded. But we can say even more:
there are no nonconstant harmonic functions that are bounded on any of the chains C(i).
Indeed, consider the cell F−1

w1
F−1

w2
· · ·F−1

wm
K, when wm 6= i. The chain C(i) must pass along
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half of one of the sides of the cell, and so contain the three points F−1
w1

F−1
w2
· · ·F−1

wm
qi,

F−1
w1

F−1
w2
· · ·F−1

wm
Fjqi and F−1

w1
F−1

w2
· · ·F−1

wm
FjFjqi for some j. The values at these three

points uniquely determine the harmonic function, in particular the values at the other
two boundary points of the cell, via a linear identity whose coefficients are independent of
m. In particular, if there were a uniform bound for the harmonic function on these three
points in the cell, this would yield a uniform bound at the boundary of the cell, hence on
the whole cell, and this would contradict the unboundedness of the nonconstant harmonic
function.

Case 8.6: λ0 = 3±
√

3.
These are the period 2 points in J . Thus it is natural to look at spectral decimation

two steps at a time. If we start with the values of u on the boundary of a cell of level
−2n and contract twice in the same direction, the boundary values (now on a cell of level
−2n + 2) are multiplied by the matrix

M1 =

 1 0 0
1±
√

3 −1 −2
1±
√

3 −2 −1


or some permutation of it. Note that the eigenvalues of M1 are 1 (with multiplicity 2)
and −3. Also, the intersection of the 1-eigenspaces for all 3 versions of M1 is trivial. The
inverse of M1 has eigenvalues 1 and −1/3, and gives the boundary values on a cell of level
−2n − 2 if the expansion is taken twice in the same direction. On the other hand, if we
expand twice in different directions, then boundary values are multiplied by the matrix

M−1
2 =

1
3

√3 + 1 4−
√

3 2
√

3− 2√
3 3− 2

√
3

√
3− 3

−2 1− 2
√

3
√

3− 2


or some permutation of it. Note that M−1

2 has eigenvalues 1, −1±
√

13
6 , all of which exceed

1/3 in absolute value.
Now we claim that if the blow-up has a boundary point, say w = (0, 0, 0, . . . ), then

there exists a bounded eigenfunction. Start with initial values

(u(q0), u(q1), u(q2)) = (0, 1, 1).

Note that this is the eigenvector of M−1
1 with eigenvalue −1/3. Thus(

u(q0), u(F−2n
0 q1), u(F−2n

0 q2)
)

= (0, (−3)−n, (−3)−n),

so u is very small (O(3−n)) on the boundary of F−2n
0 K. To obtain the boundary values of

u on any cell of level 0 contained in F−2n
0 K we would multiply by n matrices of the form

M1 or M2 (or permutations). Since the largest eigenvalue of either of these (in absolute
value) is 3, we obtain a universal upper bound for u on V0, and this shows that u is
bounded. Incidentally, u does not vanish at infinity in any direction, even though the
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values u
(
F−2n

0 q1

)
and u

(
F−2n

0 q2

)
do tend to zero. The bounded eigenfunction we have

found corresponds to S−λ in the notation of part I.
Now suppose the blow-up has no boundary point. Then we claim that there are no

bounded eigenfunctions. Again we start with any nonzero boundary values on K, and blow-
up 2n times. This will multiply by n matrices of the form M−1

1 and M−1
2 (or permutations).

A lower bound on the size we can obtain is

3−n1

(√
13− 1

6

)−n2

where n1 + n2 = n and nj is the number of choices of M−1
j type matrix. We can then

contract n times in one of the 3 directions so that the values are multiplied by 3n. We end
up with a cell of level 1, where the boundary values are on the order of

3n2

(√
13− 1

6

)n2

.

So if n2 → ∞ as n → ∞ we see that u is unbounded. It may happen that n2 remains
bounded, for example if w = (0, 0, 1, 1, 0, 0, 1, 1, . . . ) then n2 = 0. In that case, we simply
have to shift the cycle by one, starting with F−1

0 K rather than K. Since wj+1 6= wj

infinitely often, one or the other case must work.
We believe that this case is typical of all examples with λ0 in J and λ0 6= 4. Suppose

that λ0 is a periodic point in J with period p. Consider the matrix analogous to M1

above, where we contract p times in the same direction. It is easy to see that there are
three eigenvectors,  1

a
a

 ,

 0
1
1

 and

 0
1
−1


(for the appropriate choice of a). The first has eigenvalue 1. The third has eigenvalue
equal to the product of 1

5−λ over the cycle, which also equals 1 by (6.2). The eigenvalue
of the second eigenvector is the product of 6−λ

(2−λ)(5−λ) over the cycle, which is the same as
the product of 6−λ

2−λ over the cycle. If this number is greater than 1 in absolute value, then
we can essentially repeat the argument given above, since we can estimate from below the
eigenvalues of M−1

2 .
We tested this on the three periodic cycles of period p = 4. The products were −25.698,

−2.72 and 7.427, corresponding to λ0 = 0.059188 . . . , 1.031512 . . . and 0.183262 . . . .

§9. Normal derivatives.

Let u be a Dirichlet eigenfunction, and fix a boundary point, say q0. We wish to compute
∂nu(q0). Since u(q0) = 0, the definition yields

(9.1) ∂nu(q0) = − lim
m→∞

(
5
3

)m

[u (Fm
0 q1) + u (Fm

0 q2)] .
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Suppose m is large enough that spectral decimation is valid on level m. Then

(9.2) u (Fm
0 q1) + u (Fm

0 q2) =
(6− λm)

(2− λm)(5− λm)
[
u

(
Fm−1

0 q1

)
+ u

(
Fm−1

0 q2

)]
.

This leads to the infinite product formula

(9.3) ∂nu(q0) = Am0

∞∏
m=m0+1

(
1− 1

6λm

)(
1− 1

2λm

) (
1− 1

5λm

)
for

(9.4) Am0 = −
(

5
3

)m0

[u (Fm0
0 q1) + u (Fm0

0 q2)] .

Now suppose u is normalized (||u||2 = 1). Then we can use Corollary 2.3 of [OSS] to
control the size of u on Vm0 . Specifically, if m0 = 1 then

(9.5) 1 = 2 · 3−2
∞∏

m=2

(
1− 1

6λm

) (
1− 2

5λm

)(
1− 1

5λm

) (
1− 1

2λm

) [
u(F0q1)2 + u(F0q2)2 + u(F1q2)2

]
.

If λ1 = 2, then u(F0q1) = u(F0q2) = u(F1q2). Suppose we choose them to be negative.
Then

(9.6) ∂nu(q0) =
10
3

√
3
2

[ ∞∏
m=2

(
1− 1

6λm

)(
1− 1

2λm

) (
1− 1

5λm

) (
1− 2

5λm

)]1/2

.

We can simplify this somewhat since

(9.7)
∞∏

m=2

1(
1− 1

5λm

) =
∞∏

m=2

5mλm

5m−1λm−1
=

2
15

λ

λ1
.

If we define a function c(t) by

(9.8) c(t) =

(
1− 1

6 t
)(

1− 1
2 t

) (
1− 2

5 t
)

then

(9.9) ∂nu(q0) =
√

10
3

λ1/2

[ ∞∏
m=2

c(λm)

]1/2

.

Similarly, if λ1 = 5 then there is a 2-dimensional space of eigenfunctions. If the eigenfunc-
tion is skew-symmetric with respect to R0 then ∂nu(q0) = 0. For a symmetric eigenfunc-
tion, we will have u(F0q1) = u(F0q2) = −1

2u(F1q2). Taking u(F0q1) to be negative, we
have

(9.10) ∂nu(q0) =
√

2
3

λ1/2

[ ∞∏
m=2

c(λm)

]1/2

.
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In order to estimate the normal derivative, we need to bound the infinite product in
(9.9) and (9.10). Each sequence {λm} is determined from λ1 = 2 or 5 and

(9.11) λm+1 =
1
2

(
5 + εm

√
25− 4λm

)
, εm = ±1.

We want to show that the product is largest when all εm = −1. Let

(9.12) c̃(t) =
∞∏

j=1

c(tj)

for t1 = t and

(9.13) tm+1 =
1
2

(
5−
√

25− 4tm
)
.

If all εm = −1, then

(9.14)
∞∏

m=2

c(λm) =


c̃

(
5−
√

17
2

)
if λ1 = 2

c̃

(
5−
√

5
2

)
if λ1 = 5.

On the other hand, if εk = +1 and εm = −1 for all m > k, then

(9.15)
∞∏

m=2

c(λm) =

[
k∏

m=2

c(λm)

]
c̃(λk+1).

If we change εk to −1, then the only change in (9.15) is in c̃(λk+1).

Lemma 9.1. For any t in [0, 5]

(9.16) c̃

(
1
2

(
5 +
√

25− 4t
))

< c̃

(
1
2

(
5−
√

25− 4t
))

.

Proof. Note that (9.16) is equivalent to

(9.17) c̃(5− x) < c̃(x) for 0 ≤ x ≤ 1
2
(5−

√
5).

This is evident from the graphs in Figure 9.1 Q.E.D.
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Figure 9.1. The graphs of c̃(x) (top) and c̃(5 − x) (bottom) on the
interval

[
0, 1

2

(
5−
√

5
)]

.

Lemma 9.2. If u is a normalized eigenfunction with λ1 = 2 or 5, then

(9.18) |∂nu(q0)| ≤Mλ1/2.

Proof. By (9.16), we increase (9.15) by changing εk to −1. Repeating the same argument,
we can one by one change all εm to −1, increasing (9.15). Thus

(9.19)
∞∏

m=2

c(λm) ≤


c̃

(
5−
√

17
2

)
if λ1 = 2

c̃

(
5−
√

5
2

)
if λ1 = 5

and we obtain (9.18) from (9.9) and (9.10). Q.E.D.

Note that the estimate (9.18) cannot be improved. If we take εk = +1 and all other
εm = −1, then we easily obtain a lower bound for

∏∞
m=2 c(λm) of c(λk+1), since all

other c(λm) are greater than 1, and c(λk+1) > c(5) = 1
9 . On the other hand, for most

eigenfunctions (9.18) is far from sharp. At the other extreme, suppose εm = +1 for m ≤ k
and εm = −1 for m > k. Then λm ≈ 4 for m ≤ k + 1 and c(4) = 5

9 . More precisely, if
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λm = 4 + δm, then δm+1 ≈ −1
3δm, and c(4 + δm) ≈ 5

9 − 5
27δm. So

∏∞
m=2 c(λm) is bounded

above and below by multiples of
(

5
9

)k. Thus |∂nu(q0)| ≈ λ1/2
(

5
9

)k/2. Since λ ≈ 5k, we
can write this as

(9.20) |∂nu(q0)| ≈ λlog 5
3 / log 5

along this sequence of eigenvalues. Note that log 5
3/ log 5 = 1/(d + 1) ≈ 0.3173938. It is

not hard to show that (9.20) is always a lower bound.
Next we consider other Dirichlet eigenfunctions. Of course, for joint Dirichlet and

Neumann eigenfunctions, ∂nu(q0) = 0. In particular, this covers all eigenfunctions when
λk = 6 and λk+1 = 3 for some k ≥ 2. When λk = 5 for some k ≥ 2, the joint Dirichlet and
Neumann eigenfunctions have codimension 2 in the space of Dirichlet eigenfunctions. Thus
we can choose an orthonormal basis for the Dirichlet eigenspace so that ∂nu(q0) = 0 for
all except 2 basis elements. If we choose a symmetric and skew-symmetric (with respect
to R0) eigenfunction from the 2-dimensional space, then the skew-symmetric one must
have ∂nu(q0). Thus it remains to compute ∂nu(q0) when u is symmetric, normalized, and
orthogonal to all joint Dirichlet and Neumann eigenfunctions. It turns out that we can do
this computation exactly, and in fact give an inductive description of this eigenfunction.

For this discussion we let u1 denote a symmetric λ-eigenfunction with λ1 = 5. For
the moment, we will not insist that u1 be normalized, and the other eigenfunctions
u2, u3, . . . that we construct will not be normalized. The idea is that uk will be a

(
5k−1λ

)
-

eigenfunction with λk = 5 and

(9.21)


uk|F0K = uk−1 ◦ F−1

0

uk|F1K =
1
3
(uk−1 − uk−1 ◦R2) ◦ F−1

1

uk|F2K =
1
3
(uk−1 − uk−1 ◦R1) ◦ F−1

2 .

It is easy to check that uk is R0 symmetric. To check that uk is actually an eigenfunction,
we need to check the matching conditions on the normal derivatives at F0q1, F0q2 and
F1q2. At F1q2 both uk|F1K and uk|F2K are skew-symmetric, so have normal derivative
equal to zero. At the other points, we begin with the observation ∂nu1(q1) = ∂nu1(q2) =
−1

2∂nu1(q0). We then observe from (9.21) that the matching condition at F0q1 and F0q2

and

(9.22) ∂nuk(q1) = ∂nuk(q2) = −1
2
∂nuk(q0)

follow by induction, using the identity 1
3

[
1−

(
− 1

2

)]
= 1

2 . (This explains the choice of the
constant 1

3 in (9.21).)

Lemma 9.3. The eigenfunction uk is orthogonal to all joint Dirichlet and Neumann eigen-
functions with the same eigenvalue.

Proof. When k = 2, there is only one joint eigenfunction, looping around the inner triangle,
and it is skew-symmetric. Since u2 is symmetric, they are orthogonal.
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We prove the general case by induction, assuming that it is true for k − 1. The above
argument still shows that uk is orthogonal to the joint eigenfunction looping around the
inner triangle. All the other basis elements for the joint eigenspace are supported in either
F0K, F1K, or F2K. Then we can use the induction hypothesis, since the orthogonality
condition is preserved by reflection. Q.E.D.

1

3

–1

–3

–1

2 –2

1

3

3

–3

–63 –3
3

2

3

–2

–3

1

1 –1

–1

Figure 9.2. The values of u3 on V3 (normalized so all values are inte-
gers). By restricting to lower left triangles, one can read off the values
of u2 on V2 and u1 on V1.

Having constructed the desired eigenfunctions, we now tackle the normalization prob-
lem. Figure 9.2 shows u3 on V3.

Lemma 9.4. For all k ≥ 1, we have

(9.23)
∫

(uk ◦Rj)ukdµ = −1
2

∫
|uk|2dµ for j = 1, 2,

and

(9.24)
∫
|uk|2dµ =

(
5
9

)k−1 ∫
|u1|2dµ.

Proof. We will use Corollary 2.3 of [OSS], which tells us that

(9.25)
∫
|uk|2dµ =

a(λ)
3k

∑
x∈Vk

|uk(x)|2

for a fixed constant a(λ). We prove both identities by induction on k. When k = 1, (9.24)
is obvious, and we see that (9.23) holds because∑

x∈V1

u1(x)u1(Rjx) = −1
2

∑
x∈V1

u1(x)2.
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Now assume both identities hold for uk−1. Using (9.21), we have∑
x∈Vk

|uk(x)|2 =
∑

x∈Vk−1

|uk−1(x)|2 +
2
9

∑
x∈Vk−1

|uk−1(x)− uk−1(Rjx)|2

=
13
9

∑
x∈Vk−1

|uk−1(x)|2 − 4
9

∑
x∈Vk−1

uk−1(x)uk−1(Rjx)

=
5
3

∑
x∈Vk−1

|uk−1(x)|2.

Using (9.25) and the induction hypothesis yields (9.24). Similarly∑
x∈Vk

uk(x)uk(Rjx) =
∑

x∈Vk−1

uk−1(x)uk−1(Rjx)

+
2
9

∑
x∈Vk−1

[u(x)− u(R2x)] [u(R2x)− u(R1x)]

= −1
2

5
3

∑
x∈Vk−1

|uk−1(x)|2,

which proves (9.23). Q.E.D.

Theorem 9.5. The ratio ∂nu(q0)
λ1/2||u||2 is the same for all uk constructed above. In particular,

the estimate (9.18) holds for all normalized eigenfunctions.

Proof. Clearly, ∂nuk(q0) =
(

5
3

)k−1
∂nu1(q0) and the eigenvalue of uk is 5k−1 times the

eigenvalue of u1, so (9.24) implies the ratio is constant. Q.E.D.

Figure 9.3 shows a plot of the ratio ∂nu(q0)/
√

λ on a log-log scale as a function of λ for
all eigenfunctions with ∂nu(q0) 6= 0, where the eigenvalues have εm = −1 for m ≥ 10 (so
there are 512 eigenvalues with λ1 = 2 or 5, etc.). It is clear from this figure that there is a
rich self-similar type structure to the values ∂nu(q0). In Figures 9.4, 9.5, and 9.6, we zoom
in on the top half, quarter, and eighth of the data points. In Figure 9.7, we zoom in on
the second quarter from the top, and in Figure 9.8 we display a mirror image of the same
data. The similarities among Figures 9.4, 9.5, 9.6 and 9.8 are striking. At the present
time, we have no explanation for this.

Next, we consider normal derivatives of the Dirichlet heat kernel. The heat kernel may
be written

(9.26) pt(x, y) =
∑

e−tλj uj(x)uj(y),

where {uj} denotes an orthonormal basis of Dirichlet eigenfunctions with associated eigen-
values {λj}. (Note this is different form our previous notation.) For any fixed value of
t > 0, we may obtain a good approximation by terminating the sum once λjt becomes
large. Looked at another way, if we take a partial sum up to λj ≤ N , then we will have a
reasonable approximation for values of t such that tN is reasonably large.
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Figure 9.3. A log-log plot of the ratio ∂nu(q0)/
√

λ as a function of λ.

Figure 9.4. A zoom of the right-most vertical strip in Figure 9.3,
representing the top half of the data points.



CALCULUS ON THE SIERPINSKI GASKET II 53

Figure 9.5. A zoom of the right half of Figure 9.4, representing the
top quarter of data points in Figure 9.3.

Figure 9.6. A zoom of the right half of Figure 9.5, representing the
top eighth of data points in Figure 9.3.
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Figure 9.7. A zoom of the left half of Figure 9.4, representing the third
quarter of data points in Figure 9.3.

Figure 9.8. The same data points as in Figure 9.7, but with the order
of the horizontal axis reversed.
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The normal derivatives of pt(x, y) that we are interested in may be written

(9.27) ∂n∂npt(q0, q0) =
∑

e−λjt∂nuj(q0)2.

(In other words, we take normal derivatives with respect to both variables at the same
boundary point q0.) Estimates for the heat kernel are known ([Ba], [Ki2]); in particular,
we have sharp upper bounds on the diagonal

(9.28) pt(x, x) ≤ ct− log 5/ log 3 for 0 < t ≤ 1,

but the behavior as x approaches the boundary has not been understood. In [S6], it was
conjectured that

(9.29) ∂n∂npt(q0, q0) ≤ ct− log 25
3 / log 5 for 0 < t ≤ 1.

This estimate has important consequences for analysis on the product SG×SG.

Figure 9.9. The graph of (9.30) as a function of log(1/t).

We are now in a position to present strong evidence that (9.29) holds and is sharp, in
the sense that similar lower bounds hold. We approximate (9.27) by taking all the values
of ∂nuj(q0) and λj included in the data in Figure 9.3. In Figure 9.9, we show the graph of

(9.30) tlog
25
3 / log 5∂n∂npt(q0, q0)

using this approximation, as a function of log(1/t), so the behavior as t→ 0 is transformed
to log(1/t) → ∞. In the range 6 ≤ log(1/t) ≤ 16 the function (9.30) exhibits a striking
periodicity, with period log 5.
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Conjecture 9.6. (a) There exists a positive, continuous, periodic (of period log 5) func-
tion g such that

(9.31) tlog
25
3 / log 5∂n∂npt(q0, q0)− g(log(1/t))→ 0

as t → 0. (b) For every nonboundary point x ∈ K, there exists a positive, continuous,
periodic (of period log 5) function gx such that

(9.32) tlog 5/ log 3pt(x, x)− gx(log(1/t))→ 0

as t→ 0.

Although we have no direct evidence for (b), it seems unlikely that the asymptotic
periodicity in the normal derivatives should not also manifest itself in the heat kernel
itself. There is ample precedent for asymptotic periodicity, as for example in the Weyl
ratio for the spectrum (although the periodic function in that case is discontinuous). See
[FS], [KL], [ASST].
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