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Abstract

In this article we study the structural stability of travelling waves
of an integrodifferential equation, which can be viewed as the nonlocal
analogue to the usual reaction-diffusion system 4 = uz, + f(u). More
precisely, we are interested in the question whether a travelling wave
solution persists under small perturbations of the equation. Since the
travelling wave equation is a functional differential equation of mixed
type, a deeper understanding of the intersection of stable and unstable
manifold of the steady state in mixed type equations turns out to be
crucial. As one of the main results we prove the existence of stable and
unstable manifolds for general functional differential equations.

We apply our results to the one-dimensional equation of elasticity
with nonlocal energy. In particular we prove that a travelling wave is
structural stable if and only if the underlying shock wave is compressive.

1 Introduction

In this article we are interested in the equation

Opu(t, ) = (K xu(t, ) (z) = u(t, z) = f(ult, v)), (1)

where the kernel K of the convolution (K  u(-))(z) = [z K(z — y)u(y)dy is
even, nonnegative, with unit integral. We want to assume in this paper that
K has compact support in the interval [—a,a] for some a > 0. The function
f : R — R is bistable in most application, though we do not need to make
that restriction. One can view equation (1) as a nonlocal analogue of the usual
reaction reaction-diffusion equation

Owu(t, ) = up(t, z) — f(u(t, x)).

As such, (1) may model a variety of physical and biological phenomena involv-
ing media with properties varying in space. If we think of f as an bistable
function, a motivation for studying (1) lies in the fact that it is a gradient flow
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for a natural generalization of the usual Ginzburg-Landau functional for an
order parameter describing the state of a solid material.

The equation (1) has been subject to a lot of recent research, see for example
[1, 2, 3, 17] and the references therein. The authors mostly focused on bistable
nonlinearities f(u) = u(u—1)(u+1) and the existence and stability of travelling
waves connecting the end states £1. Travelling wave solutions of (1) have the
form

u(t,x) = h(z — cit),

for some profile h(-) and a certain travelling wave speed ¢, # 0. Inserting this
ansatz into (1) and letting £ = = — ¢,t we obtain the travelling wave equation

—c'(§) = Lvg — v(§) — f(v(E)), (2)

where ve € C°([—a,a,R) denotes the function ve() := v( + 6). Here, the
linear map L is defined by

L:C%[~a,a],R) — R
L@() = / K (y)(y)dy.

Note that the travelling wave solution wu(t,x) induces a heteroclinic solution
h(€) of (2). On account of the term Lug the resulting equation (2) is a func-
tional differential equation of mized type. It is known that equations of this
type are typically not well posed, see [21, 20]. Furthermore, not much is
known about the general theory of mixed type equations; however, there has
been made recent progress [5, 6, 7, 9, 13, 14, 15, 16, 21].

In this paper we are interested in the question under what conditions travelling
wave solutions of (1) are structurally stable. This means that we are concerned
whether a small perturbation of the linear operator L or the nonlinearity f still
result in the existence of a travelling wave for the perturbed system near the
original travelling wave. Let us remark that this question is of importance since
only structurally stable travelling waves are likely to be observed in physical
experiments which (1) may model.

We now explain our results in more detail and assume that there exists a
travelling wave u(t,z) = h(x — c,t), ¢, # 0, connecting two simple zeros x4 of
the continuous differentiable nonlinearity f : R — R. That is, we assume

a) limg_&w h(g) = T4+
b) f(zs) =0and f'(z1) #0
and state the following hypothesis:

Hypothesis 1
The function h'(-) is not in the range of the operator

L:HRR) — L*R,R)
(Lo())(t) = ot) + Cl (Lve = v(t) = f'(h())v(t))

*



The following theorem is the main result of this paper. The proof will be
postponed to section 5.

Theorem 1

Fix two steady states x,,r_ € R with x; # x_. Assume that the above
assumptions on f, K hold and that there exists a unique (up to translations)
travelling wave solution u(t, ) = h(x — c4t), such that a) and b) are satisfied.
Then the following holds:

i) If f'(x_) > 0> f'(x) the travelling wave u(t,x) is structurally stable:
If L,f are small perturbations of L and f (where we refer to theorem 8
for the class of admissible perturbations), then the perturbed system

Ouu(t,z) = Eu(t, ) —u(t,z) — f(ult,z)), (3)

possesses a travelling wave solution (t,z) = h(t — cx) for every wave
speed ¢ = c,. Furthermore, the function h is unique (up to translations)
for fixed ¢ =~ ¢, with the property that it is a heteroclinic solution of the
travelling wave equation of (35) connecting some states Ty near r.

ii) Assume that sign(f’(x)) = sign(f'(x_)). Then the existence of a trav-
elling wave of the perturbed equation is a codimension-one-phenomenon
(and we refer to the statement of theorem 8 for a definition of codi-
mension in this context). However, if in this case hypothesis 1 is true
then there exists a travelling wave solution u(t,z) = h(x — ct) for the
perturbed equation (1) and some unique wave speed ¢ /2 c.

iii) If f'(x4) > 0 > f’(x_) then the travelling wave u(t, z) is structurally un-
stable: The existence of a travelling wave solution is a codimension-two-
phenomenon (and we refer again to theorem 8 for the precise definition
of codimension).

If case ii7) is satisfied we call the travelling wave u structurally unstable and
structurally stable in case of 7).

At a formal level we can and should interpret this theorem in the following
way. Let us choose a perturbed linear operator L, a nonlinear function f and
consider the equation:

—e () = (1-a) (Lug—v() - F(0(6))) (4)
+ oL~ v(€) - af(0(6))

Then the right hand side of (4) depends differentiably on the parameter «.. For
a = 0 we identify the original travelling wave equation (2) and for o = 1 the
perturbed equation. We will show that under the assumptions of theorem 1
the heteroclinic solution A(§) of (4) for « = 0, ¢ = ¢, lies in the intersection of
the stable and unstable manifold of z, and x_, respectively. More precisely,
equation (4) induces an abstract equation and h induces a heteroclinic solution
of that equation, such that the induced heteroclinic solution lies in the inter-
section of stable and unstable manifold associated to this abstract equation



(see the next section for the definition of the abstract setting). Both of these
manifolds depend on the parameters a and ¢. Theorem 1 now asserts that
under the condition sign(f’(x,)) = —sign(f’'(z_)) the intersection of stable
and unstable manifold is transverse. Thus small changes in the parameter «
or the wave c still result in an intersection of stable and unstable manifold and
therefore provide the existence of a one-parameter family of travelling wave
solutions of the perturbed equation.

If on the other hand sign(f’(z;)) = sign(f’(z-)), we will show that the in-
tersection of stable and unstable manifold is nontransverse: The sum of the
tangent spaces is of codimension one in the ambient space and we cannot ex-
pect an intersection of stable and unstable manifold after small changes of
a. It is in this sense that we will consider the heteroclinic orbit A({) as a
codimension-one-phenomenon. However, enlarging the space by the ”parame-
ter” ¢ yields extended stable and unstable manifolds which generically intersect
transversely in the extended phase space (namely, if hypothesis 1 is true) and
we refer to the proof of theorem 8 for a verification of these facts. In this
way we still conclude the existence of a travelling wave solution for the per-
turbed equation for some speed ¢, but now ¢ = ¢, is uniquely determined by
the perturbation parameter . In case #ii) of the theorem the (nonextended)
manifolds have codimension two in the ambient space. Thus, the parameter
¢ cannot "produce” a transversal intersection of the corresponding extended
manifolds.

Following these arguments we observe that is quite important to know, when
hypothesis 1 is satisfied. Restricting our attention to the special class of
bistable nonlinearities, as has been done in [1, 2, 3, 17|, the results of [1]
actually imply that hypothesis 1 is always met. Thus if we perturb equation
(1) slightly, we get the existence of a travelling wave solution for a unique wave
speed ¢ = ¢,. For precise statements we refer the reader to section 6.

We caution the reader that the above interpretations of theorem 1 in terms
of intersection of stable and unstable manifolds are only formal so far. The
existence of stable and unstable manifolds for general functional differential
equations of mixed type has not been proved up to now. The proof of exis-
tence of their existence in section 4 is one of the main achievements of this
work. In particular, we can include the case of pure delay- and advance-delay
differential equations. Theorem 1 can also be shown by an application of
the Lyapunov-Schmidt reduction, see [15] for a similar problem. Indeed, our
analysis relies on the calculation of some Fredholmindex, see theorem 5 and
the key lemma 4. However, we have decided to work with invariant manifolds
instead. We think that this approach is not only more geometricly but also
provides a useful machinery for tackling quite different problems occuring in
general functional differential equations of mixed type, see also [9]. Moreover,
we will discuss a global bifurcation scenario in a subsequent paper [8], where a
Lyapunov-Schmidt reduction fails and invariant manifolds prove very helpful.
It is also interesting to note that the structural stability of the travelling wave
u in case i) of theorem 1 depends on the hyperbolicity assumption b) and a
sign condition of the stationary states x4 only. Both conditions are purely
finite dimensional even though the travelling wave equation (2) has an infinite



dimensional character and no restrictions on the travelling wave u have been
made. We will use this fact in section 7 to make an interesting observation for
the one-dimensional equation of elasticity with nonlocal energy. Very roughly
we will show the following: Assuming the existence of a travelling wave solution
u for the regularized equation of elasticity we will prove that u is structurally
stable if and only if the underlying shock wave is compressive.

The paper is organized as follows. In the second chapter we will review some
basic facts about functional differential equations of mixed type and introduce
the functional analytic framework in which we will work. In chapter 4 we
will prove the existence of stable and unstable manifolds for general functional
differential equations of mixed type. We will use these manifolds to prove the-
orem 1 in chapter 5. Finally we will apply our results to the one-dimensional
equation of elasticity with nonlocal energy in chapter 7.
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2 The framework

We will shortly introduce the functional analytic framework with which we will
work. Our aim is to study the persistence of a heteroclinic solution h = h(t)
of the equation

—ci(t) = Lxy — x(t) — f(z(t)) ()

for ¢ = ¢, by slightly perturbing the linear operator L, the nonlinearity f or the
speed c,. Throughout the next sections we to make the following assumptions
on f and K.

Hypothesis 2
Let f:R — R be a C*-function and there exist two simple zeros x., that is

flzx)=0 and f'(z+) #0.

The continuous function K : R — R has compact support in the interval [—a, a]
for some suitable a > 0. Moreover, K is even, K > 0 and [, K(x)dz = 1.

Instead of working equation (5) directly we will consider the abtsract equation

Q) \ [ Z(Lolt,:) — o(t,0) — F((£,0))) \ |
( 0rop(t,-) ) ( By (2, -) ) = F((£(1), ¢(L,-)))-

(6)
Here F': X — Y, where

Y = CN x L*([—a,b],C"),
X = {(&,9)eY | pe H([—a,b,C") and ¢(0) = £}

and b = a. We should point out that we define the spaces X,Y in this more
general setting only for later reference.
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In general, one could also work with equation (5) directly. However, the advan-
tage of working with the abstract equation (6) lies in the fact that the domain
of the linear operator (which is induced by linearizing at a steady state) does
not depend on the equation. In fact, this was one of the main reasons to
introduce the ”sun-star-setting” (which is similar to our abstract setting) for
purely delay differential equations, [12].

The following next lemma clarifies the connection between solutions of (6) and
our original equation (1). We first specify the notion of a solution of (6):

Definition 1

We call a continuous function U(t) : [t1,t3) — Y a solution of (6) on (ty,1t5)
and —oo < t; < ty < oo, if t — U(t) is continuous regarded as a map on
(t1,t2) with values in X, if t — U(t) is differentiable regarded as a map on
(t1,t2) with values in Y and satisfies (6) on (t1,t2).

We call a continuous function U(t) : [t1,t3) — Y a solution of (6) on (—o0,t)
and ty € R, if t — U(t) is continuous regarded as a map on (—oo,ty) with
values in X, if t — U(t) is differentiable regarded as a map on (—oo,ty) with
values in Y and (6) is satisfied on (—o0, ts).

We can now state the following lemma

vt = ( s@%t(;z-) )

be a solution of (6) on (t; — b,ty + ¢). Then (t)(0) = &(t + 0) for all t €
(t1 —a,b+1ty) and § € [—a,b] witht + 0 € (t; — a,ty + b). Furthermore £(t)
solves (5) on the interval (t1,ts).

Proof
In order to prove the lemma it suffices to show

p(t +0)(0) = ¢(t)(0)

forall t € (t; —a,ty +0b) and 0 € [—a,b] with t + 6 € (t; — a,t2 + b), since
©(t)(0) = &(t) for all t. For t € (t; — a,ta + b) we introduce the coordinates
(1,60) = (t +60,0) and consider

[P()](0) = [p(T = 0)](6).

Let now t € (t;—a,ts+b) and t+60 € (t;—a, ta+0b) then we have 7 € (t1—a, ta+b)
and 7 — 0 € (t; — a,ty + b). Since by assumption 0, = 0y holds on the in-
terval (t; — a,ts + b) with respect to the coordinates (t,6), we can deduce
the identity ¢(7,0) = ¢(7,0) with respect to (7,6) for almost every 7. Since
&(1,0) = [(7)](0) and [p(7)](0) = £(7) depends continuously on 7, we have
&(7,¢) = ¢(7,0) for every 7. This shows (7 — 6)(0) = ¢(7)(0) for all 7 and
6 and we have p(t + 0)(0) = ©(t)(0). O

Lemma 1

Let

We will work with the abstract equation (6) in the sequel. Note that the
heteroclinic solution h(t) of (5) induces via H(t) := (h(t), h:) a solution of the
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abstract equation (6). Since we are interested in the existence of stable and
unstable manifolds near H(t), we have to deal with linear equations, which
come up naturally after linearizing the abstract equation (6) along H(t). This
will be done in the following section.

3 Linear mixed type equations

In this chapter we want to review some well-known facts about linear functional
differential equations of mixed type, see also [14, 21].

3.1 Definitions and basic facts

Let us start by considering a nonautonomous linear equation

We want to assume that L(t) has the following form

Hypothesis 3
L(t) € L(C°([—a, b], CN),CN) can be represented as

L(t)o() = / p(t,0)p(0)d0 + 5" A(t)p(rs),
k=1

—a

where t — p(t,-) € BC°(R,C°[—a,b],CN*N)) and Ay(-) are elements of
BCY(R,CN*N). We want to assume further that the functions A;(-) and A,,(*)
do not vanish identically and —a =11 < ... <71, =b.

Definition 2

We call a function xz € L*([—a,T),C") a solution of (7) for some a < 7 < 0o
and some initial condition ¢ € L*([—a,b],C"), if v € H. ([0,7),C), xg = ¢
and (7) is satisfied for almost every t € [0, 7).

We define the closed and densely defined linear operator

L:H'(R,CY) c L*(R,CY) — L*(R,C") (8)
(Lv)(t) = dw(t) — L(t)v,

and recall the definition of a Fredholmoperator, see also [11].

Definition 3

Let Z be a Banach space. We call a closed and densely defined operator
I' : DI') € Z — Z a Fredholmoperator, if Rg(I') is a closed subspace of
finite codimension and dim(ker(I')) < oo. Furthermore we can define the
Fredholmindex i by

i = dim(ker(I")) — codim(Rg(I"))



The next definition will be important in order to obtain a sufficient condition
for £ in terms of the asymptotic equations #(t) = Lyx; to be a Fredholmop-
erator.

Definition 4

The equation (7) is called asymptotically constant, if the limits p.(-) :=
lim; 400 p(t, -) and A 1= limy 4o A(t) exist in L?([—a, b], CN*N) and CNV*N
respectively. Equation (7) is called asymptotically hyperbolic, if the char-
acteristic equations

det Ay (\) := det (Aid — </b p+(0)edo + i Age”k» =0 (9

associated with the limiting equations at t = ‘oo have no solutions on the
imaginary axis, that is det A4 (is) # 0 for all s € R. If the coefficients do not
depend on t and if the characteristic equation det/\(\) has no imaginary zeros
A, we call the operator L hyperbolic.

The following result is due to Mallet-Paret [14].

Theorem 2
If £ is asymptotically hyperbolic, then L is a Fredholmoperator.

3.2 Exponential dichotomies

We can relate equation (7) to the following abstract equation
AV (t) = A)V(1), (10)

where the linear operator A(t) : X C Y — Y is defined by

§\ _ [ Lty )
a0 (2)=(a:
for (¢,¢) € X. Indeed, consider a solution x € H} (R,C") of & = L(t)x; and
define
V(t) = ( @(?) ) . (11)

Then V (t) € X for all t € R and V/(t) defines a solution of (10). On the other
hand, if ¢ — V(%) is a continuous function with values in X and differentiable
with values in Y, such that (10) is satisfied for all ¢ € R, then one can show
that (11) holds for some solution z(-) of (7), see [6, 21].
Equation (10) induces a densely defined operator 7 : D(7) C L*(R,Y) —
L*(R,Y), where

T:V()=aV()=ALV()

and more explicitly

O\ (B — [ plt )R O)]d0 — T, A (r)]
<7< ))(’” ( D)) - D)) )



Here D(7) is defined by

D(T) ={(5(),2(")) € LAR,Y): (0 — 9p)®(-)(-) € L*(R x I,CY),
¢(-) € H(R,CY), @(t)(0) = £(t) Vt},

where we often prefer to write ®(¢,-) instead of ®(¢)(-). It is shown in [21]
that 7 is indeed a closed operator. Since we will work in the sequel with the
abstract equation (10) we are interested in a relation between 7 and £ (defined

in (8)). We therefore state the following theorem, which has been proven in
6, 21].

Theorem 3
If the operator L is a Fredholmoperator, T is also a Fredholmoperator. Fur-
thermore, the indices are the same, that is iy = it.

We are now concerned about the existence of exponential dichotomies of equa-
tion (10). Roughly speaking, we want to know whether there exists a projection
P(t) : Y — Y, such that we can solve equation (10) in forward time for initial
values in Rg(P(t)) and in backward time for initial values in ker(P(t)). We
need the following hypothesis:

Hypothesis 4
If z(+) is a solution of Lx = 0 and z, = 0 for z; € H'([—a,b],C") and some
7 € R then x = 0.

The next theorem, which has been proved in [21] and has been extended to
a larger class of equations in [6], guarantees the existence of exponential di-
chotomies provided that the equation #(t) = L(t)z, is asymptotic hyperbolic.

Theorem 4 (Exponential dichotomies on R, and R_)

Let £ be a Fredholmoperator and hypothesis 4 be satisfied. Then equation
(10) possesses an exponential dichotomy on J, where J = R, and J = R_.
That is, there exist constants K, > 0 and a family of strongly continuous
projections P(t) : Y — Y, t € J, with the following properties. For U € Y
and tg € J

e there exists a continuous function V*(-) : [tg,00) N J — Y, such that
V*(ty) = P(to)U. Furthermore V*(t) € Rg(P(t)) and we have the esti-
mate |V3(t)|ly < Ke ®lt=%l|U|y for all t > to with t,ty € J.

e There exists a continuous function V*(-) : (—oo,tg)| N J — Y, such that
V¥ (ty) = (id — P(to))U. Moreover V*%(t) € ker(P(t)) and |V"(t)|y <
Keelt=tl|U|y for all ty >t with t, t, € J.

Moreover, if U € X, then the functions V*(t) and V*(t) define strong solutions
of (10) for t > ty and ty > t respectively. If U € (Y \ X) N Rg(P(ty)) and
U= (& ¢()) then Vi(t) = (z(t), x;), where x : [—a+ty,00) — RY denotes the
unique solution of &(t) = L(t)x; on (ty,00) with x;, = ¢. A similar statement
holds vor V"(t).



3.3 Computing Fredholm-indices

Let us now consider the special linear equation (2), namely

1 a
z(t) = o {/ K(O)x(t+ 0)dd — z(t) — f’(h(t))x(t)} =: L(t)xy, (12)
which is asymptotically hyperbolic on account of hypothesis 2. In particular
we observe that L(t) — L., where

Lap= U K(0)6(6)d0 — ¢<>+f’<xi>¢<0>]

for t — +oo and the equations y(t) = Liy; do not possess solutions of the
form

y(t) = ™'y

for some x € R and some y* € C. By theorem 2 the operator
(Lx)(t) := 2(t) — L(t)xy

is a Fredholmoperator. We are now interested in an effective way to compute
the relevant Fredholmindex ¢ =i, of L.
In order to state the next theorem, which goes back to Mallet-Paret [14],
we need to define the crossing number cross(L”). This number is defined
for a family L” of operators, which satisfy hypothesis 3 and depend contin-
uously on a parameter p € [0,1]. More precisely we want to assume that
: O%[—a,b],C) — (C L L' are both hyperbolic and there exist only fi-
nltely many values 0 < p! < , < p" < 1, such that L* is not hyperbolic. Fix
any such p’ and let {\;;},. ]1 denote the Correspondlng zeros of the associated
characteristic equation
det(A,,i(A) =0 (13)

with Re(\;x) = 0. We list these eigenvalues with repetitions, according to
their multiplicity as roots of the characteristic equation (13). Let M7 denote
the sum of their multiplicities. For p near p?, with (p—p’) > 0, this equation
has exactly M7 eigenvalues near the imaginary axis, M i . with ReA < 0 and

M}j{i with Re\ > 0, where Mii + Mii = M7. The net crossing number of
eigenvalues at p = p’ is given by MA — M}, . Finally we define

cross(L”) Z Mg, Lo M, .

Theorem 5
Let L? for 0 < p < 1 be a continuously varying one-parameter family of
operators of the form

vot) = - | [ K000 - 50)0 - pf(a) — (1= 9 )|
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and suppose the operators L_ = L°, L, = L' are hyperbolic. Then there are
only finitely many values

pt<...<p"elo,1],
for which L is not hyperbolic and the Fredholmindex i of £ satisfies
i = —cross(L”).

Proof
Choose an approximation L™¢ of the integral [ K(6)¢(#)df by Riemann
sums

L= ZK 0,)(0is1 — 0:)

for some partition —a = 6; < ... < 6,, = a, where we restrict ourselves to
symmetric partitions. Now observe that the operator £ and £ have the same
Fredholmindex if m > 0 is large enough, where

L:H'(R,R) — L*R,R)
(Lx())(t) = ﬂb(t)—%(Lmzt—x(t)—f’(h(t)):v(t))-

*

Indeed, note that £ also is asymptotically hyperbolic and therefore is a Fred-
holm operator. Consider a "path” L7 for n € [0, 1] from L to L, where

. 1 “ m
@) = a0)~ - [(1=n) [ K@)t gtma o) - )00
Then £° = £ and £!' = £. Furthermore each £7 is asymptotically constant
and hyperbolic: Let us illustrate the relevant calculation for the limit ¢ — oo,

then for w € R
0 = det Aliw) = iw — L {(1 — n)/ K(9)e™df — nL™e™ — 1 — f/(x+)}

Cy
& w=0 A flzy)-(1-n+1-n [ZK i) (i1 — )]:0
7j=1

which is satisfied if m is large enough, since f'(z1) # 0 and

> K001 —0) — [ K00

for m — oo. This calculation shows that L£7 is always a Fredholmoperator.
Thus £° and £! must have the same index.
Let us now consider for p € [0, 1] the family

= L Lm6(6) — p(0)(1 — pf' () — (1 — p)f'(x2))].

*

Then theorem C in [14] tells us that the Fredholmindex of £ (and thus also

the index of £) can be computed by the net number i = —9ross(flp). It is now
easy to check that the net numbers of the familys L” and L” are identical and
thus the theorem is proved. O]
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4 Stable and unstable manifolds

In this section we construct stable and unstable manifold of the steady state
zero of the abstract system

0E(t) ) _ [ (Lot ) = 8(t,0) — F(6(t,0)))
< aio(t,-) ) B < Apo(t,-) ) (14)

near the point H(0) = (h(0), ho) of the heteroclinic orbit. Since invariant
manifolds are a powerful tool and for future reference, we decide to consider
the more general equation

(o) )= (9550 ) = sotneanam. o)
where we want to impose the following hypothesis.

Hypothesis 5
Let G : C°([—a,b],RY) x R? — RY be a C?-map for some p € N and a > 0,
b > 0, such that

a) (15) possesses a homoclinic or heteroclinic orbit H(t) = (h(t), h:) for
some parameter ji, with lim; 4. h(t) = z4.

b) D1G(hy, i) =: L(t) satisfies the hypotheses 4,3 and L(t) is asymptoti-
cally hyperbolic.

On account of assumption b) and theorem 4 the linearization of (15) along
H(t), namely

&tf(t) ) ( DlG(htaﬂ*)¢(ta') ) ( §(t) )
= =: A(t 16
(oo 2o (1, ) O oty ) 19
possesses exponential dichotomies on R™ and R~ with solution operators <I>i/u

and ® respectively. Here, for V € Y, we have set ®% (, 1)V := V*(t), where
V#(t) denotes the continuous function occuring in the statement of theorem 4

with V¥(ty) = V. Similiarly, the other operators ®% and ®*/" are defined. By
theorem 4 we have

195 (¢, )| vy < Me e, 19 (5,) | vy < Me il (17)
9% (¢, 8)|| vy < Me"lt=l, 19" (5,)| vy < Me ™=l

for some M,k > 0 and t > s > 0 in the first and s < ¢ < 0 in the second
equation. We introduce some notation next.

Notation 3

Let us define the space X := {(£,¢) € RY x C°([—a,b],RY) : ¢(0) = &}
Moreover, let EY/" := Rg(®%"(0,0)|,,) and EZ* := Rg(®%"(0,0)|,,). Finally
we define Ei/“ = Efr/u N )Ng and E*/" = E¥" 1 X, where these spaces are
considered as subspaces of X with the X-norm.
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Theorem 6 (The stable manifold)
Assume that hypothesis 5 is met. Then equation (15) possesses a C?-manifold

We(xy) =Wi(zy) C X near H(0) with the following properties:
a) The tangent space of W3 (v1) at H(0) € W (zy) is Es.

b) IfW, € Wi(xy) and W, ~ H(0) with respect to the X-norm, then there

exists a continuous function W (t) : R, — X, such that W(-) € Wi(zy)
on some time interval [0,t,), W(0) = Wy and W (t) = (£(t), &), where
E(t) : [~a,0) — RY is a solution of @(t) = G(xy, ). Moreover, &(t)
converges to zero with exponential rate k > 0 for t — oc.

c) If there is a solution W (t) of the abstract equation (15), such that
W (t) — 0 with exponential rate k for t — oo and if W(0) is close
enough to H(0) with respect to the X-norm, then W(0) € W;(x).

d) Wi(xy) is two times continuously differentiable with respect to yi. That
is, we can represent W; () in the form W (zy) = H(0)+graph(¥ (-, u)),
where W(-, ) @ E5 x (RPN U(u,)) — E% is two times continuously
differentiable with respect to the parameter u, and where U(u,) denotes
a small neighborhood of ji.

Proof
Since f)(t) satisfies hypothesis 3, it can be represented in the form

b m
L(t)p() = / p(t,0)p(0)d0 + 3 An(t)p(re),
—a k=1

where Ax(-) and p(-,-) are as in hypothesis 3. Now consider a solution W ()
of (15) and write W (t) = H(t) + V(t). Then V(t) = (n(t),¥(t,-)) solves the
equation

V(t) = AV () + T (&, V (1), 1), (18)
where 7 : R x X x R — X is defined by

j(t, (f, QO),,U) — ( G(ht + @, ,u) - DlGéhtali*)SO - G(htali*> ) (19)

and X := RN x C%([—a, b], RY). Let us now solve (18) and consider the fixed-
point equation

V(t) = (I)j—(t70>‘/()s_'_/Otq)j-(t78)jmod(suv(s)7/~l’)ds (20)

+ /t QY (t, 5) Tmoa(s, V(s), p)ds.

o0

Here, V' € Ei and J,,0q4 denotes the modified nonlinearity
Tmod(s, Vi p) = x:(|[VI £) T (s, V, ),
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where y. : R — R is a bump-function with compact support in [—¢,€|. More-
over, we look for fixed points in the space BC™ = BC"'Y(RJF,X), equipped
with the norm ||V ()||—, = SUD¢> NV (€)| . Let us now explain in which
sense the right hand side of (20) is defined. Note first that the solution opera-
tors ®%, &% map Z := R x L®([~a, b], RY) boundedly into Z. Moreover, they
satisfy (17) also with respect to the L(Z, Z)-norm, see [7]. We now consider the
integrals, which appear in (20), as weak* integrals; these are introduced in the
appendix. The results of the appendix also show that each of the two integrals
is actually an element of X for each fixed ¢. Let us point out that we cannot
consider the integrals in the usual Lebesgue sense, since even in the delay case
a > 0,b = 0 the map s — ®%(¢,s)U is not necessarily Lebesgue integrable
if regarded as a map with values in the space X and U € X \ X. However,
the integrals are well defined as weak* integrals and lemma 6 in the appendix
shows that we can estimate these integrals by estimating the integrands.

If we now choose 0 < 7 < k and let € small enough, then (20) has a fixed
point Vi(-) for every Vi and g ~ u, by the contraction mapping theorem.
Furthermore, V,(-) depends C? on p and V. Indeed, note that the proof of
lemma 5 also shows that the weak® integral commutes with the operator d,,.
If we now let W(V;, i) := ®%(0,0)V.(0) and define

Wiz, ) = graph(¥(-, u)) + H(0) (21)

then all assertions of the theorem except point b) are proved. Now consider
Vi € E3(0) and assume that (20) is satisfied for some V(-) € BO~7(R,, X).
Let us show that V() has the form V(t) = (£*(¢), £t) for some continuous
function £*(t) : (—a,00) — RY with &* € H'([0,00),RY). Let us modify the
nonlinearity Jnoq once more and consider J°(t,) : X — X, where

5 ._ g(t, V)
T V) ._<l(t ”)()) (22)

and

9(t, (& 0) = g(t, (&, 9), 1) = G(he + @, 1) = D1G (D, pr) p — G e, i)

for V = (£,¢) € X. Moreover, the map I(t,V,6)(-) € C([—a, b],CN) denotes
the bump-function

U, (€.),0)(0) = { 2-g(t, (6.)2T7 0 (~4.0)

0 else

For the sake of simplicity we often suppress the parameter u from now on. Note
that the L?-norm of [ with respect to the f-variable tends to zero for 6 — 0
and I(t, (£,¢))(0) = g(t, (£, ¢)) € CV. This shows that J?° takes values in X
for every V € X. Let us now additionally approximate V; € X by elements
V2 € X with respect to the Y-norm and consider the fixed-point equation

V) = o0V + [ L0, Vo) (23)
n / B (1 8) 755, V(s))ds
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on the space BC"V(RJF,X). Choose some ¢ > 0. Then for every fixed ¢ > 0

~

and (£, ), (n,v) € X
Hl(t7 (57 @)7 5) - l(tv (777 w>7 5)||C'O([—a,b],]RN) <L- H(gv ¢) - (777 7vb>||f(7

where L denotes the globally small Lipschitz-constant of the map (£, ¢) —
X(|®llco + |€|rn)g(t, (€, ¢)). If L > 0 is small enough, then the right hand
side of (23) defines a contraction in BC' ([0, c0), X). Note that L > 0 can be
chosen uniformly small with respect to ¢,0 > 0. This shows that there exists a
fixed point V = V% € BC™([0, 00), X), which solves (23). Moreover, we can
differentiate t — V(t), regarded as a map with values in Y, and obtain the
equation

V(t) = AV () + T° (1, V (1)), (24)

where 7% has been defined in (22). In particular £(t), where (£(t), ¢(t,-)) =
V(t), is a solution of

{0 = [ p(t.000(t.00d0+ D Au(0)0(t ) + o(t (€(0). 6(2).

a k=1

Integrating this equation gives
t b
= £(0 0 0)dod 25
) = <o+ [ [ ps.0po(s0)a0s (25)
w [ Yo Aot rds + [ gl (€0, 0s,9)ds

0 1—q 0

We can now see from equation (23) that for ¢ € [—a, M] and some arbitrary
M > 0 the norm ||¢(t,-)||co(j—q,4,rN) can be bounded uniformly with respect
to 6 > 0 by some constant C' = C' (M) > 0. Together with equation (25) we
conclude the existence of a convergent subsequence £(+) = £%(+) on [—a, M] by
Arzela-Ascoli, which converges uniformly to some continuous function £*(+).
Let us now consider the C%-component of equation (24), namely

at¢(t7 9) = 00¢(t7 9) + l(t> (€> ¢(ta ))7 5) (9)

This equation can be solved by the method of characteristics, see Smoller
[24], and we conclude the identity (note that (£(t), ¢(t,6)) € X, which implies

£(t) = ¢(t,0))
6 ~
6(t,0) = £(t+0) +/ [(t — s +0,6)(s)ds (26)

for ¢ +6 > 0, where we have set 1(t,0)(0) := I(t, (£(t), d(t,)),8)(0). Since
I(t,0)(-) converges to zero with respect to the L*([—a, b], RY)-norm for § — 0
and & = & — &, for § — 0 uniformly on bounded intervals, we conclude
B(t,-) = ¢°(t,") — ¢*(t,-) = &(t + ) for t + 6 > 0 with respect to the sup-
norm. For —b < t+6 < 0 let us note that ¢°(¢, 8) — ¢(0,t+6) for § — 0, where
#(0,+) denotes the H'-component of our initial vector V* Ei, which can be
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obtained by inserting ¢ = 0 in equation (20). Let us define £,(t) := ¢(0,t) for
—a <t < 0. We now insert the function ¢°(¢,-) in equation (25), pass to the
limit 0 \, 0 and obtain

e = €0+ [ [ ps.006 s+ 0panis
+ / ZAk(S)f*(S-i-Tk)dS—F/O (s, (€°(s), € (s + -))ds.

0 k=1
This shows that £*(¢) is a solution of 2(t) = D1 G(¢, hy, ps)ze + g(t, (2(¢), 2¢), 1)
for t > 0. Since, finally, the sequence V? € BC‘V(RJF,X) is uniformly
bounded in BC~(R,, X) with respect to § > 0, we conclude that £*(-) €
BC~7(R,,RY) and therefore V() = (£*(t), &), which shows claim b). O

Analogously we can prove the existence of an unstable manifold W*(z_) near
H(0):

Theorem 7 (The unstable manifold)
Assume that hypothesis 5 is met. Then equation (15) possesses a C*-manifold

Wt(x_) =Wi(z-) C X near H(0), with the following properties:
a) The tangent space of W} (v_) at H(0) € W} (z_) is E".

b) fW_ € Wi(x_) and W, ~ H(0) with respect to the X-norm, then there

exists a continuous function W (t) : R_ — X, such that W(-) € Wi(z-)
on some time interval (—t,, 0], W(0) = W_ and W (t) = (£(t), &), where
£(t) : (—o0,b] — RY is a solution of @(t) = G(x, ) which converges to
zero with exponential rate k > 0 as t — —o0.

c¢) If there is a solution W(t) of the abstract equation (15), such that
W (t) — 0 with exponential rate x for t — —oc and if W(0) is close
enough to H(0) with respect to the X-norm, then W(0) € Wi(z_).

d) Wi(z_) is two times continuously differentiable with respect to u: We
can represent Wi (x_) in the form Wi (x_) = H(0) + graph(¥ (-, ;1)) and
(-, p): B x (RPNU (1)) — E* is two times continuously differentiable
with respect to the parameter p, if U(p,) denotes a small neighborhood
of [is.

Remark

Note that we introduced the space X, since G : C° x R? — RY may not
be defined for functions in L?. But if we consider the special case of a well
defined map G : L? x R? — R¥, we can work in the space Y directly and
stable, unstable manifolds are submanifolds of Y.

4.1 Stable and unstable manifolds for the original ab-
stract equation

Let us now check that equation (14) possesses stable and unstable manifolds
near H(0). Note that on account of the last remark in the previous section
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we can consider the stable and unstable manifolds as submanifolds of Y. In
order to check, whether hypothesis 5 is satisfied, we compute the linearization
of (14) along the homoclinic solution H(t), which is

( O (t) ) _ (;—j(L@Z)(t,-)—w(t,O)—f’(h(t))w(t,O)))
8t¢(ta ) 89¢(t7 )

_ Au)<1ﬁ$?>). (27)

Lemma 2
Equation (14) possesses a stable manifold W?(x) and an unstable manifold
W (z_) near H(0), which are submanifolds of the space Y.

Proof
We want to apply theorem 4 and have to check, if the hypothesis 4 is satisfied
and if the operator

L:H(R,C) — L*R,C)
(Lo)(t) = Ow(t) + %(Lvt —v(t) = f/(h(®)v(t)).

*

is a Fredholmoperator. Note that £ is asymptotically constant and induces
operators

—1

Cx

Ligp=— (Lo — ¢(0) = f'(22)9(0)).

Let us now consider the characteristic equations, which are

det(A)s(N) i= A+ —(Le> — 1 — f'(x2)).

*

Looking for purely imaginary zeros A = ioc we observe that
det(A)1(ic) =0 < A=0and f'(z4) =0

on account of L(sin(c-)) = 0 (by eveness of the kernel K) and L(1) = 1. Since
we assumed f'(xy) # 0, we conclude that £ is asymptotically hyperbolic and
therefore a Fredholmoperator by theorem 2.

Let us now consider a kernel-element v € H'(R,R) with v, = 0 for some
7 € R. Define ¢ := sup{t > 7 : v(t) = 0}. If ( < oo, consider some
s < (, such that either vy > 0 or vy < 0 but vs # 0. Then we have v(s) =
“(Lvs —v(s) — f'(h(s))v(s)) and we conclude

0= Lu,

and therefore vy = 0, since the kernel of L is a positive positive function and v,
does not change sign. This contradicts v, # 0 and therefore ( = co. Similarly
one can show, that v(s) =0 for all s < 7. O
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5 Persistence of the the travelling wave solu-
tion

In this section we want to study under what conditions the travelling wave
solution u(t,x) = h(x — c,t) of (1) is structurally stable. Since we know that
the heteroclinic solution H(t) = (h(t), h:) lies in the intersection W (z4) N
Wi (x_), we are interested in the transversality of the two manifolds W/ (x ),
Wi (x_) at the point H(0). We therefore want to calculate the codimension
of 2 in the ambient space Y, where

Q.= TH(O)WCS* (l’+) + TH(O)WCZ ([L’_) (28)

On account of our assumption that the heteroclinic solution H (t) is unique up
to translations, we observe

Tro)We, (24) N Tro)Wei(v-) = span (H'(0)) .

Our next lemma helps us to relate the codimension of €2 to a Fredholmindex
of the linearization (27) along the heteroclinic orbit.

Lemma 3
Consider the operator

T:D(7)cC L*(R,Y) — L*R,)Y)
(TVO)E) = V() —AWBV(H),

where A(t) is given in (27) and D(7T) has been defined in section 3.2. Then T
is a Fredholmoperator with index 17 and we have the identity

codimy () =1 —ir.

Proof
Let us consider the map ¢ : Y x Y — Y, which is defined by

v (I, W) — @5(0,0)I" — @“(0,0)W.

A short calculation of the adjoint operator t* : Y — Y X Y gives the represen-
tation
Lz (((I)j—(ov O)>*Zu _((I)g (07 0))*Z>

If U0 € ker(:*) then:
Y € Rg(id — 5(0,0)") <= U € Rg((id — ®2(0,0)))
< U’ € Rg(®'L(0,0)")
and similiarly ¥° € Rg(®*(0,0)*). This shows that ¥° € Rg(®*(0,0)*
Rg(®%(0,0)*). More precisely, we have proved U% = ®%(0,0)*0" = & (0, 0)*¥°.

0
The adjoint operators ®%(¢,t)*, ®* ((,t)* are defined for t > ¢ > 0 and
t < ¢ <0 respectively. Now W0 defines via

() :{ (@4 (0,6)* T : >0 (29)

> D

(@°(0,8))*T° : 0>t
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a solution of the adjoint equation W (t) = —A(t)*W(t). Thus every element
of ker(¢*) defines an element of ker (7).

On the other hand any element W (-) in ker(7™*) is a solution of the adjoint
equation W(t) = —A(t)*W(t) and can be represented in the form (29) for
some appropriate W0 € Y which defines a kernel element of +* and therefore
lies in a complement of = Rg(¢). The claim now follows from the identity

i7 = dim(kern(7")) — codim(Rg(7)) = 1 — dim(kern(7™)).
UJ

This lemma together with theorem 5 gives us the possibility of calculating
the codimension of the space €, defined in (28). We can now prove the next
lemma, which is the key step in proving theorem 1.

Lemma 4
The manifolds W¢ (x1) and W (x_) are transversal at H(0) if and only if the
states vy and x_ satisfy

sign(f'(z-)) > 0 > sign(f'(x4)). (30)

More precisely, the space ) satisfies Q =Y if (30) is true and has codimension
one inY if sign(f'(z_)) = sign(f'(xy)). Finally, codimy$) = 2, if f'(zy) >
0> f'(z_).

Proof

Let us first note that the sum ) of the tangent spaces is always a closed
subspace of Y, see lemma 3.19 in [6] for a proof. For the proof of this theorem
it is therefore sufficient to calculate the Fredholmindex i+ of 7 by the previous
lemma 3. We will do this with the help of theorem 5 and consider the operator

L:HY(R,C) — L*R,C)
(L)) = () — L(t)
= Qi) + (Lo~ o(t) ~ [ A(O)0().

Let us now choose for p € [0, 1] the homotopy

1 1
Lg(-) = —(L(¢() = ¢(0)) = —(pDf(2+4)¢(0) + (1 = p) D f (z-)¢(0))-
Then we observe L'¢ = L(co)¢ and L°¢ = L(—o00)¢, where we have set
L(£o0) := limy_4o L(t). Let us now check that the assumptions of theo-
rem 5 are satisfied, that is, there are only finitely many values p where the

characteristic equation
8703 = A= (L) = 1) = Z(pDSe) + (1= pDS-)) )

Cy Cy

possesses purely imaginary zeros A = i0. Indeed, making the ansatz A\ = io
leads to

8(i) = i = (- (Leos(o) = 1) = - (pDfe2) + (1= )DF)) )

Cy Cx
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We note that only ic = 0 is a possible root, which reduces the equation to

0=pDf(zy)+ (1 —p)Df(x-). (31)

Thus, the condition (31) can never be satisfied if sign(f'(z)) = sign(f'(z_)).
Under this assumption we conclude with the help of theorem 5 and theorem 3
that iz = iy = —cross(L”) = 0 which proves the lemma in view of lemma 3.
Now let us assume that sign(f’(z,)) # sign(f'(x_)) and consider the case
f'(x=) > 0 > f'(xy). Then there is exactly one value p, € (0,1), such that
(31) is satisfied for p = p,. We easily check that ic = 0 is a simple zero of
AP+(-), since

1
AP (N =1——L(#)=1#0.
0 £ Wy =1 = - L(6) =1 £0
In particular there exists a curve A = A(p) with A(p,) = 0 and A?(A(p)) = 0 by

the implicit function theorem. We can calculate the derivative of this function
and obtain

o), = —[oa (079, A% (0)
— () - f@) <0
and therefore cross(L”*) = —1 < 0. Finally this proves
i7 =1ip = —cross(L”) =1,

which shows that the codimension of €2 in the ambient space Y is zero. This
together with the fact that € is closed proves Q =Y. Finally, if f'(xy) >0 >
f'(x_) then the calculation shows that codimy ) = 2. O

We can now prove our main result.

Theorem 8

Fix two states xy,x_ € R with z, # x_. Assume that f and K satisfy
hypothesis 2 hold and that there exists a unique (up to translations) travelling
wave solution u(t,x) = h(x — c,t), which satisfies the conditions a) and b) of
the introduction. Then the following holds:

i) If sign(f'(z—)) > 0 > sign(f'(z4)) then the travelling wave u(t,z) is
structurally stable: Choose a linear operator L:C° - R and a nonlin-
earity f : R — R, such that the differences Hl~) — Ll t(co(-a,a),r),r) and
lf — f | Bo1(r,r) are small enough, then the perturbed system

Owu(t,x) = I}u(t, ctx) —u(t,z) — f(u(t,z)) (32)

possesses a travelling wave solution u(t, r) = h(t — éx) for every ¢ ~ ¢,
and the states Ty := limg_4 o h(§) are near the states x.

ii) Assume that sign(f'(zy)) = sign(f'(x_)). Supply system (1) with a
parameter «, such that o — f(-,a) € BCY(R,R) and o — L* are
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differentiable and L° = L, f(-,0) = f holds. Assume hypothesis 1 is not
satisfied. Then there exists a C? function y : (R N B.(0)) X (—au, a.) X
(—e 4 ¢4, + €) — R such that the existence of a travelling wave of
the perturbed system with wave speeed ¢ = c, for the parameter «
corresponds to a zero of (-, «,¢) = 0. Furthermore, (0,0, ¢,) = 0 and

017(0,0,¢,) = 0.

On the other hand if hypothesis 1 is true then there exists a travelling
wave solution u(t,x) = h(x — ct) for the perturbed equation (1) with
wave speed ¢ = c(a) = ¢, for small enough o # 0. Moreover, the
function ¢ = ¢(a) is C* and ¢(0) = c,.

iii) If f'(xy) > 0 > f'(x_) then the travelling wave u(t,z) is structurally
unstable: The existence of a travelling wave corresponds to a zero of a C*-
function n(-, o, ¢), wheren : (RNB-(0)) X (—av, o) X (—e+cy, cute) — R?
and 1(0,0, c,) = 0, 911m(0,0, c,) = 0.

Proof of Theorem 8

Supply system (1) with a parameter «, such that a — f(-,a) € BC'(R,R),
a +— L% is two times continuously differentiable and L° = L, f(-,0) = f holds.
Without loss of generality we assume that f(z+,«) = 0 for all «. We then
observe that the manifolds W*(zy) = W (z4) and W*(z_) = W (x_) also
depend two times differentiably on « and c.

We have already proved that W (x_) and W (z4) can be represented in the
form

Wi (xz-) = H(0)+graph(V“(-, c,a)) W (x4) = H(0) +graph(¥°(-, ¢, )

locally near H(0), where *(-, ¢, ) : Rg(®"(0,0)) — Rg(®* (0,0)) and ¥U*(-, c, o) :
Rg(®%(0,0)) — Rg(®%(0,0)), see (21). We therefore can define (for |o.| small
enough) the function

E : Rg(22(0,0)) x Rg(®L(0,0)) x (—au,as) X (cx — €, +¢) =V
Z o (VS Va0) = UV ca) = B (VP ca) + V= V2

and note that Z(0,0,0, ¢,) = 0 and Dyw y+Z(0,0,0, ¢,) has a one-dimensional
kernel. Furthermore, any zero of = defines an intersection point of the stable
and unstable manifold and therefore induces a heteroclinic orbit. Let us now
consider the case f'(xz_) > 0 > f'(z4). Then Dy« v+Z(0,0,0,c,) is surjective
with one-dimensional kernel. The claim of theorem 1 now follows directly from
the implicit function theorem.

Now we restrict our attention to the case signf’(zy) = signf’(x,) and assume
that hypothesis 1 is satisfied. In this case

Rg {D(V“,VS)E(O> 0, 07 C*)} = Qa

possesses a one-dimensional complement in Y, where €2 has been defined in
(28). Hence, we can write Y = Q +span (Vy), where ¥ is defined in the proof
of lemma 3. After Lyapunov-Schmidt reduction, zeros of = correspond to zeros
of a reduced map

(-, o, ) : ker {D(VuJ/S)E(O, 0,0, c*)} — span (V) ,

21



where 0,7(0,0, ¢,) = 0. We now show that 9,7(0, 0, c)‘c:c* = 0 if hypothesis 1
is satisfied. Indeed, it suffices to show that

(0:0"(0,¢,0)|_,, = 0.9°(0,¢,0)| _, . ¥°)_#0.

More explicitly, this reads

< / B0, £)0.GI(€,0,0, ) dé — / T 5 (0.6)0,G(E.0,0, ) dE. \1/0> 40

Y

(where G has been defined in (19)) and this is equivalent to

| {(acie0.0.00.11©) a0 (33)

[e.9]

where W, defined in (29), is the unique (up to scalar multiples) solution of
the adjoint 7*W = 0 and we remind that iz = 0, dim(ker(7*)) = 1 in the
case of sign(f'(z4)) = sign(f'(z_)). Now a closer look at the definition of
G in (19) shows that 0.G(t,0,0,c,) = h/(t) and therefore (33) is equivalent
to hypothesis 1. We conclude that if hypothesis 1 is satisfied, we get a zero
of = for @ &~ . which induces an intersection point (H®,¢*) ~ (H(0),c,) of
stable and unstable manifold. This point induces a travelling wave u®(t,r) =
ho‘(x — c*t) for the perturbed equation for some C*-function h*: R — R with
(h*(0),hg) = H* € Y.

The other cases of theorem 8 now follow analogously: Note that the range of
Ds y)Z(0,0,0, ¢.) has codimension two if f'(zy) > 0> f'(x_). O

6 A special case: Bistable nonlinearities

In this section we consider the special case of bistable nonlinearities, which
has been considered in [1, 2, 3, 4, 17]. Let us specify these class of functions
by the following definition.

Definition 5
Let C denote the set of all functions f € C*(R,R), such that

o f(xa)=0 and 0< f'(fa)
e f has only one zero v in (—a,a) and no zeros outside [—a, a).

Then the following results have been proved by Bates et al (see Theorem 4.1
in [1]):

Theorem 9 (Bates et al)
Assume that g(u) := u+ f(u) has at most three intervals of monotonicity, that
IS

g >0on[-a,B)U(Ca], ¢ <0on(BC) (34)

for some 3 < (. Then there exists a unique travelling wave solution u(t,z) =
h(x — c.t) of (1) connecting the states xy for a unique travelling wave speed
¢, In the class of all continuous functions h.
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Together with lemma 2.2 of [1], which states that hypothesis 1 is always sat-
isfied, we have the following corollary.

Corollary 1

Consider equation (1) for some nonlinearity f € C and assume that (34) is
satisfied. Choose a linear operator L:C%[~a, a,R) — R and a differentiable
nonlinearity f : R — R. If the differences ||L — L||p(co(j—aar)r) and || f —
1l BC1(r,r) are small enough, the perturbed system

duu(t,x) = Lu(t,  + ) — u(t,z) — f(u(t,z)) (35)

possesses a travelling wave solution (t, x) = h(t—éx) for a unique ¢ ~ ¢,. The
states Ty = limg_ 4o fz(& ) are near the states x-. Furthermore the travelling
wave profile h is unique (up to translations); that is, h is unique with the
property to be a heteroclinic solution of the perturbed travelling wave equation
(2) connecting the states T4 near .

7 Application: The one-dimensional equation
of elasticity

One of our main motivations in studying the structural stability of travelling
waves of integrodifferential equations of the form (1) is the one-dimensional
system of elasticity, which is given by

Oyw — Oyv (0
< Oy — Opo(w) ) n ( 0 ) ’ (36)
where (x,t) € R x (0,7), T' > 0. Here, w(z,t) denotes the strain, v(x,t) is
the velocity and o : (—1,00) — R denotes the stress strain relation. It is

well known that (36) produces shock wave solutions, see [18, 19]. These are
solutions of the form

< WOz, ) ) :{ %;ZB; iig ig (37)

for some appropriate elements (W, Vy) € R? and some speed ¢ € R.

In order to single out unique physically relevant shock wave solutions one can
regularize (36) by supplementing terms which model the effects of viscosity
and capillarity:

( 85;% 5acim(zu) ) - ( ped? v — ygx (K5 (0,w)] ) ; (38)

where p and v are nonnegative viscosity and capillarity constants and

wfulle) = 2 [ 1 (S22 fut) — w(o)bay

9 €

The equation (38) has been studied in [18, 19]. For simplicity we restrict to
functions K which have compact support in the interval [—a, a] for some a > 0.
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Let us observe that the right hand side of (38) vanishes if we let ¢ = 0. In this
sense we can think of the right hand side as a regularisation of the conservation
law (36).

Focusing on the the case v = ¢ = 1 and making a travelling wave ansatz
(w(z,t),v(x,t) = (W(x —ct), V(x — c,t)), with limits lime_, 1 W(§) = W,
lime_ 1 V() = Vi we arrive at the travelling wave equation

apW'(t) = (LW, —=W(r)) = [-o(W(1)) + W (1) — EW_ + o(W_)]
= (LW - (T)) f(W(T)) (39)

where

’ ’ - R
L : ¢ / K(0
Indeed, let W be any heteroclinic solution of the travelling wave equation
(39) with limg_,_ W(§) = W_. For any given V_ we can define V(-) by the

equation
cW(r)=V(r)=—cW_-V_, (40)

which is the integrated first equation of (38) after travelling wave ansatz. Then

(we (¢, 2), v (¢, ) = (W (‘” ;C*t) % (‘” _gc*t)) (41)

defines a travelling wave solution of (38); see also [18] for more details. More-
over, the solution (w®,v®) converges pointwise for ¢ — 0 to a shock wave
solution (w® v°), if & — ct # 0 is fixed. In this case we say that (w° v°) can
be realized by a travelling wave profile (W, V) and we can think of the shock
wave (w’,v°) as a physically relevant solution (we refer to [18, 19] for more
backround on this subject).

We are now aiming at a relation between the "nature” of the shock wave
(w® v°%) and the structural stability of the travelling wave profile (W, V) as
a solution of a functional differential equation of mixed type. Let set U, =
(W, Vi) and U- = (W_,V_) and make the following definition, see also [18,

19, 24].

Definition 6
Assume that the matrices D f (U,.), D f(U-) have real eigenvalues A\ (U+) X (Uy)

and A\ (U_), \o(U_), respectively. Then we call a shock wave (w°,v°), defined
as in (37),

i) compressive, if A\{(U~-) > ¢ > A\ (Uy) or \y(U-) > ¢ > Ao(Uy)
ii) undercompressive, if \y(U_) > ¢ > A\ (Uy) and M\ (Uy) > ¢ > A\ (U-).

A straightforward application of theorem 1 yields the following result.
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Theorem 10

Assume that a shock wave solution (w°,v°) of (36) can be realized by a trav-
elling wave profile (W, V'), where W' is a solution of (39), connecting W, W_,
and V is a solution of (40) for some V_ € R, such that W, V., c, satisfy the
Rankine-Hugoniot conditions

e (Wy = W)=V, — V., e (Ve = V) = o(W,) — o(WL).

We now fix the end states W_, V_ and obtain the following result: The solution
(W, V) is structurally stable if and only if the shock wave (w°,v°) is compres-
sive. Thus, small perturbations of Ly with respect to the L(C°([—a, a],R), R)-
norm or the nonlinearity o with respect to the BC' (R, R)-norm result in the ex-
istence of a solution (W V) for every speed c = c,, such that limg_, 4 W(&) =
Wy, where W_ = W_, and W is a solution of the perturbed travelling wave
equation (39) with c, replaced by c. We also have limg_ 1o, V(§) = Vi, where
V_:=V_, and V solves (40) with ¢ instead of ¢, and (W, V) defines via (41)
a shock wave in the limit € — 0, where c, has to be replaced by c.

Proof
It is enough to consider the persistence of W as a heteroclinic sultion of (39)
after perturbation of L, or o. Indeed, any heteroclinic solution W of the
perturbed travelling wave equation with limits limg_ 1o W (¢) = W4 induces
a solution V via
W (1) =V(r) = —cW_ - V_

as long as the triple (Wi, V.., ¢) satisfies the (perturbed) Rankine Hugoniot
conditions —&(W, — W_) = —¢(W, —W_) =V, —V_ and —&(V, — V_) =

&(W,) — &(W_). But now we can apply theorem 8 to equation (39). This
proves theorem 10. O

8 Appendix: The weak”* integral

In this section we want to clarify, in which sense the integral
t
/ T(t, $)G(s)ds (42)
0

is well defined, if s — G(s) = (g(s),0) maps smoothly into the space X =
CNxC%([—a, b], CY). Let us make the following assumption concerning T'(t, s).

Assumption 1

Let L(t) € BC°(R, L(C°([—a,b],CN),C")) and let L(t) — Ly with respect to
the operator norm as |t| — oo, where Ly € L(C°([—a,b],CY),C") are such
that the equations y(t) = L1y, are hyperbolic. Then

(aei ) =40 (i ) = (i) (43)

possesses an exponential dichotomy on R, (respectively R_) with associated
solution operators ®° (1,0), ® (o, 7) for 7 > o > 0 (respectively ®° (o, ),
Q" (7,0) and 7 < 0 < 0). We now consider the case that T'(t, s) is one of these
solution operators on R, .
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Let us now choose some element
(n,¢) € Y :=CN x L([—a,b],CN)

and note that

s — (T(t,s)G(s), (n,v)) € L'([0,t],R), (44)
where (-, -) denotes the pairing between V* = Z =CN x L®([—a,b],CN) and
Y that is

b
(€0 () = -0+ [ oO)w(e)

for (§,¢) € Z and (n,v) € Y. Here, Z can be identified with the dual space
of Y. Hence, there exists a unique ) € Z, such that

Q. (1, ) = / (T(t, $)G(s), (7,)) ds (45)

for every (n,1)) € Y; see the appendix of [12]. Note that if s — G(s) is
continuous and takes values in X, then the weak® integral coincides with the
usual Riemann integral.

Definition 7
We set fg T(t,s)G(s)ds := @ and call ) the weak* integral.

We therefore view the integral term in (42) as a weak” integral, which is an
element of Y* = Z by definition. Let us now prove that the integral is actually
an element of X = {(¢,¢) € CV x C%([—a,b],CN) : (0) = £}.

Lemma 5

For each fixed t > 0 we have [ T(t,s)G(s)ds € X.

Proof
Consider

where

1(5)(9) — { 2- 2(‘9/5;2*1 RS (—5, 5)

0 else

Hence, for fixed § > 0, (46) defines an element in X for each fixed t. Moreover,
the integral can be defined as the usual Riemann integral since the integrand
is continuous when considered as a map with values in X. We can now differ-
entiate () in the space Y and obtain

ar0 = S0 ) = men (00, )+A<> () @

() ()
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Let us take a closer look at the second component of (47). Since F°(t) € X
for each fixed t,d and therefore £(¢,0) = f(t), we obtain from

0L (t,0) = 0p€°(t,0) + h(t,0)
via the method of characteristics the identity
5 P+0)+ [Pht+0—n,60)dy t+60>0
g (tue) = 5 t 0
£(0,0+1t) + [y h(t, 0+t —n)dn, —a<t+6<0.

Note that £°(0,-) = 0 and f°(0) = 0 for any § > 0. Since T(t,t) : Y — Y
is a bounded projection for each t, we conclude that h(t,-) — o(t,-) for some
function o (¢,-) € L? as § \, 0 in L*([—a, b], CY) because g(t)I(5)(-) converges
in L? as § \, 0. Moreover, the integral in (46) converges with respect to the

Y -norm to
FO) = /OtT(t, ) ( 9ts) ) ds

as & — oo. Let us write FO(t) = (f(t),&(¢,-)). Convergence of (46) in Y
implies by definition that f°(t) — f(t) for fixed ¢ as § \, 0. Therefore, we can
pass to the limit 6 N\, 0 in (48) and get

(48)

§(t,9):f(t+9)—|—/060(t+9—17,9)d77 (49)

as long as t+6 > 0. Hence, £(t, -) is continuous if the spatial variable 0 satisfies
t+ 6 > 0. In particular we conclude that

§(£,0) = f(t)

for all t > 0. Because £(t,-) also converges with respect to the sup-norm in
the region ¢ + 6 < 0 and fixed ¢t (namely, it converges to zero), we conclude
that £(t,-) € C°, which proves that (f(t),&(t,-)) € X.

Finally, we note that F°(¢) actually coincides with the weak* integral; that
is FO(t) = Q. Indeed, F°(t) € X. Moreover, for any (£,4(-)) € CN x
LY([~a,b],C"N) the identity

@Wa&wo»:é<ﬂm%m$@wm»w

holds. Passing to the limit § \, 0 we obtain

<F°(t),(§,¢(-))>=/0 (T'(t,5)G(s), (&, 9(-))) ds.

By uniqueness this shows that Q = F°(t). O

Lemma 6
The function v : t — f(f T(t,s)G(s)ds is continuous as a function from [0, 00)

to X and .
nwm&<AAhWﬂw-wpwww%

0<s<t
if T(t, s) satisties the estimate || T'(t,s)| 1z 2 < Me*=) fort > s > 0 and
some a € R, where, as before, Z = CN x L.
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Proof
Note that the integral is well defined with values in X by the previous lemma.
Since the map ¢ — f(f T(t,s)G(s)ds is continuous when regarded with values in

Y* = Z (see lemma 2.1, page 54 in [12]) and the norm of L* restricted to C°
coincides with the usual norm in C°, the claim concerning continuity follows

immediately by lemma 2.3 in [12]. O
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