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Abstract—Sensitivity studies the network response to the per-
turbation of a reaction, at steady state. Ishii et al., among others,
performed biological experiments, which study the response of
metabolic networks to the knock-out of certain targeted reactions.
The response is given as the increase, or decrease, or zero
response, for each experimentally accessible concentrations of
chemicals or fluxes in the system. In previous work, Brehm,
Fiedler, and Mochizuki were able to present systematic criteria
which distinguish zero response from nonzero response. Their
results were based on the network structure, only, and neither
depend on numerical models of the reactions, nor on numerical
values of their parameters. With a focus on monomolecular
reaction networks, our present paper extends these results to
provide for the first time a criterion for predicting the sign of
any nonzero response, without requiring any additional input
information.

I. INTRODUCTION

A chemical reaction network consists of metabolites m,
which interact by certain reactions j. Specifically, we address
monomolecular reactions

m −→
j
m′, (1)

where one single metabolite input m is converted into another
single one metabolite educt m′.
For technical reasons, at present, we have to exclude multi-
molecular reactions like, for example,

m1 +m2 −→
j
m′. (2)

In our approach we model a monomolecular reaction network
as a directed graph with a vertex (or metabolite) set M ∪
{0} and an arrow (or reaction) set A. We require here that
there are no self-loops and that no two arrows share the same
endpoints in the same parallel direction. In literature this kind
of directed graph is sometimes called strict directed graph. A
dipath (or directed path) is any acyclic ordered sequence of
alternatingly adjacent vertices and arrows. The zero-complex
0 introduced by Feinberg in [2] is ‘a complex in which the
stoichiometric coefficient of every species is zero’. The zero-
complex 0 possesses here just ingoing reactions, which are
called exit reactions.

Let em be the m-th unit vector, for any nonzero metabolite
m ∈ M, and define e0 = 0. By considering the network
structure, only, it is simple to derive a general differential

equation for the dynamics of the concentrations x=(xm)m∈M
of metabolites m:

ẋ = g(x) = f(r, x) :=
∑
j∈A

rj(xm(j))(eh(j) − em(j)). (3)

Here r = (rj)j∈A are nonlinear reaction rate functions. It is
crucial to underline that we consider them as smooth given
parameters. With m(j) we refer to the mother metabolite of
reaction j and with h(j) to the head metabolite of reaction j.
We assume:

1) positivity of the reaction rate functions rj ;
2) the existence of a positive steady state x∗ > 0, i.e.,

stationary solution of equation 3, that is:

0 = g(x∗); (4)

3) the regularity of the network at the steady state x∗, i.e.,
nondegenerate Jacobian det fx(r, x∗) 6= 0.

We skip the mathematical details of the model; see [3]. Suffice
it to recall that, generically, the nondegeneracy assumption is
equivalent to the existence of a dipath from any metabolite m
to 0. Therefore a monomolecular reaction network is precisely
modeled as a strict directed graph with a special vertex 0 such
that from any other vertex m there exists a dipath from m to 0.

As we said, sensitivity addresses the response of the steady
state x∗ to rate reaction perturbation. Briefly, we consider
small perturbations of any specific reaction j∗. The implicit
function theorem applies, thanks to the regularity assumption.
Then a first order perturbation will replace x∗ by x∗ + ∂xj

∗

m ,
where ∂xj

∗

m is the infinitesimal concentration response, in
components:

∂xj
∗

m := d
dε |ε=0x

∗
m(ε), (5)

which describes the perturbation of the steady state concentra-
tion of metabolite m under a slight perturbation of reaction j∗.
Note that m needs not just be an input or output of reaction j∗

itself. Rather, the effects of the perturbation of some reaction
j∗ may affect the network, far and wide, or else may remain
quite limited.
Similarly and interestingly, we can discuss the resulting change
Φj∗ j′ in the reaction rate rj′(xm(j′)) of any other reaction j′,
or even of j∗ itself, at steady state. In formula, we specifically
obtain:

Φj∗ j′ := δj′j∗ + rj′m(j′)∂x
j∗

m(j′), (6)

where δj′j∗ is the Kronecker-delta. We then say that a
reaction j∗ flux-influences a reaction j′, in symbols j∗  j′,978-1-5386-3974-0/17/$31.00 c©2017 IEEE



if the flux-response indicator Φj∗ j′ of reaction j′ to a rate
perturbation as above of reaction j∗ satisfies Φj∗ j′ 6= 0,
algebraically (nonzero response). Here, by "algebraically", we
mean as rational function of the derivatives rjm := r′j(x

∗
m)

with m mother metabolite of reaction j.

A small but important remark: at the fixed position x∗m, we
consider the value rj(x

∗
m) and r′j(x

∗
m) to be independent

from each other. For example, consider n-th order mass-
action kinetics rj(x) = kjx

n with reaction rate kj . Then
xr′j(x) = nrj(x) are related, a priori, at any given value x.
For Michealis-Menten kinetics rj(x) =

kjx
1+ajx

, in contrast, the
resulting relation (1 + aj)r

′
j(x) = rj(x) still depends on the

free parameter aj even if x is fixed. Varying the parameters kj ,
aj we can therefore vary rj(x) and r′j(x) independently, even
for fixed metabolite concentration x. Langmuir-Hinshelwood
kinetics, likewise, satisfy our independence assumption - but
mass-action fails.

Fiedler and Mochizuki were able to characterize the nonzero
response, using only graph means, see [3]. The main theorem
on the flux-influence relation for monomolecular reaction
networks reads, in fact, as follows:

Theorem 1 (Fiedler&Mochizuki, 2015). Consider any pair
of reactions (j′, j∗), not necessarily distinct. Then j∗ flux-
influences j′ (j∗  j′) if, and only if, there exist two dipaths
γ0 and γ′ such that:

i) both dipaths emanate from m∗, mother metabolite of j∗;
ii) one of the dipaths contains j∗;
iii) the exit dipath γ0 terminates at vertex 0, and the

influence dipath γ′ terminates with metabolite m′, the mother
vertex of j′;

iv) except for their shared starting vertex m∗, the two
dipaths γ0 and γ′ are disjoint.
We call (γ0, γ′) an exit-influence pair of (j∗, j′).

Recently, Brehm and Fiedler found a more algebraic
characterization of nonzero flux-influence valid also for
multimolecular networks, see [4]. In that paper they also
proved a general transitivity result for the flux-influence
relation, i.e., (j∗  j′ and j′  j′′) implies j∗  j′′. Okada
and Mochizuki, moreover, provided an interesting localization
law for this kind of influence relation, see [5]. In a joint
paper with Matano we have further clarified, from a network
connectivity point of view, the structure of the flux-influence
relation in the monomolecular case and we have described
the structure of the flux-influenced sets, in details, see [6].

Here we significantly improve the Fiedler-Mochizuki result
for monomolecular reaction networks, addressing for the first
time the problem of the signed (+/-) response. In other words,
we investigate and answer the following question:

Is the nonzero flux response positive or negative?

Moreover, we clarify precisely the relation between the
choice of an exit-influence pair of dipaths of Theorem 1 and

the explicit rational expression of the flux-response indicator
Φj∗ j′ . In this sense, our present result provides a deeper
interpretation of the above theorem.

First of all, we have to make a further assumption, such that
it makes sense to speak about positive and negative response.
Let us assume, for this purpose, that also the derivatives
rjm := r′j(x

∗
m) are positive functions. Since Φj∗ j′ is

a rational function of positive variables, three nontrivial
cases arise. 1) all coefficients are positive, and therefore the
influence is always positive; 2) all coefficients are negative,
and therefore the influence is always negative; 3) there are
both positive and negative coefficients, and the influence is
of undetermined sign. This is what we will analyze here.

We present only the significant case of (j∗, j′) being a couple
of distinct reactions. The theorem actually holds, as well, for
the case j∗ = j′ but the proof will be discussed elsewhere.

Theorem 2. Consider any pair of distinct reactions (j′, j∗)
in a monomolecular reaction network.
Assume that j∗ flux-influences j′ (j∗  j′), that is, there
exist an exit-influence pair of two dipaths (γ0, γ′) satisfying
conditions (i)-(iv) of Theorem 1.

Then the numerator of the algebraically nonzero rational
expression of the flux-response indicator Φj∗ j′ possesses
as many monomial summands as there are different choices
of exit-influence pairs (γ0, γ′) satisfying conditions (i)-(iv) of
Theorem 1.

Moreover, a summand is positive for a specific choice (γ0, γ′)
of dipaths if, and only if,

j∗ ∈ γ′,

that is, j∗ lies on the influence dipath.

A summand is negative if, and only if,

j∗ ∈ γ0,

that is, j∗ lies on the exit dipath.

The concrete interpretation of the theorem, in terms of posi-
tive/negative influence or undetermined sign influence, is given
by the following corollaries.

Corollary 3. A reaction j∗ flux-influences positively (respec-
tively negatively) a reaction j′ if, and only if, for any choice
of an exit-influence pair (γ0, γ

′), j∗ is in the influence dipath
γ′ (respectively in the exit dipath γ0).
There is undetermined sign influence if, and only if, there are
at least two different choices of exit-influence pairs (γ01 , γ

′
1)

and (γ02 , γ
′
2) such that j∗ ∈ γ01 is in the exit dipath of one pair,

but also j∗ ∈ γ′2 is in the influence path of the other pair.

Corollary 4. In particular, if i and j are the two only outgoing
reactions from m, then the two reactions flux-influence exactly



the same set (see for more details [6]), but their influences
carry opposite sign.

II. JACOBIAN OF THE SYSTEM AND CHILD
SELECTIONS

First of all we decompose the Jacobian matrix fx of
the system, which we have required to be nonsingular. The
decomposition reads as follows: fx(r, x∗) = SR. Here the
|M|x|A| matrix S is the stoichiometric matrix, defined by
Sej = eh(j) − em(j). The |A|x|M| matrix R is the reactivity
matrix of the nontrivial derivatives rjm := r′j(x

∗
m), filled up

with zeros in any entry such that m is not the corresponding
mother metabolite of reaction j. In this notation equation (3)
reads:

ẋ = Sr(x).

One crucial tool for our approach is the concept of child selec-
tion (see [3] and [4]). A child selection is a map J : M −→ A,
which associates to every metabolite m ∈M a reaction j ∈ A
such that m is a mother metabolite of reaction j. The Caucht-
Binet formula links the Jacobian SR with child selections.
Indeed,

det(SR) =
∑
J

(sgn(J) det(SJ(M))
∏
m∈M

rJ(m)m), (7)

where J : M → A are child selections; sgn(J) is the
signature operator applied on J if we see J as a permutation
of ordered |M| elements, which is +1 if the permutation is
even and −1 if it is odd. We repeat that rJ(m)m refers to
the derivative rjm := r′j(x

∗
m) of reaction rate rJ ; SJ(M) is

the square minor matrix of the stoichiometric matrix chosen
according to the child selection J(M). The simple proof is
omitted here. For further information and understanding, see
[3] and [4].

III. PROOF OF THEOREM 2

The proof of our theorem relies on the analysis of an
explicit formula for flux-influence. For brevity, we refer to the
already proven formula in [4], which holds for the general
multimolecular case and fits perfectly with our purposes.
Given any pair of distinct reactions (j∗, j′), the formula for
the flux-response indicator Φj∗ j′ of j′ to a perturbation of
reaction j∗ reads as follows: Φj∗ j′ =

∑
j∗ /∈J3j′

φJ . where

det(SR)φJ = −(sgn(J) det(SJ(M)sw)
∏
m∈M

rJ(m)m). (8)

As above, J are child selections; sgn(J) is the signature
operator; rJ(m)m are the derivatives rjm := r′j(x

∗
m) of

reaction rate rJ ; SJ(M)sw is the square minor matrix obtained
by choosing, in the stoichiometric matrix S, the swapped |M|
columns J(M)sw = j∗ ∪ J(M) r j′. The central argument
argument here is that the swapping preserves the column order.
That is, the new j∗ column takes the same position of the old
j′ column. The proof consists of two preliminary steps and
the core proof. The first step analyzes the signature operator

sgn J . The second step analyzes the sign of det(SR). The core
proof concludes with the analysis of the sign of det(SJ(M)sw).
First step. In this monomolecular case, we label the network in
a way such that sgn J ≡ +1 holds for all child selections J ,
simultaneously. The labeling is as follows. Fix any labeling
M = {m1,m2, ...,m|M|} of the metabolites in the network.
Then relabel the reactions following the same order. By this
procedure, it is clear that sgn(J) = +1 for any child selection
J . Indeed J : M→ A is order preserving.
Second step. We show that in the monomolecular case
sign(det(SR)) follows a very simple rule, in the sense ex-
plained by the following Lemma.

Lemma 5. For a monomolecular reaction network, it holds:

sign(det(SR)) = (−1)|M|. (9)

Proof. The proof follows from an application of the Cauchy-
Binet equation (7) to the properly labeled network. By Gaus-
sian elimination, we get to the conclusion.

Now we are ready to prove Theorem 2.

Core proof of Theorem 2. We have already simplified the
above formula for flux-influence up to the point:

sign(Φj∗ j′) = (−1)|M|−1 sign(
∑

j∗ /∈J3j′
det(SJ(M)sw)

∏
m∈M

rJ(m)m),

By positivity of all rJ(m)m, the sign of a summand φJ in eq.
(8) reads:

sign(φJ) = sign((−1)|M|−1 det(SJ(M)sw)
∏
m∈M

rJ(m)m)

= (−1)|M|−1 sign(det(SJ(M)sw)).

It is clear now that the sign of each summand φJ only depends
on sign(det(SJ(M)sw)).
This swapped determinant is nonzero if and only if the set
J(M)sw ⊆ A selects, jointly with all the adjacent vertices
of the reaction arrows in J(M)sw, a spanning tree T of
the network. In other words, T contains all metabolites in
M plus the zero-complex 0 and it does not contain cycles.
Moreover, the set J(M)sw ⊆ A is a child selection except
for the swapped elements. Hence all metabolites m ∈ M
have one single child in the spanning tree T, with the only
two exceptions of m′ (mother of j′) and m∗ (mother of j∗).
Indeed, m′ has no child left and m∗ has two children, due to
the swapping j∗ ∪ J(M) \ j′.
To compute the determinant, we again implement Gaussian
elimination and proceed as follows. We start choosing a subset
of M0 ⊂ M such that m∗, m′ /∈ M0 and any m ∈ M0 has
no input reaction in J(M)sw. Sometimes these vertices are
called in graph theory literature roots of the tree T. Of course
this set might be empty, and in this case we just skip this
step. For any m-row of the SJ(M)sw matrix with m ∈M0, we
sum the m-row to the h(J(m))-row. Here h(J(m)) simply
indicates the next metabolite to m following the order given by
the child selection J(m). As an explanation, we are reducing
tree branches. After this first step, indeed, all the columns



corresponding to J(m) with m ∈M0 possesses only a nonzero
entry, which is -1 on the diagonal.
We iterate this procedure by defining a set M1 such that
any m̃ ∈ M1 is a child m̃ = h(J(m)) of a metabolite
m ∈ M0, and no m̃ ∈ M1 is in γ0 ∪ γ′. These are the
direct children metabolites of the roots m ∈ M0, which do
not lie on γ0∪γ′. Again, we sum the m̃-row to the h(J(m̃))-
row. We keep on iterating by defining a M2 set of children
metabolites of M1 set analogously, etc. We stop just when we
have left untouched only the rows corrensponding exactly to
the metabolites contained in γ0 ∪ γ′. This of course happens
in a finite number of steps, due to finiteness of the network
and acyclicity of the tree structure T.
At this stage, the matrix SJ(M)sw has changed into another
matrix with the same determinant (we have only added rows),
such that every column corresponding to reactions j /∈ γ0∪γ′
is the opposite of the j-unitary vector −ej . In other words, it
has only -1 on the diagonal.
We assume now that j∗ ∈ γ′. We start, with the same
procedure, summing the m∗-row to the h(J(m∗))-row. Note
that J(m) 6= j∗, by construction, according to equation 8.
The m∗-row has -1 both in the J(m∗) column and in the
j∗ column. We iterate now this procedure on the h(J(m∗))-
row and we keep on iterating the procedure as long as we
can, namely until we have touched all the elements on γ0 and
reached the zero. We might say here "until we get out". This
must happen since j∗ ∈ γ′. Also, the j∗-column has been
filled with -1 in all the rows corresponding to metabolites in
γ0. We call this process a cascade of -1 along γ0.
Up to now, the only rows we did not touch correspond exactly
to the metabolites contained in γ′ \m∗.
At this second stage, the original matrix SJ(M)sw has changed
into another matrix with the same determinant (we have
just added rows), such that every column corresponding to
reactions j /∈ γ′ is the opposite of the j-unitary vector −ej .
In other words, it has only a -1 on the diagonal. Note that j∗

is indeed in γ′.
Now, lastly, we start adding the h(j∗)-row with the same
procedure of the preceding step. The h(j∗)-row has a −1 in
the column of reaction J(h(j∗)) and a +1 in the column of
reaction j∗, which is in the original position of reaction j′.
Therefore, iterating the procedure along γ′ we will have a
cascade of +1 until we reach the m′-row, where m′ is the
mother of j′. In this way the j∗ column has been filled with
+1 in all the rows corresponding to metabolites in γ′, including
m′-row. Note that this row has been filled with +1 crucially
in the diagonal entry, of course.
At the end of this third stage, the matrix is almost diagonal,
with the only exception of j∗ column. This transformed matrix
has the same determinant of SJ(M)sw and it has only −1 on
the diagonal except for the j∗ (originally j′) column, in which,
due to the cascade of +1 along γ′, there is now +1.
Therefore:

sign(det(SJ(M)sw)) = (−1)|M|−1.

and

sign(φJ) = (−1)|M|−1 sign(det(SJ(M)sw))

= (−1)|M|−1(−1)|M|−1 = +1.

The case in which j∗ ∈ γ0 is solved by completely analogous
arguments. In this case we have a cascade of −1 getting to the
diagonal of the j∗ (originally j′) column instead of a cascade
of +1.
We have shown, moreover, that any different choice of couple
(γ0, γ′) gives a nonzero summand to the rational expression
of the flux-response indicator Φj∗ j′ .
This completes the proof.

IV. CONCLUSIONS

In the present paper we have given a first result to deter-
mine signed response to reaction rates perturbations. We have
achieved it by prescriving an elementary graph theory recipe.
A nonzero response is characterized by two particular directed
paths: an influence one and an exit one. The influence path
goes from the mother metabolite of the perturbed reaction to
the influenced reaction. The exit path goes from the mother
metabolite of the perturbed reaction to the zero-complex 0.
If the reaction perturbed lies on the influence path, then the
response expression has a positive summand; if it lies on
the exit path, it has a negative summand. Clearly, a case of
undetermined response appears if there are both positive and
negative summands.
Our results are limited to monomolecular reactions, at present.
Future work will concentrate in the extension of these results
to multimolecular systems.
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