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Abstract

In this thesis we will examine the mathematical aspects of the an-

cient astronomical device known as the Atnikythera Mechanism. We

will look at the archeological findings of the research so far, exam-

ine the Mechanism’s structure and functions. To this end, we will

introduce some elements of gear design, and an algorithm for approx-

imating irrational numbers, using continued fractions. Lastly, we will

try to expand the Mechanisms function, by adding some parts the

existence of which is only hypothesized.

The cover images were taken from the Antikythera Mechanism Research Project. On the left, a PTM

of fragment A from the HP labs download page and on the right, its Digital Radiograph from the web-

page of Shaw Inspection Systems. For more pictures and information, see: http://www.antikythera-

mechanism.gr/data
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Introduction

0.1 The Antikythera Mechanism

The device that is nowadays known as the Antikythera Mechanism is a

geared tooth astronomical device, discovered in the beginning of the 20th

century by sponge divers in an ancient shipwreck off the coast of the unin-

habited Greek island of Antikythera. The Mechanism, made of bronze, was

heavily damaged from the sea water, and it was broken with some parts of

it being stuck together in larger fragments, many of its gears embedded in

a corroded mass, and some gears having partly survived, with only pieces

of them having been found. Research on the Mechanism has been ongoing

from the early 1900’s to present day, and the shipwreck’s site, which after

the initial discovery was only reexamined by Jacques-Yves Cousteau in the

1970’s, was revisited in September and October 2014 by a collaboration be-

tween Woods Hole Oceanographic Institution and the Hellenic Ephorate of

Underwater Antiquities called Return to Antikythera, aiming to bring more

information about the shipwreck and its cargo to the surface. The Mecha-

nism’s nature posed a question that puzzled scientists and enthusiasts alike

for more than a hundred years, and every round of research shed a bit more

light on previous work, disputing or proving hypotheses on the function and

use of the Mechanism, models being proposed and replaced with newer ones

with the passing of time. The collaborative Antikythera Mechanism Research

Project, using technology developed exclusively for its purposes managed to

answer the questions about the Mechanism’s structure and function. Having

two displays, one in the front and one in the back, the Mechanism would

display the position of the sun and the moon in a geocentric system, and it

included an eclilpse predictor and an Athenian calendar system used at the
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time in many Greek cities. The Mechanism would be inscribed with a text, a

part of which was a user’s manual, explaining how to operate the Mechanism

and what its output would be. Part of this inscription mentions the planets

and the Cosmos, which raises the question if there was more information

on display on the Mechanism, as all the planets known at the time of its

conception are mentioned in a partly readable inscription on the back.

0.2 Thesis Overview

This thesis is divided in five sections. We begin by presenting the history

of the Mechanism’s research and the findings of the AMRP, which the basis

for us to see the full potential of the Mechanism. Since the gears of the

Mechanism are flawed by design, we proceed to chapter 2, where we exam-

ine how gears work, and introduce the involute gear, discovered by Euler,

so that the ingenious design of the Mechanism can be fully realized, and we

examine how the involute curve connects to ancient greek mathematics, and

especially Archimedes. The next chapter concerns continued fractions and

an algorithm based on Euclidean division that will allow us to use rational

approximations of irratioanl numbers, and we will compare ancient astronom-

ical information based on observation with the best rational approximations

of several irrational astronomical ratios. Chapters 4 presents an analysis of

the 2005 model, using involute gears instead of the original ones. This al-

lows for accurate calculations between meshing gears, and we can examine

the accuracy of the Mechanim’s intended output. We also examine a lunar

anomaly device that was used to display the theory of Hipparchos for the

motion of the moon. The last chapter examines the question of the Cosmos

appearing on the Mechanism, and we present devices that could display the

five planets mentioned in the back inscription of the Mechanism. We only
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aim to have the mean periods on display, as previous research has shown that

the anomaly of these planets’ orbit could not be realized with the technology

of the Mechanism’s time.

0.3 Acknowledgements
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nism’s nature and limits. I am also very thankful to Nikos Lengas, who helped

me understand the geometry and meshing of gears. Lastly, I am thankful to

Anna Karnauhova for all the discussions we had during the writing of my

thesis.
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1 The Antikythera Mechanism

In the beginning of the 20th century an ancient shipwreck was discovered

off the coast of the barely inhabited Greek island Antikythera. In the ship-

wreck, among the many treasures found, there was a mass of bronze that

puzzled, and challenged, the scientific community for years to come. Further

analysis and examination determined that the Antikythera Mechanism was

a toothed gear mechanism that presented a calendar of its time, could very

accurately predict eclipses based on astronomical information available at

the time, and depicted the sun’s and the moon’s position according to the

geocentric theory at the time. In this section the information known about

the Mechanism’s parts is presented.

1.1 Research conducted before 2005

Before analysing the results of the Antikythera Mechanism Research

Project, it is interesting to know the history of the Mechanism’s discovery,

and the most groundbreaking projects that came along the way.

1.1.1 Discovery of the Antikythera shipwreck and early examina-

tion of its cargo

In his work ”Gears from the Greeks: The Antikythera Mechanism – a

Calendar Computer from ca. 80 B.C.” Derek de Solla Price [19] gives a very

detailed account of the research on the Mechanism starting with its discovery

and ending at 1973. After Price’s article was published, research continued

with the most influential reconstructions being the model created by Michael

Wright [26, 27] and the universally accepted reconstruction model of the
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Mechanism proposed by the international Antikythera Mechanism Research

Program [1].

The Antikythera shipwreck was discovered by chance shortly before Easter

of 1900, when sponge drivers from the island of Symi took shelter from a

storm east of port Pinakakia, near the uninhabited island of Antikythera,

and dropped anchor in a depth of about 40 meters. Diving in the unknown

waters below, they came upon a shipwreck 50 meters in length with marble

and bronze statues scattered around it. After their return to Symi, they

decided to report the findings to the authorities, and on the 6th of November

1900, professor of archaeology at the University of Athens A. Oikonomou

took two of the divers and a retrieved bronze arm to Spyridon Stais, minister

of education and renowned archaeologist [19]. The first operation to retrieve

the treasures of the Antikythera Shipwreck started in the last days of the

same month and lasted until the 30th of September of the next year. During

this operation the divers recovered some objects that are considered of high

artistic significance, e.g. the bronze statue named the Antikythera Youth

and a bronze male head named the Philosopher of Antikythera [22]. This

came at a heavy price, as one diver was killed and two were left disabled [19].

From the findings the Shipwreck was dated somewhere between 80-50 B.C.,

limits that have been confirmed from later research [6]. The first account of

the Antikythera Mechanism fragments comes from May 1902, from minister

Stais himself [2]. This started the research on the Mechanism.

1.1.2 What is this machine? Who made it, what was its use?

The first guess was that the corroded mass of bronze with the inscription

was an astrolabe [23, 22]. Due to the complexity of the mechanism, this was

quickly challenged (later research showed that the inscriptions and construc-
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tion of the Mechanism does not correspond to an astrolabe [19, 26, 1] ) and

the debate drew the attention of Albert Rehm [20], who proposed that the

mechanism could be some sort of planetarium, maybe a sphere (a sort of

planetarium) like the ones designed by Archimedes. Unfortunately a large

portion of his research remains unpublished[12]. Rehm was halfway right in

his assumption [19, 10]. Price describes him as one of the first to read the

inscriptions on the Mechanism and discovering the egyptian month name

PACHON written in Greek, which in his opinion ruled out any possibility of

the Mechanism being an astrolabe. Although research has shown that the

Mechanism is not a sphere, his assumption that the Cosmos was displayed

on the Mechanism was right.

The first model of the Mechanism was constructed in 1928 by Rear Admiral

Ioannis Theofanidis. In his paper ”The Antikythera finding” [23] he credits

Hipparchos with as its creator and includes the eccentricity device for the

moon’s anomaly in the orbit. Although Hipparchos is no longer considered

the designer of the Mechanism, his lunar theory is present in every recon-

struction and Theofanidis was right to include the eccentricity device [14].

He accepted that the Mechanism is too complex to be an astrolabe and his

reconstruction is a multi-purpose device which would incorporate an astro-

labe in order to navigate the ship using the position of the sun, the moon

and the stars [23].

1.1.3 Research conducted by Price and Karakalos

New ground was broken in the seventies when Price (who was interested

in the Mechanism since the early fifties) and Ch. Karakalos used gamma-

radiographs and fine x-radiographs to examine the fragments. During the

years 1971-1973 they managed to get a rather accurate tooth count on the
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gears and to measure their dimensions with amazing precision [19]. The

model they constructed based on their conclusions answered the question of

the Mechanism’s general function: It was a lunisolar calendar machine with

representation of the sun and moon system from a geocentric perspective in

the front and a calendar display and an eclipse predictor on the back. In

their model Price and Karakalos included a differential turntable, that took

the complexity of the Mechanism to new levels. The differential of Price and

Karakalos has been replaced by a pin-and-slot device that was observed from

the AMRP.

1.2 The Antikythera Mechanism Research Project

The Antikythera Mechanism Reaseach Project is a collaboration of sev-

eral academic institutions, where in addition to high-definition photogra-

phy, three-dimensional microfocus computed tomography developed by X-

Tek Systems Ltd. and digital optical imaging using polynomial texture map-

ping developed by Hewlett-Packard Inc. were used, and revealed great details

on the surfaces of the Mechanims, making inscripitons on layers of bronze

beneath the exposed surfaces readable for the first time [10]. The members

of the project managed to reveal many of the Mechanism’s secrets, as they

got to examine parts of the Mechanism that were unreachable before.

1.2.1 Archeological findings of the AMRP

The technology that was made available to the AMRP allowed careful

examination of the fragments, the results of which left little room for specu-

lation concerning the nature of the Mechanism [10, 11]. The inscripitons on

the front and the back on the Mechanism, were revealed to contain astro-

nomical information, with a planetarium-like display on the front dial, and

10



an eclipse predicting display and a calendar used at the time on the back.

Beyond these details, a user’s manual was on the front, providing instructions

and explanations of the various displays. Not all parts have been fully read

and interpreted, and some parts of the back inscription are of particular in-

terest, as they may contain crucial information about the extent of the front

display [10, 11, 12]. It was from the information on the eclipse predictor that

allowed a better estimate of the age of the Mechanism’s design [4], which

shows that the Mechanism was designed around 205 BC, even though the

ship carrying it sunk around 80 BC [6], strongly indicating that Archimedes

could be the designer of the Mechanism.

1.2.2 Gear parameters determined by the AMRP

Figure 1: The terms used in this subsection, shown on a scetch of gear c1 by Anna Karnauhova

The scanning methods used did not only enable the AMRP members

to read the inscriptions on the Mechanism, but also allowed researchers to

better examine its gears, most of which were extensively damaged and deeply
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embedded in the fragments, giving them the opportunity to obtain a better

image of their geometrical parameters [7]. The gears were named using the

following scheme: To each gear, a unique combination of a letter and a

number is given. Each letter corresponds to an axis, whereas gears on the

same axis are numbered with 1 corresponding to the gear that is closest to

the front of the Mechanism, and a larger number showing that the gear is

further to the back. We start naming from the letter b, as the axis a would

be the crank that put the Mechanism in motion.

For some of the gears, the scans allowed the researchers to obtain a definite

tooth count:

Gear name Efstathiou et

al. tooth count

b3 32

d1 24

d2 127

f2 30

g2 20

l1 38

l2 53

Table 1: The tooth count for the definite gears

This was not the case for most of the teeth however. Corrosion made it

difficult to simply count teeth and measure tip and root radii on the gears,

as for some gears, examination of different sections would return different

values. However, in an attempt to find the right parameters so that the

Mechanism would be functional, the following values were accepted[7]:
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Gear name Average tip ra-

dius in mm

Average root

radius in mm

Efstathiou

tooth count

b1 65 63.8 223

b2 15.7 14.9 64

c1 10.3 9.4 38

c2 11 10.5 48

e1 9.7 8.6 32

e2 7.8 7.1 32

e3 52.4 51.5 223

e4 49.9 49.1 188

e5 13.1 12.2 50

e6 13.9 12.9 50

f1 14.6 13.6 53

g1 14.4 13.4 54

h1 13.7 13 60

h2 3.8 3 15

i1 13.2 12.6 60

k1 13.3 12.6 50

k2 14 13.1 50

m1 24.7 23.6 96

m2 4 3.7 15

o1 12.8 12.2 60

Table 2: The accepted tooth count for the indefinite gears

In conclusion, these are the geometrical parameters accepted of all the 27

gears found:

Gear name Average tip ra-

dius in mm

Average root

radius in mm

Efstathiou

tooth count

b1 65 63.8 223

b2 15.7 14.9 64

b3 8.6 8.2 32

c1 10.3 9.4 38

c2 11 10.5 48

d1 5.6 5.1 24

d2 31.6 30.6 127

e1 9.7 8.6 32
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e2 7.8 7.1 32

e3 52.4 51.5 223

e4 49.9 49.1 188

e5 13.1 12.2 50

e6 13.9 12.9 50

f1 14.6 13.6 53

f2 8.3 7.4 30

g1 14.4 13.4 54

g2 4.9 4.1 20

h1 13.7 13 60

h2 3.8 3 15

i1 13.2 12.6 60

k1 13.3 12.6 50

k2 14 13.1 50

l1 9.1 8.3 38

l2 13.1 12.5 53

m1 24.7 23.6 96

m2 4 3.7 15

o1 12.8 12.2 60

Table 3: The accepted tooth count for all the found gears

To obtain a complete model of the Mechanism, another five gears are

needed. These gears have not been found, but their existence is hypothesized[10,

11, 7].

These are the geometrical parameters for these gears[7]:

Missing gear name Tip radius Root radius Tooth count

m3 7.1 5.9 27

n1 13.9 12.8 53

n2 3.4 2.4 15

p1 13.8 12.8 60

p2 3.5 2.2 12

Table 4: The tooth count for the hypothesized gears

With the gear parameters listed above, a functional reconstruction of the
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Antikythera Mechanism can be achieved. The shape of the teeth on the

Mechanism’s gears is flawed, as triangularly shaped teeth like the ones used

in the Mechanism do not transmit rotation smoothly. To correct that, we

need to use a more modern gear[13, 6].
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2 Gears

2.1 A short history of gears

A gear can be described as a cylinder of small height with teeth placed

on its perimeter. The shape the teeth have on the plane parallel to the base

of the cylinder, is called tooth profile. Throughout the centuries, evolution

of gears was a very slow process, as complex mechanical devices of high pre-

cision were not widely used until the construction of the first mechanical

clocks[13, 6]. No original manuscripts from classical antiquity survive, and

technical knowledge of the time is only known to us from medieval copies,

which may not be faithful reproductions, either due to influence of later ad-

vancements or lack of understanding of the source material[13]. The earliest

known device more complicated than the Mechanism is Giovanni de Dondi’s

Planetarium (in some texts Astrarium), constructed in 1364. De Dondi’s

construction breaks new ground in mechanical complexity, with 107 gears

and seven displays, and what it lacked in portability with its height reaching

one meter, it made up in efficiency[6]. Up to de Dondi, meshing metallic

gears, used triangular teeth, sometimes with rounded tips (the tips of the

Mechanism’s gears were not rounded, as far as we know). De Dondi used

a new profile to improve his planetarium; some gears have oval teeth, and

tooth spacing variations were used. This was the time that traditional means

of timekeeping such as clepsydrae were abandoned, and demand for complex

and impressive mechanical clocks was booming (the first astronomical clock

of the Strasbourg Cathedral was constructed between 1352 and 1354) and

inaccurate gears presented a problem[6]. The first gear profile to solve this

problem was the cycloid gear introduced around the middle of the 17th cen-

tury and the involute gear tooth profile designed by Leonhard Euler[13].
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These profiles are still in use today. Here we will examine the involute gear,

as it is the more widespread of the two[13].

2.2 Basic definitions and the fundamental Law of Gears

Before examining the gear itself, we need to define rotation around a

center.

2.2.1 Rotational motion on the plane

We define a real vector space with the orthonormal basis vectors

ex :=

1

0

, and ey :=

0

1

.

In this vector space we take a vector r of fixed norm ‖r‖ := ρ ∈ R>0 and

define the angle between r and the positive x-Axis as φ := arctan( yr
xr

).

So r can now be written as r = ρ(cos(φ)ey+sin(φ)ex). The unit vector in the

direction of r is defined as the vector er := cos(φ)ey + sin(φ)ex and the unit

vector in the direction of the angle φ is defined as eφ := cos(φ)ey − sin(φ)ex.

If the vector r is considered as a function of a single variable t, and differen-

tiated we get the following:

dr

dt
=
d(ρer)

dt
= ρ

der
dt

= ρ

(
− sin(φ)ey

dφ

dt
+ cos(φ)ex

dφ

dt

)
= ρ

dφ

dt
eφ

We will define vt := ρ
dφ

dt
eφ as the tangential velocity of r, and ω :=

dφ

dt
as

the angular velocity of r. Angular and tangential velocity are connected by

the following relations:

vt = ρω

 cosφ

− sinφ

 ,

‖vt‖ = ρω
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The term velocity is used to describe the differentials of v and φ, because

if t represents time, these equations describe a rotating motion of constant

radius ρ around a center

0

0

.

Frequency. The frequency of the motion described above is defined as f :=
ω

2π
. It is equivalent to

[
Rotations

T imeunit

]
. The period of the motion is defined as

T :=
2π

ω
=

1

f

2.2.2 Formulating and proving the fundamental law of gears

A simple case: Two discs in contact Before introducing tooth profiles,

let us examine a simple case of two discs in contact with eachother:

Figure 2: O1 and O2 are the centers of the discs 1 and 2 respectively, with P being their point of contact,

called the pitch point

We suppose that the discs make contact in P in such a way that no fricton

arises. If disc 1 starts rotating clockwise with angular velocity ω1, then disc
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2 starts rotating counterclockwise with an angular speed ω2. Then, for the

pitch point P the following holds:

vP = O1Pω1

vP = O2Pω2

 =⇒ ω1

ω2

=
O1P

O2P

This is a very simple relation for constant frequency transmission, however

there is a very important parameter that we have intentionally ignored in

this scenario: that gears have teeth on their periphery and are not flat.

The fundamental law of gears will provide us with the necessary geometric

condition that gear teeth must satisfy if we are to have a constant frequency

transmission ratio.

The fundamental law of gears: In another idealized case, we have toothed

gears where all friction disappears, our gears come in contact at a single point

on their teeth, named point of action and denoted with Q. The path of Q will

be called line of action. The line of action can be found with relative ease,

as it is on the perpendicular to tangent of the gear surfaces at Q. Setting

the gears in motion will change the point of action, changing the direction of

the tangent and its perpendicular. However, the pitch point and the centers

of gears are not influenced. This allows to formulate the fundamental law of

gears :

Fundamental law of gears. For constant angular velocity ratio, the normal

(i.e. the line of action) to the tooth profiles at the point of action Q must

always pass through the pitch point P.

The mathematical description of the fundamental law of gears goes as

follows with the names of the points are to be taken from the following

picture:
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Figure 3: The general situation that will allow us to formulate the fundamental law of gears.

For the point of action Q, the angular velocities of gears A and B are ωA

and ωB respectively. If the gears are to touch and not dig into each other,

then the linear velocities on the line of action must be equal:

vA cos∠QOAM = vBcos∠QOBN

⇔ ωAOAQ cos∠QOAM = ωBOBQ cos∠QOBN

⇔ ωA
ωB

=
OBQ cos∠QOBN

OAQ cos∠QOAM
=
OBN

OAM

Triangles 4POAM and 4POBN are similar, as ∠POAM = α = β =

∠POBN and they have a right angle and points N and M, thus:

OBN

OAM
=
OAP

OBP
⇒ ωA

ωB
=
OAP

OBP
(1)

This means that the ratio of angular velocities remains constant if and only

if the perpendicular to the tangent goes through the pitch point on the line

connecting the centers of the gears.
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2.3 Euler’s idea: the involute gear

Leonhard Euler was the first to approach the search for an efficient gear

profile using analysis and not geometry of his time[13]. He based the tooth

profile on the involute of a circle. The circle is called the base circle, and the

involute of a curve is best described as the endpoint of a string unwinding

from the circle.

The involute of a circle We consider a circle around a center O, with

radius ρ. We choose an arbirtary point M0 on its surface. From there we

start unwinding. This looks like this:

Figure 4: The involute unwinding from the circle

This is a very intuitive way to describe the involute, it is however easy

to formulate in vector terms: The points M ′ of the involute are given by:

21



OM ′ = r+MM ′, where r is a vectror of length ρ at an angle θ with the line

OM0 and MN ′ is a vector orthogonal to r with length equal to the circle

segment M0M [8]. Thus:

r = ρ

sin θ

cos θ


MN =

∫ θ

0

ρdφ

− cos θ

sin θ

 = ρθ

− cos θ

sin θ


This gives the following equation for the points of the involute:

x
y

 =

ρ(sin θ − θ cos θ)

ρ(cos θ + θ sin θ)


Now it is time to examine the tangent and the normal of the involute at

a given point. To this end, we differentiate the above equations for θ:Tx
Ty

 =

dx
dθ

dy
dθ

 =

d(ρ(sin θ−θ cos θ))
dθ

(dρ(cos θ+θ sin θ))
dθ


=

ρ(d sin θ
dθ
− d(θ cos θ)

dθ
)

ρ(d cos θ
dθ

+ d(θ sin θ)
dθ

)

 =

ρθ sin θ

ρθ cos θ



The normal is orthogonal to the tangent and can be calculated as the

vector product between the involute and a unit vector along a third axis z

orthogonal to the plane of the circle,

N = T × ez with Tz = 0 and ez =


0

0

1

[8].
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N =


Tx

Ty

0

×


0

0

1

 =


Ty

−Tx
0



⇒ N =


ρθ cos θ

−ρθ sin θ

0


We are only interested in the x and y plane, so from now on we will consider

the normal as N =

 ρθ cos θ

−ρθ sin θ

. The teeth involute gear are shaped by

involutes: each side of the tooth is an involute, one is clockwise unwinding,

the other counterclockwise unwinding, and the tip of the tooth is cut and

rounded, instead of leaving it at the common point of its sides[8, 16].

Figure 5: The shape of gear teeth is given by

involutes. In modern machinery, the tips are

rounded for mechanical reasons. Image source:

KONSTRUKTION 2, Zahnrad- und Kegelrad-

getriebe Skript, TU Berlin, AG Konstruktion

For two gears to mesh properly, they must have the same ratio of tooth

number to the distance between their centers to the pitch point. When two

involute gears are meshing, they have a common tangent at their point of

contact. This means that the normal to the involutes that shaped the sides

of their teeth is also common, and it is a tangent to the base circle[13, 16],

therefore, the involute gear satisfies the fundamental law of gears.
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Gear trains Now that we have estabilished that involute gears transmit

frequency at a constant rate, we will examine the following scenario: We are

given four gears, called g1, g2, g3 and g4, with tooth counts z1, z2, z3 and

z4 respectively. The gears are ordered so that g1 meshes with g2 and g3

meshes with g4, while g2 and g3 are fixed on the same axis, meaning that

they rotate with the same frequency. We try to find out the relation between

the frequency of g1 to the frequency of g4.

f1

f2

=
z2

z1

f3

f4

=
z4

z3

f2 = f3

⇒ f1

f4

=
f1

f2

f2

f4

=
f1

f2

f3

f4

⇒ f1

f4

=
z2

z1

z4

z3

This formula can be used for an arbirtary number of gears in the train,

allowing us to calculate frequency ratios between first and last gear, only

through the tooth count of the gears in the train. Gear trains are a crucial

part of the Mechanism, as we will later see.

2.4 The extendened involute and Archimedes

If the involute is the trace of a string unwinding from a circle, then the

extended involute is the trace of a string unwinding from a circle, the length

of the string given by the arc length of a bigger circle. We will formulate this

in mathematical terms, and examine a very interesting case, discovered long

before the involute gear.
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Figure 6: The construction of the extended involute

We will formulate this curve in vector terms as its every point N is given

from:

ON = OB + BN with OB having the direction of r but length ρ − h and

BN is tangential to the inner circle, with its length being equal to the arc

length of MA0 i.e. BN = ρθ.

We therefore, following the steps we did for the involute can write:

x
y

 =

(ρ− h) sin θ − ρθ cos θ

(ρ− h) cos θ + ρθ sin θ


Obviously, if h = 0 we have the involute as described in the paragraph above.

The other special case is h = ρ and this is what the extended involute looks

like:
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Figure 7: The extended involute for h = ρ

This curve is called the spiral of Archimedes [8]. It was discovered, as the

name suggests by Archimedes, and it is as close as ancient mathematicians

got to the involute. Unfortunately, mathematics and astronomy in Europe

would decline soon after Archimedes’ time [6] and the involute gear was not

discovered until Euler.

2.5 Conclusion

There is no evidence that the involute was known in antiquity, nor is there

any evidence to support the claim that any gear design other than triangular

was used in antiquity [13, 6]. The Antikythera Mechanism’s accuracy can

be fully appreciated only when its gears are substituted by modern ones,

which transmit frequencies accurately, and from now on, we will treat the

Mechanism as if its gears’ profile was shaped by involutes, instead of the

original triangles. It is unfourtunate, that the knowledge that lead to the

creation of the Mechanism was lost in Roman times [6] and one can only
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speculate as to what could have been if the developement of geared astro-

nomical mechanisms had not come to such a sudden stop. Seeing how the

Archimedean spiral is a special case of the involute, and keeping in mind that

Archimedes is a very strong candidate as the Mechanism’s designer, it might

have been likely that at some further point a connection would have been

possible, and the involute gear could be developed more than a thousand

years before Euler. This assumption can not be verified due to the following

obstales: The lack of evidence that anyone tried to improve on gears until the

Middle Ages, and the fact that geared mechanisms in antiquity were made

of bronze, having a rather short lifespan; it is estimated that friction would

render the Antikythera Mechanism unusable after about twenty years [6].

This does not mean that the Antikythera Mechanism is to be thought less

of, to the contrary, it is a machine that was not unsurpassed for more than

a thousand years, and it is the only one machine of its kind that survived

from ancient Greece to present day, even if it had to suffer extensive damage

at the bottom of the sea for two thousand years [6].

The death of Archimedes by the hands of a Roman soldier is symbolical of a world-

change of the first magnitude: the Greeks, with their love of abstract science, were super-

seded in the leadership of the European world by the practical Romans.

Alfred Whitehead [24]
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3 Continued fractions and best rational ap-

proximations

In this section a rather simple yet very efficient method of approximating

irrational numbers with fractions is introduced. We will examine continued

fractions and how they can be used to provide us rational approximations of

irrational numbers.

3.1 Definition and notation

Definition 1 [17]. An expression of the form

a0 +
1

a1 +
1

a2 +
1

a3 +
1

. . . +

. . .

an−1 +
1

an +
1

. . .

a0 ∈ N ∪ {0}; ai ∈ N, i ≥ 1 is called a simple continued fraction.

For the moment, we will concern ourselves with finite simple continued

fractions. These are simple continued fractions of the following form:

ξn := a0 +
1

a1 +
1

. . . +

. . .

an−1 +
1

an
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For practical reasons, the notation is introduced:

ξn = [a0, a1, . . . , an].

Example 3.1. The continued fraction 1 +
1

2 +
1

3 +
1

4 +
1

5

=
225

157

can be written as:
225

157
= [1, 2, 3, 4, 5]

To bring a continued fraction to the form p
q
, p, q ∈ Z, q 6= 0 is quite

straightforward, we only need to start calculating ”from the bottom up”: In-

vert an, add
1

an
to an−1 and keep going upwards. The generation of continued

fractions from rational numbers, however is very interesting.

3.2 Expansion of rational numbers

Here we will see how to expand a rational number into a continued frac-

tion, setting the base for the expansion of irrational numbers.

Example 3.1. Consider the fraction
254

19
. We are going to calculate its

continued fraction expansion.

We begin by diving the numerator by the denominator and isolate the integer

part from the rest:
254

19
= 13 +

7

19

We now apply the same procedure on the inverted rest:

19

7
= 2 +

5

7
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Once more on
7

5
gives:

7

5
= 1 +

2

5

We stop when the enumerator of the rest is 1:
5

2
= 2 +

1

2
This means, that the inverse of the rest is an integer and we stop calculating.

Substituting our results in
254

19
= 13 +

7

19
yields:

254

19
= 13 +

7

19
= 13 +

1
19

7

= 13 +
1

2 +
1

1 +
1

2 +
1

2

= [13, 2, 1, 2, 2]

This example illustrated the way the algorithm works. In a more formal

language the algorithm applied to a number ξ ∈ Q\Z is formulated as:

ξ = bξc+ (ξ − bξc),

where bξc is the floor function. Since 0 < ξ − bξc < 1 a ξ1 :=
1

ξ − bξc
> 1 is

defined, and the same procedure applied to ξ1 produces a ξ2 as follows:

ξ = bξc+ (ξ−bξc) = bξc+
1

ξ1

= bξc+
1

bξ1c+ (ξ1 − bξ1c)
= bξc+

1

bξ1c+
1

ξ2

.

The algorithm stops at the first i for which ξi is an integer.

This algorithm, which is based on the euclidean division algorithm, pro-

duces an ”almost unique” finite simple continued fraction for every rational

number: After obtaining the continued fraction we can modify it by manip-

ulating the last term an as follows:

If an > 1 we can write an = an − 1 + 1
1

turning [a0, a1, . . . , an] into

[a0, a1, . . . , an − 1, 1] and if an = 1 then we can write an−1 + 1
an

= an−1 + 1

and [a0, a1, . . . , an−1, an] = [a0, a1, . . . , an−1 + 1]. This does not prevent us
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from saying that our algorithm produces a unique expansion, due to the fact

that it stops for the first rest the inverse of which is an integer. This prevents

the case that an = 1, since an−1 +1 is the first such term, and the case an > 1

requires us to make an extra step, after the algorithm would have stopped.

3.3 Expansion of irrational numbers

We saw above how to obtain a continued fraction expression from a given

rational number. What happens, however, when we apply our algorithm on

an irrational number? Note that nowhere in the algorithm’s steps (except

the starting definition) it is important that ξ is a rational number.

Example 3.1. Let us try to apply the above algorithm to an irrational

number: Let r ∈ R\Q, and observe:

r = brc+ (r − brc)

For the sake of convenience, we define a sequence (ri)i∈N∪0 with r0 := brc

and ri defined recursively as ri =
1

ri−1 − bri−1c
Our algorithm applied to r

gives us:
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r = brc+ (r − brc) = brc+
1

r1

r1 = br1c+ (r1 − br1c) = br1c+
1

r2

r2 = br2c+ (r2 − br2c) = br2c+
1

r3

...

rn = brnc+ (rn − brnc) = brnc+
1

rn+1

...

By substitution it follows:

r = r0 +
1

br1c+
1

br2c+
1

. . . +

. . .

brn−1c+
1

brnc+
1

. . .

This procedure is infinite. If there was a final ri, then r would be rational

which, due to its definition is not the case [17].

In example 3.1 we constructed an infinite simple contiued fraction. From

now on, for r ∈ R\Q we will write r = [r0, br1c, br2c, . . . , brnc, . . . ].
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We now proceed to examine what happens when we stop this algorithm

at an arbitrary i ∈ N.

3.4 Best rational approximations

Once again, consider r ∈ R\Q such that r = [r0, br1c, br2c, . . . , brnc, . . . ],

and for tha sake of convenience write ai = bric In this case we are going to

stop the algorithm at a random i ∈ N, getting the first i + 1 continuants.

This term will be denoted as ξ0,i := [a0, a1, . . . , ai]. Then the following is

true:

Theorem [5]. There exist Ai, Bi ∈ N, such that the fracton ξ0,i := Ai

Bi
, i ≥ 1

is irreducible. Ai and Bi are precisely defined by the following recursion:

Ai = aiAi−1 + Ai−2 (2)

Bi = aiBi−1 +Bi−2 (3)

with A−1 := 1, A0 := a0 ; B−1 := 0, B0 := 1.

Proof. The proof of the theorem splits into two parts: We begin by proving

the recursion, and then prove the irreducibility of the fraction. The recursion

is proved by induction on i:

Induction basis:
Ai
Bi

=
aiAi−1 + Ai−2

aiBi−1 +Bi−2

and try to construct
Ai+1

Bi+1

. In order to do that, we raise the index from i

to i+1 (induction step). This makes ai into ai+
1

ai+1

and the finite continued

fraction
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ξ0,i := a0 +
1

a2 +
1

. . . +

. . .

ai−1 +
1

ai

into ξ0,i+1 := a0 +
1

a1 +
1

. . . +

. . .

ai−1 +
1

ai +
1

ai+1

making
Ai
Bi

into
Ai+1

Bi+1

.

Since the terms Ai−1, Ai−2, Bi−1, Bi−2 are not affected by the change of i,
Ai+1

Bi+1

can be written as:

Ai+1

Bi+1

=
(ai + 1

ai+1
)Ai−1 + Ai−2

(ai + 1
ai+1

)Bi−1 +Bi−2

=
(ai+1ai + 1)Ai−1 + ai+1Ai−2

(ai+1ai + 1)Bi−1 + ai+1Bi−2

=
ai+1(aiAi−1 + Ai−2) + Ai−1

ai+1(aiBi−1 +Bi−2) +Bi−1

=
ai+1Ai + Ai−1

ai+1Bi +Bi−1

,

confirming the recursive formula.

It remains to show that
Ai
Bi

, i ∈ N is irreducible.

The fraction
Ai
Bi

is irreducible if, and only if, Ai and Bi are relatively prime,

i.e. their greatest common divisor is 1, and we will prove that by using the
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following theorem from number theory[25]:

Any two integers z1, z2 ∈ Z are relatively prime if and only if there exist x, y ∈

Z such that xz1 + yz2 = 1 i.e. gcd(z1, z2) = 1⇔ ∃x, y ∈ Z : xz1 + yz2 = 1.

This is again shown by induction on i:

Induction basis for i = 1 :

A1B0 − A0B1 = a0a1 + 1− a0a1 = 1 = (−1)i−1

Induction step from i = k to i = k + 1:

Let for i = k

AkBk−1 − Ak−1Bk = (−1)k−1

Then for i = k + 1

Ak+1Bk − AkBk+1 = (ak+1Ak + Ak+1)Bk − Ak(ak+1Bk +Bk−1)

= ak+1AkBk + Ak−1Bk − ak+1BkAk − AkBk−1

= Ak−1Bk − AkBk−1 = −(−1)k−1 = (−1)k−1+1 = (−1)k

If Ak+1Bk − AkBk+1 = −1, then for x′ := −Bk and y′ := −Ak the equation

Ak+1x
′ − y′Bk+1 = 1 is true.

Summing up, for Ai and Bi; i ∈ N either AiBi−1 − Ai−1Bi = 1

or Ai(−Bi−1)− (−Ai−1)Bi = 1. Hence, gcd(Ai, Bi) = 1 ∀ i ∈ N, making
Ai
Bi

irreducible.

These fractions
Ai
Bi

are called best rational approximations of r. We define

a best rational approximation in the following way:

Definition 2[18]. A fraction
a

b
is called a best rational approximation of

r ∈ R>0\Q if |r − a

b
| < |r − a′

b′
| , a, b, a′, b′ ∈ N ; b′ ≤ b[18]

35



And now we prove our statement in two steps: We start by finding an

upper bound for the approximation error of these fractions, and then we show

that these fractions minimize the error for all denominators less or equal to

Bi.

Step 1 is a lemma on the bound of the error:

Lemma 1. For a r ∈ R\Q, r = [a0, a1, . . . ] the approximation error of

ξ0,n = [a0, a1, . . . , an] =:
An
Bn

is bound as follows:

∣∣∣∣r − An
Bn

∣∣∣∣ < 1

BnBn+1

Proof. [5]

An
Bn

=
An
Bn

+
n−1∑
i=0

Ai
Bi

−
n−1∑
i=0

Ai
Bi

= (
An
Bn

− An−1

Bn−1

) + (
An−1

Bn−1

− An−2

Bn−2

) + · · ·+ (
A1

B1

− A0

B0

) +
A0

B0

=
(−1)n−1

BnBn−1

+
(−1)n−2

Bn−1Bn−2

+ · · ·+ 1

B1B0

+ a0

Define ci :=
(−1)i−1

BiBi−1

, i ∈ N and , x = a0 +
∑∞

i=1 ci, and

ξ0,n =
∑∞

i=1 ci. Since Bi+1 > Bi, limi→∞ |ci| = 0, |r − ξ0,n| < |cn+1| is true,

thus proving the inequality.

And step 2:

Theorem. For a given r ∈ R\Q with r = [a0, a1, . . . ] the continued fraction

ξ0,n = [a0, a1, . . . , an] =:
An
Bn

is a best rational approximation.

Proof. Suppose that a fraction
p

q
; p, q ∈ N, q ≤ Bn is a better approximation

of r, i.e.

∣∣∣∣r − p

q

∣∣∣∣ < ∣∣∣∣r − An
Bn

∣∣∣∣. Then,
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∣∣∣∣pq − An
Bn

∣∣∣∣ ≤ ∣∣∣∣r − p

q

∣∣∣∣+

∣∣∣∣r − An
Bn

∣∣∣∣ ≤ 2

∣∣∣∣r − An
Bn

∣∣∣∣ < 2
1

2B2
n

=
1

B2
n

Whereas

∣∣∣∣pq − An
Bn

∣∣∣∣ =

∣∣∣∣pBn − qAn
qBn

∣∣∣∣ > 1

Bnq
>

1

B2
n

, which contradicts our

assumption that

∣∣∣∣pq − An
Bn

∣∣∣∣ < 1

B2
n

Let us now calculate the first four best rational approximations of

π = 3.14159 . . . [17].

π = 3 + 0.14159 · · · = 3 +
1

7.062513306

7.062513306 = 7 + 0.062513306 = 7 +
1

15.99659441

15.99659441 = 15 + 0.99659441 = 15 +
1

1.003417228

1.003417228 = 1 + 0.003417228 = 1 +
1

292.6348337

292.6348337 = 292 + 0.6348337 = 292 +
1

1.575215807

1.575215807 = 1 + 0.575215807 = 1 +
1

1.738477957
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Here we break the algorithm. We have now that π = [3, 7, 15, 1, 292, 1, . . . ].

This gives us the following rational approximations:

i 1 2 3 4 5
Ai

Bi
3

22

7

333

106

355

113

103993

33102

Table 5: The five best rational approximations of π

3.4.1 Ancient astronomical observations

Now we will examine some observations of ancient astronomy and com-

pare them to the best rational approximations of the actual values. We will

begin with observations concerning the sun, the earth and the moon, and

proceed with the approximations of the planets known in antiquity. The

periods that will be examined in this thesis1 are given in the following table,

with their continued fraction expansions2 up to the sixth continuant.

Period Value accepted the ac-

tual one

Continued fraction expansion

Year length measured in days 365.2421897 [365; 4, 7, 1, 3, 27, 2, . . . ]

Sidereal months in a year 13.368267 [13; 2, 1, 2, 1, 1, 17, . . . ]

Period of Mercury in the night sky 0.2408404 [0; 4,6,1,1,2,1, . . . ]

Period of Venus in the night sky 0.6151854 [0; 1,1,1,1,2,29, . . . ]

Period of Mars in the night sky 1.8808148 [1; 1,7,2,1,1,3, . . . ]

Period of Jupiter in the night sky 11.8617555 [11; 1,6,4,3,1,1, . . . ]

Period of Saturn in the night sky 29.4565217 [29;2,5,4,4,2,16, . . . ]

Table 6: Astronomical values with their continued fraction expansions

1The periods related to the sun, earth and moon system are discussed in chapter 4, the

ones concerning the planets’ synodic periods are discussed in chapter 5.
2As these values are irrational, we accept the first seven decimals for all periods, except

the Sarros where we stop at four.
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The actual numbers were not known in antiquity. Ancient astronomy

was based on observation, and the universe was believed to be geocentric,

i.e. the celestial bodies moved around the earth [15]. Some3 observations for

the above periods are given here [10, 12]:

Period Value observed by an-

cient astronomers

Continued fraction expansion

Year length measured in days 1461
4

[365; 4]

Sidereal months in a year 254
19

[13; 2, 1, 2, 1, 1]

Period of Mercury in the night sky 46
191

[0;4,6,1,1,2,1]

Period of Venus in the night sky 8
13

[0;,1,1,1,1,2]

Period of Mars in the night sky 79
42

[1;1,7,2,1,1]

Period of Jupiter in the night sky 83
7

[11;1,6]

Period of Saturn in the night sky 59
2

[29;2]

Table 7: Ancient observed values with their continued fraction expansions

Comparing the two tables, we see that, unknowingly, ancient astronomers

had used best rational approximations for all the observations examined here.

The Saros The Saros cycle is an eclipse prediction cycle, that is defined

as 223 synodic months, or 239 sidereal months, or 242 draconic months .

These duration are not equal to each other, which at first glance makes the

definition of the Saros rather vague. However the greatest difference between

these definitions is less than five and a half hours (between the 223 synodic

and the 239 sidereal)4, and it was accepted that the Saros was 6585 days and

8 hours long. The way the Saros appears in the Mechanism is obtained by

setting the different periods equal to each other [27], as explained in the next

3there were several estimates for some of these periods, e.g. Mars, here we see only the

most accurate
4A more detailed explanation of these terms is found in Appendix A
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chapter.
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4 AMRP 2005 model of the Mechanism

In this section the 2005 reconstruction proposed by the Antikythera Mech-

anism Research Project[1] will be presented. Using the information explained

earlier, and expanding on it, the AMRP came up with a model of the An-

tikythera Mechanism which is now considered the most accurate so far. It

consists of three parts, working simultaneously: the sun and moon dial on

the front, and on the back, the lunisolar calendars of Meton and Kallippos,

and the Saros and Exeligmos eclptic cycles. Note that the calculations in

this section hold as long as the involute gear is used instead of the original

triangularly shaped teeth of the Mechanism.[13]

Figure 8: This is a scheme of the Mechanism’s gears, viewed from the side. Every rectangle is a gear,

with every letter corresponding to an axis, and coaxial gears being enumerated front-to-back, i.e. gear b1

is closer to the front than gear b2. [10]

4.1 The front dial

4.1.1 The sidereal month assembly

The geocentric system used at the time of the Mechanism’s was illustrated

on the front dial of the Mechanism, on which two spherical markers were
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representing the sun’s and the moon’s position in relation to the earth [10, 19].

The pointers would be rolling on circular orbits around the earth positioned in

the center, with the display resembling that of a wristwatch. It is furthermore

possible that the moon pointer was two-colored, consisting of a black and a

white (or silver) hemisphere, showing the differrent phases of the moon, but

this can only be hypothesized as the pointers have not been found [6]. The

frequency with which these indices turned was determined as such:

Using the knowledge from the previous chapters, the frequency ratio be-

tween a full rotation of the sun dial and the number of rotations of the moon

dial can be calculated, ignoring for the time the pin-and-slot device which

does not influence the mean angular velocity, only the momentary in order

to express the lunar anomaly. The ratio between the frequency of gear b1 to

e2 is given by the gear train b1-b2-c1-c2-d1-d2-e2 [10] which calculates:

ωb1
ωe2

=
db2
dc1

dc2
dd1

dd2

de2
=

64

38

48

24

127

32
=

254

19
(4)

This means that 254 full sidereal lunar rotations correspond to 19 rota-

tions of the earth around the sun (or of the sun around the earth from an

ancient Greek astronomer’s point of view). The actual number is the irra-

tional number with the first six decimals r = 13.368267 . . . The continued

fraction expansion of this number is r = [13; 2, 1, 2, 1, 1, 17 . . . ] and it gives

the following best rational approximations:
27

2
,
40

3
,
107

8
,
147

11
,
254

19
and finally

4465

334
. The ratio in the mechanism is a best rational approximation of the

irrational astronomical ratio, and it was known since the ancient Babylonians

[12]. The margin of error of this approximation is bounded as follows:

∣∣∣∣r − 254

19

∣∣∣∣ < 1

19× 334
=

1

6346
= 0.00015758
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This error is small, and the way the approximation was implemented is

also interesting: in order for the dial to work (remember, this was not only

about gears rotating, but also for a useful display) a pair of gears with 249

and 19 teeth respectively would not work very well [16]. Therefore the de-

signer was forced to use at least one extra meshing pair. This would present

a problem, as the last gear of the train and the first would be rotating in op-

posite directions, which would contradict the geocentric point of view. This

called for an odd number of meshing pairs in the train, resulting in three

pairs. Having dealt with this problem, the number 254 was broken into its

prime factors 127 and 2. 127 had to appear as the tooth count of a gear,

and this was chosen as d2, the 2 however is unusable as a tooth count[16].

Thus, it had to be expressed as a ratio. Another problem in this train of

gears was the number 19. By modern standards it is marginally low for a

tooth count[16], and it is best if it could be avoided. The easiest way to

bypass this, is to introduce its double, 38 in gear c1. So far the tooth count

of two out of six given gears is fixed. The condition for the remaining four,

is that the ratio produced by
db2
38

dc2
dd1

127

de2
must be 4. The numbers chosen are

relatively practical: b2, the only gear common in all parts of the Mechanism

is given 64 teeth, a power of 2, which would be easy to construct by bisecting

the circle and then the resulting sections, whereas c2 and d1 had 48 and 24

teeth respectively.

The above part of the Mechanism provided a fairly accurate model for the ra-

tio between months and years, yet it could not account for the lunar anomaly

that was known to the ancient Greeks. This called for a more complex gearing

system, in this case a pin-and-slot device was used.
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4.1.2 Hipparchos’ lunar theory in the pin-and-slot device

The pin-and-slot device consists of two eccentric gears, with the driven

gear, Gear 2 having its axis mounted on the driving gear, Gear 1. Gear 1 has

a little pin protruding from it, whereas Gear 2 has a slot on its surface, so

that the pin of Gear 1 fits into the slot. As Gear 1 is turned, the pin moves

in the slot and if we consider the angular velocity of Gear 1 constant, the

angular velocity of Gear 2 changes periodically as we will see.

Figure 9: The general idea of the pin-and-slot

device. The driving gear is Gear 1, the driven

gear is Gear 2. P marks the position of the

pin, fixed on Gear 1, whereas the dotted line

on Gear 2 is the slot wherein the pin slides

It is interesting to note that this device took the sidereal month from gear

e2 as input and adjusted it using Hipparchos’s theory [14]. The ratio of the

gear tooth count in it is
de5
dk1

dk2

de6

de1
db3

=
50

50

50

50

32

32
= 1 [10]. From the scans of the mechanism, the

eccentricity ε is
d

a
=

1.1

9.6
≈ 0.114583 ε =

AB

AP
=

1.1

9.6
≈ 0.1146 [14]. In Eq(7)

the square of ε can be ignored, giving the following approximate value for

ω2:

ω2 = ω1
1− ε cosω1t

1− 2ε cosω1t
= ω1(1− ε cosω1t)(1− 2ε cosω1t)

−1.
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Applying the binomial theorem on (1− 2ε cosω1t)
−1 gives:

ω2 ≈ ω1(1− ε cosω1t)(1 + 2ε cosω1t)

= ω1(1− ε cosω1t+ 2ε cosω1t+O(ε2))

= ω1(1 + ε cosω1t) = ω1 + ω1ε cosω1t

Integration by dt produces the following relation between φ2 and ω1:

As evidenced by Elias Gourtsoyannis in [14] the angular speed ω2 of the

driven gear, Gear 2 is given in relation to the angular speed ω1 of the driving

gear, Gear 1 by:

ω2 = ω1 + εω1 cosω1t (5)

φ2 = ω1t+ ε sinω1t

As evidenced by E.Gourtsoyannis et al.[14] the input of astronomical data

in this formula will produce a value of 0.1142 for ε which is within the limits

given by the scans of the Mechanism[14].

The moon’s angular velocity can be approximated using 5 with the following

astronomical data as input:

Mean sidereal month: Ts = 27.555 days

Mean lunar angular velocity: ω1 =
360◦

27.555
=

13.065◦

day

This input would make 5:

ω2 = 13.065 + 1.4917 cos 13.065t
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This gives us that εω1 =
1.4917◦

day
, thus ε =

1.4917

13.065
=≈ 0.1142 [14].

This value comes close to the one observed in the scans of the Mechanism.

The pin-and-slot device was hypothesized to be part of a lost part of the

Mechanism showing other planets on the front dial [14], this assumption has

been challenged in [3] and in [12], and it is rather unlikely that such an

eccentricity device could be used in a geocentric representation of the solar

system for any of the planets[3, 12].

4.2 The back dials

4.2.1 The Saros and Exeligmos cycles

The fact that lunisolar eclipses occur on a regular period was known to

the ancient Babylonians and from them it was passed on to ancient Greece

[15]. The hellenisation of the Babylonian term for the repetition cycle of the

eclipses is Saros. The Saros is roughly equal to 223 synodic months, with

a duration of 6585.3223 days (≈ 6585 days 7 hours 43 minutes) long. This

was accepted in ancient astronomy as 65851
3

days, and it was observed that

eclipses were repeated nearly identically after three Saros cycles had passed,

since the 1
3

of a day corresponds to a westward shift of the eclipse’s path

by 120◦. Thus, a cycle three times the duration of the Saros was defined

by the Greeks, called Exeligmos[15, 10]. The Saros and the Exeligmos were

illustrated in two of the back dials of the Mechanism. The gear sequence

describing them is b2-l1-l2-m1-m3-e3-e4-f1-f2-g1-g2-h1-h2-i1. The Saros dial

was g1 and the Exeligmos dial was i1[10].

In order to make the Mechanism easier to use and understand, its cre-

ator made the Saros index move on a spiral, of 4 coils, while the Exeligmos

circular diagram was divided in three sectors, so that each sector was one
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Saros[10, 21]. This display method was used again in the calendar display.

Examining the gear sequence b2-l1-l2-m1-m3-e3-e4-f1-f2-g1 gives the follow-

ing approximation for the length of the Saros cycle:

zb2
zl1

zl2
zm1

zm3

ze3

ze4
zf1

zf2

zg1
=

64

38

53

96

27

223

188

53

30

54
=

516533760

2328248448
=

940

4237
=

4

223

235

19

This ratio is the most complicated appearing in the Mechanism, and it

must be understood as such:

The number 4 in the numerator is there so that one Saros is 4 full circles

of the pointer, and the ratio
223

235× 19
is obtained by the following procedure

[27]:

242 draconic months = 223 synodic months

235 synodic months = 254 sidereal months

254 sidereal months = 19 years

Since the Saros dial must display the eclipses, it needs to present the 242

draconic months. Thus:

242 draconic × 235 synodic = 223 synodic × 254 sidereal

242 draconic =
223 synodic × 254 sidereal

235 synodic

=
223 synodic × 19 years

235 synodic

This lets us interpret
4

223

235

19
as

4 turns of g1

242 draconic months
i.e. the 242 dra-

conic months are spread across four turns of the Saros pointer, and they are

equal to 19 years/turns of gear b2.
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The rotation of the gear g1 is transmitted to i1 through the sequence

g2-h1-h2-i1, giving us the following ratio:

Tg1
Ti1

=
zg2
zh1

zh2

zi1
=

20

60

15

60
=

1

12

This means that for every 4 rotations of g1, i1 makes one third of the

circle, so that after 12 full rotations (3 times the spiral), i1 completes its

rotation and an Exeligmos circle has passed. The Saros pointer would then

be reset by hand to the starting position [12].

4.2.2 The Metonic and Kallippic calendars

Figure 10: Scan of the pointer used for the Metonic calendar. c©2005 Antikythera Mechanism Research

Project

In ancient Greece there was no universal calendar system[11]. Exami-

nation of the Mechanism’s upper back dial has estabilished that it was a

Metonic calendar[19, 10]. The Metonic calendar had a length of 19 years

divided in 235 months, with 110 of them lasting 29 days and the remain-

ing 125 months lasting 30 days[9, 11]. This gives a mean year length of
125× 30 + 110× 29

19
= 365

5

19
≈ 365.2631579 . . . days. Inscriptions on the
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back of the machanisms would determine how these months would be regu-

lated, and the names of the months used in these inscriptions indicate that

the Mechanism was created in Corinth or a Corinthian colony, in northwest-

ern Greece or quite possibly, Syracuse in Sicily[11]. The Metonic calendar

was illustrated on a five turn spiral on the back of the Mechanism.

Allthough the months of the Metonic calendar were used in most of the

Greek cities, albeit with different names in different regions, it was the most

widely accepted calendar[11]. Next to its five turn spiral two other displays

survive: a Kallippic calendar display and an Olympiad cycle display. The

Olympiad dial would indicate when the most important of the Panhellenic

Games (Isthmia, Olympia, Nemea, Pythia) would take place, the Olympiads

being a commonplace framework to measure time in ancient greece[11]. The

Kallippic calendar is a modification of the Metonic calendar, which the as-

tronomer Kallippos came up with, based on observations of natural phaenom-

ena. Kallippos accepted that the year had a duration of 365
1

4
days, and

noticed that the Metonic year exceeded this by
1

76
. In order to correct the

error of Meton, he proposed that every four Metonic cycles a day should

be ommitted. The Kallippic callendar did not influence the duration of the

months in the Metonic cycle, nor their arrangement. A circle divided in four

quadrants was used, one full turn of the index corresponding to four Metonic

cycles [10].

The tropical year has an approximate duration of 365.2421897 . . . days.

The continued fraction expansion of this number is [365; 4, 7, 1, 3, 27, 2, . . . .

This continued fraction produces the following best rational approximations:

365
1

4
, 365

7

29
, 356

8

33
, 356

31

128
, 356

845

3489
,356

1721

7106
, . . . . It is obvious that the

Metonic cycle heavily overestimated the length of the year. Kallippos came

on the first best rational approximation of the year, and the mean year length
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in his calendar is identical to mean year length in the julian calendar. For

comparison, the gregorian calendar used today, gives a mean year length of

365.2425 days.

These calendars had periods of 19 and 76 years, making their illustration

hard, given that the solar year was displayed on the front dial. The designer

of the Mechanism used the same trick as with the eclipse cycle display to

make the output of the mechanism useful: instead of the pointer moving on

the dial making circles, one for each metonic cycle, the pointer moved on a

spiral, like the needle of a gramophone on a vinyl plate. The spiral had five

coils, and after the Meton index had covered the spiral, the pointer would

then be manually returned to its original position and the Mechanism would

keep working. Meanwhile a second index would indicate the Kallippic cycle

moving on a circle with clearly marked quadrants, so that the user would

keep track of how many metonic cycles had passed.

The Metonic pointer was driven by the gear n1. The train leading to it,

is b1-b2-l1-l2-m1-m2-n1, and the ratio of frequencies is:

ωb1
ωn1

=
db2
dl1

dl2
dm1

dm2

dn1

=
64

38

53

96

15

53
=

960

3648
=

5

19
(6)

This means that 5 rotations of the index correspond to the 19 years long

Metonic cycle.

The pointer for the Kallippic cycle is driven by the metonic one, the train

being n1-n2-p1-p2-o1, giving a ratio of

ωn1

ωo1
=
dn2

dp1

dp2
do1

=
15

60

20

60
=

180

3600
=

1

20
(7)

As expected, four times the five coil spiral corresponds to a full Kallippic

cycle.
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Figure 11: The back dials. The characters in blue are known to us from the scans of the Mechanism, the

ones in red are hypothesized. c©2008 Macmillan publishers limited
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5 The Mechanism as a Planetarium

Beyond the findings: what could have been

The Greeks knew of seven moving bodies in the sky: sun, moon, Mer-

cury, Venus, Mars, Jupiter and Saturn. They had named them, and it is

safe to assume they knew of their movements. One cannot help but ask:

Would it have been possible to incorporate all seven in the Mechanism or a

similar device, given the technical knowledge of the time? In this section,

we try to expand on the Mechanism by adding pointers for Mercury, Venus,

Mars, Jupiter and Saturn to the front dial. In this expanded model of the

Mechanism, we limit ourselves by using technology already existing in the

machanism and examining the inscriptions on the Mechanism and parts of

the crown gear b1, which point to the existence of such parts. In this section

we will examine the mathematical aspects of such an expansion, without go-

ing into the process of constructing and fitting the additional parts into the

Mechanism. This was done by Freeth and Jones in [12]. Our pointers will

not aim to be eccentricity devices, but will aim to show the mean frequencies

of these planets in the sky, as seen by ancient astronomers.
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Figure 12: The Cosmos as it would appear in the front dial of the Mechanism. c©2011 Tony Freeth,

Images First Ltd.
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5.1 Implications of the back cover inscription and the

crown gear spokes

5.1.1 The inscription on the back cover of the Antikythera Mech-

anism

On the back cover of the Mechanism lies an inscription that mentions all

of the five planets closest to the sun, mentioned with both theophoric names

associating a god of Greek mythology with each planet 5 and names describ-

ing their appearance in the sky. These five planets together with the sun and

the moon are the only moving heavenly bodies known in antiquity.6 Accord-

ing to greek astronomy, beyond these seven bodies lie the fixed stars of the

night sky. In the inscription the termsζώνη”belt”,σφαίριον”sphere”,κύκλος

”circle” andγνωμόνιον”pointer” can be read, and there is mention of the

spheres ”traveling trough”διαπορευόμενον and ”revolving”περιφέρειαν. The

word carrying the most weight, however, is the wordκόσμου, the genetive case

of the wordκόσμος. The translation ofκόσμος in modern Greek is ”world”,

and there are many meanings it could have in antiquity. However, the as-

tronomical context restricts the translation to the world outside the Earth,

not from a philosophical, but from a scientific point of view. This is an indi-

cation that the wholeκόσμος could have been on display on the front dial of

the Mechanism [12].

5The latin names of the gods used by the Greeks are the ones used in modern astronomy.
6The word planet is derived from the greek wordπλανήτης which translates to wanderer.
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Figure 13: The word κόσμου in the inscription, is highlightened in red in the lower image [12]. c©2005

Antikythera Mechanism Research Project.
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5.1.2 The spokes and pillars on b1

One the gear named b1 there can be seen traces of four spokes the purpose

of which have not yet been fully explained, allthough the existence of some

structure mounted on b1 has been hypothesized [19]. Besides the spokes,

three pillars have been found the periphery of b1. One of the pillars is sig-

nificantly longer than the other two, measuring somewhere between 28.7 and

33.7 mm, and there are indications on the gear that another three identical

pillars could have been been mounted on b1. The great inaccuracy of the

measurements is due to extensive corrosion and a part of the pillars tip being

broken off [12].

The two shorter pillars measure 21.9 mm and 20.5 ± 1 mm respectively, with

the later being broken, leading to a lack of precision concerning its length. If

devices for the planets were to be mounted on b1, the pointers used should

be similar to the ones already in the Mechanism (e.g. the Metonic pointer).

The devices presented here are simplified versions of the ones constructed by

Freeth and Jones in [12].

Figure 14: On the left gear b1 with the pillars and spokes, on the right some of the devices examined have

been mounted [12] c©Tony Freeth, Images First Ltd
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5.2 Construction of the additional parts

The new and expanded model of the Mechanism can be broken into four

parts:

1. The 2005 reconstruction as examined earlier

2. The inferior planets’ devices

3. The superior planets’ devices

All new devices are mounted on the gear b1. The mechanics of fitting the

devices present some limitations [12], but it is still possible to have a working

model.[3, 12]

Figure 15: In this scheme, the hypothesized gears are marked red, and the position of the new mechanisms

is labeled ’Lost epicyclic gearing’ in front of b1. [12]

5.2.1 Mathematical background

This new scheme vastly expands the information displayed on the front

dial of the Mechanism. The positions of the five planets closest to the sun
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(earth excluded, as the system is geocentric) are displayed, and this could

be done in the way these planets were thought at the time to be positioned

around the earth. The mean period of the planets, is taken from Babylonian

observations [3], the accuracy of which we have examined in chapter 3. For

the mean period of the planets the following procedure is followed: The

number of synodic cycles is added to the number of revolutions of the planet

across the sky. The resulting number is period of the planet in question

measured in years. The pointers have to complete this number of rotations

for every rotation of b1 [12].

Inferior planets Due to the eccentricity device being mounted on the gear

b1, this number must be approximated in relation to the synodic month,

thus, every approximation must be of the form
y

x+ y
where x is number of

synodic months that have passed, and y the number of years that correspond

to this period7. We define the error of an approximation as ε = 360
∣∣ 1
r′
− 1

r

∣∣.
For Mercury, we start by assumimng that one full orbit around the sun is

rMercury = 0.2408404[12]. The best approximation used by the Babylonians

is xMercury = 145 and yMercury = 46, giving an approximate r′Mercury =
46

191
.

There is a mechanical issue that restricts the number of teeth we can use, as

the space in the Mechanism is limited and more teeth need a larger gear[12].

Due to these mechanical restrictions, it is better to discard xMercury = 145

and use another, worse approximation that is not found in ancient texts,

with xMercury = 104 and yMercury = 33 giving the approximate mean period

of Mercury as r′Mercury =
33

137
, with an error of 0.221 degrees per year.

The mean period of Venus will be taken from the Babylonians, with

7Recall from earlier that due to the moon orbiting the earth, one synodic month must

be added with every year to account to the simultaneous movement of the earth around

the sun and the moon around the earth
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xV enus = 5 and yV enus = 8, making the approximate period r′V enus =
8

13
, the

actual number accepted as rV enus = 0.6151854, with an error of 0.189 degrees

per year.

Superior planets There are several approximations mentioned in ancient

texts for the mean period of Mars (the actual number taken here as rMars =

1.8808148) here we will use the best one, with xMars = 37 and yMars = −79.

The approximate mean period is therefore r′Mars =
79

42
, with an error of 0.014

degrees per year. As we get to the gas giants Jupiter and Saturn their periods

get very long in comparison to that of the Earth, and this would make the

display rather inefficient. Nonetheless we will examine them, as they were

known at the time, and it is possible that their position was displayed on the

front dial, using Babylonian data. Jupiter’s orbit lasts rJupiter = 11.8617555

earth years and the designer of the Mechanism would use the pair xJupiter =

76 and yJupiter = −83 given in Babylonian sources [12]. The same will be

done for Satrun, whose orbit corresponds to rSaturn = 29.4565217 earth years,

and the Babylonian observation xSaturn = 57 and ySaturn = −59 is used. The

errors of these calculations are respectively 0.012 and 0.018 degrees per year.

Approximations using continued frations It is important to test the

chosen approximations for accuracy by comparing them to the best rational

approximations of the actual periods. These are given in the following table:
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Mean period Continued fraction

expansion

Best rational approximations

rMercury = 0.2408404 [0; 4,6,1,1,2,1] 0 1
4

6
25

7
29

13
54

33
137F

46
191B

rV enus = 0.6151854 [0; 1,1,1,1,2,29] 0 1 1
2

2
3

3
5

8
13B

235
382

rMars = 1.8808148 [1; 1,7,2,1,1,3] 1 2 15
8

32
17B

47
25B

79
42B

284
151

rJupiter = 11.8617555 [11; 1,6,4,3,1,1] 11 12 83
7 B

344
29

1115
94

1459
123

2574
217

rSaturn = 29.4565217 [29;2,5,4,4,2,16] 29 59
2 B

324
11

1355
46

5744
195

12843
436

211232
7171

Table 8: The periods of the planets known in ancient Greece and their best rational approximations

In the above table, the index B means that the best rational approxi-

mation can be found in Babylonian texts [12], and blue marks the approxi-

mations presented here. The index F in the best rational approximation for

Mercury indicates that this is used by Freeth and Jones in [12] which was

used due to the space inside the Mechanism not permiting the use of the

Babylonian observation. Here we will take a look at both approximations.

5.2.2 The gears used for the devices

The following table contains the details of the devices used to recreate the

approximate mean synodic periods of the planets known in ancient Greece.

The devices for Mercury and Venus consist of two gears, whereas the devices

for the superior planets consist of four gears [12]. Here, we examine the tooth

count for the gears in these devices. The ratios are easy to construct, and

we can stay within the numbers already existing in the Mechanism. If these

devices were to illustrate the anomaly in the planets’ orbit, they would be

pin-and-slot devices like the one used for the moon anomaly.
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Planet Gear 1 tooth count(y) Gear 2 tooth count (x)

Mercury(Freeth) 33 104

Mercury(Babylonians) 46 145

Venus 40 64

Table 9: The tooth count for the gears used for the inferior planets

For the more complex devices used to present the superior planets’ posi-

tion, the following gear parameters are used:

Planet Gear 1 tooth count Gear 2 tooth count Gear 3 tooth count Gear 4 tooth count

Mars 37 79 70 70

Jupiter 76 83 85 85

Saturn 57 59 60 60

Table 10: The tooth count for the gears used for the superior planets

Here we see what the gear b1 would look like with all the devices mounted,

and a metallic plate in front of them to be used as part of the front cover of

the Mechanism:
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Figure 16: This is a side view of the end result of the construction [12]

The most challenging part of this construction from a mechanical point

of view, is not in the devices discussed, as those are based on preexisting

parts of the Mechanism; it is the hollow axis for the pointers. There have

to be six layers around the axis used for the moon pointer. Whether or not

that would be possible at the time of the Mechanism’s construction, is open

to speculation [12, 3]. The possibility that these devices showed not only the

mean periods but also the anomalies in the orbital velocities of the planets

has been shown to be highly unlikely, and any attempt at it has resulted in an

inaccurate display [12, 3]. This comes to strong contrast to the accurate parts

of the 2005 model. As the site of the wreck is visited again, the possibilty

that new parts of the Mechanism will be discovered remains, and additional

parts could confirm or dispute the existence of these additional devices.
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5.2.3 Comparison between the approximations and the actual val-

ues

The observations of the Babylonians and the numbers used by Freeth and

Jones for Mercury are all best rational approximations. We now can compare

the mean periods of the planets with the approximations we used here. We

will define the error as ε = 360
∣∣ 1
r′
− 1

r

∣∣.
Planet Mean period r Approximate period r′ Error ε in degrees per year

Mercury 0.240804

33
137F

0.446323

46
191B

0.2091688

Venus 0.6151854 8
13

0.1894404

Mars 1.8808148 79
42

0.0140003

Jupiter 11.8617555 83
7

0.0118065

Saturn 29.4565217 59
2

0.0180124

Table 11: The error for the several approximations used for the mean period of the planets

These approximations are very accurate, with the ones used for the supe-

rior planets having an error of less than 0.05 degrees. This is on par with the

rest of the Mechanism’s accuracy as demonstrated in chapter 4. However,

there has been no successful pin-and-slot devices that could illustrate the

anomaly in the planets’ orbits [12, 3]. Therefore it would be safer to assume

that such a display would be inconsistent with the rest of the Mechanism

and the planets were not on display on the front dial.
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Glossary

best rational approximation A fraction
a

b
is called a best rational ap-

proximation of r ∈ R>0\Q if |r − a

b
| < |r − a′

b′
| , a, b, a′, b′ ∈ N ; b′ ≤ b.

33, 40, 46

draconic month For an explanation of the draconic month, see Appendix

A. 37

Exeligmos The Exeligmos cycle is an eclipse cycle lasting three times the

Saros, making the repetion of the eclipses in the Exeligmos almost

identical. 43

fundamental law of gears The fundamental law of gears states that for

constant angular velocity ratio, the line of action must always pass

through the pitch point P . 17

gear A cylinder of small height with teeth placed on its perimeter. 14

involute gear tooth profile A gear tooth profile constructed using the in-

volute of the base of the gear cylinder. 14

involute of a curve The curve traced by the end point of a string unwind-

ing from another curve See also: evolute. 19

Kallippic calendar The calendar proposed by Kallippos, who observed an

error in the Metonic calendar, and modified the length of the year by

omitting one day every four Metonic cycles. 45

line of action The path the point of action follows, normal to the tangent

of the tooth profiles. 17
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Metonic calendar Calendar of Athenian astronomer Meton, who overesti-

mated the duration of the year by approximately 0.04 days. See also:

Kallippic calendar . 45

planetarium a mechanical device illustrating part of or the entire solar

system, See also sphere. 7

point of action The point of contact between two meshing gears. 17

root radius the distance from the axis of a gear to the bottom of its teeth.

11

Saros The Saros is an eclipse repetition cycle that lasts 223 synodic months,

or more accurately 6585 days, 07 hours and 43 minutes. This was

observed in antiquity as 6585 days and 8 hours. These eight hours

correspond to a 120◦ shift of the eclipses’ path to the west. See also:

Exeligmos . 37, 43

sidereal month For an explanation of the sidereal month, see Appendix A.

37

simple continued fraction An term of the form a0 +
1

a1 +
1

a2 +
1

. . .

a0 ∈

N ∪ {0}; ai ∈ N, i ≥ 1. 26

sphere a type of planetarium constructed by Archimedes, made of bronze

and illustrating the Sun, Earth and Moon configuration, predicting

solar and lunar eclipses. Sadly no sphere has survived, and we know of

their existence only from historical texts. 7
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spiral of Archimedes The curve described by the equations

x
y

 =

−ρθ cos θ

ρθ sin θ


See also: involute . 24

synodic month For an explanation of the synodic month, see Appendix A.

37

tip radius the distance from the axis of a gear to the outermost point (tip)

of its teeth. 11

tooth profile The shape of a gear’s teeth, on the plane parallel to the cylin-

der base. 14
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lagsgesellschaft, 1954

68



[19] Derek de Solla Price, ’Gears from the Greeks: The Antikythera Mech-

anism – a Calendar Computer from ca. 80 B.C.’, Transactions of the

American Philosophical Society, Volume 64 Issue7 1974. Reprinted as an

independent monograph, New York: Science History Publications, 1975

[20] http://www.antikythera-mechanism.gr/history/people/albert-rehm

AMRP page for Albert Rehm and his research from 1903 to 1910.

[21] Diomidis Spinellis, ’The Antikythera Mechanism: A computer science

perspective’, IEEE Computer, Volume 41, Issue 5, 2008

[22] Ioannis Svoronos, To en Athines ethnikon mouseion. O thisavros ton

Antikythiron, Athens, 1903

[23] Ioannis Theofanidis The Antikythera finding, 1902, taken from Praktika

tis Akadimias Athinon, 1934

[24] Alfred Whitehead, ’An Introduction to Mathematics’ Williams and Nor-

gate, 1911
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A The moon’s movement around the Earth

The earth rotates around the sun in an elliptical orbit, and the moon

rotates around the earth, in an elliptical orbit that is not coplanar with

earth’s rotation around the sun. The plane of the moon’s orbit is called

the ecliptic. There are two periods that describe the period of the moon’s

orbit. One is called the sidereal month, and one is called the synodic month.

Their definitions are the following: The sidereal month is the time it takes

the moon to orbit the earth in relation to the stars, which can be considered

stationary. The synodic month is the time it takes for the moon to return

to the same position in relation to the earth and the sun. They differ in

duration, because the moon has to catch up to earth and cover a greater

distance in order to complete its path. The rotation of the moon around the

earth is explained here:

Figure 17: The rotation of the moon around the Earth. Source: Eclipse Predictions by Fred Espenak

(NASA’s GSFC) and Jean Meeus
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The moon’s orbit is at an angle with the plane of the sun and the earth,

which means that the moon is on the plane of the earth’s orbit twice in every

lunar orbit. These two points are called nodes, one is the ascending, and

the other the descending. The draconic month is the period between two

consecutive ascending nodes. An eclipse occurs every time the sun, the earth

and the moon are colinear. If the moon is between the earth and the sun, it

is a solar exlipse, if the earth is between the sun and the moon it is a lunar

eclipse. The eclipses are repeated with a certain period, a cycle that lasts

approximately 223 synodic or 239 sidereal or 242 draconic months. This cycle

was known to Babylonian astronomers and was called the Saros. The eclipses

repeat themselves nearly identically every three Saros cycles, and this lead

the Greeks to define the Exeligmos cycle. The information in this Appendix

is taken from the NASA Eclipse Web Site: eclipse.gsfc.nasa.gov/eclipse.html

B Statement of authorship

I hereby testify that the presented thesis, is my own work, and that I

have used no materials or sources, except the ones listed.

Anastasios Tsigkros

Date Signature

71


