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ABSTRACT

In living cells we can observe a variety of complex network systems such as metabolic
network. Studying their sensitivity is one of the main approaches for understanding
the dynamics of these biological systems. The study of the sensitivity is done by in-
creasing/decreasing, or knocking out separately, each enzyme mediating a reaction in
the system and then observing the responses in the concentrations of chemicals or their
fluxes. However, due to the complexity of the systems, it has been unclear how the
network structures influence/determine the responses of the systems. In this study, we
focus on monomolecular networks at steady state and establish a simple criterion for de-
termining regions of influence when any one of the reaction rates is perturbed through
sensitivity experiments of enzyme knock-out type. Specifically, we study the network
response to perturbations of a reaction rate j∗ and describe which other reaction rates
j′ respond by nonzero reaction flux, at steady state. Nonzero responses of j′ to j∗ are
called flux-influence of j∗ on j′. The main and most important aspect of this analysis
lies in the reaction graph approach, in which the chemical reaction networks are modeled
by a directed graph. Our whole analysis is function-free, i.e, in particular, our approach
allows a graph theoretical description of sensitivity of chemical reaction networks. We
emphasize that the analysis does not require numerical input but is based on the graph
structure only. Our specific goal here is to address a topological characterization of the
flux-influence relation in the network. In fact we characterize and describe the whole set
of reactions influenced by a perturbation of any specific reaction.

1 INTRODUCTION
We follow here an approach developed by Fiedler and Mochizuki in [1] and [2]. For re-
lated, but different settings, see also the pioneering works by Feinberg [3] and [4].

A chemical reaction is a process that trasforms some chemical substances, called reac-
tants or reagents of the reaction, to other substances, called products of the reaction. If
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the reactants are H, 0 and the product H20, we write 2H + 0 → H20 for describing the
reaction which, starting from Hydrogen and Oxygen, leads to water. The coefficients in
front of the chemicals are called stoichiometric coefficients of the reaction. A chemical
reaction network is therefore a network of such processes, namely a group of connected
and interacting chemical reactions.

A monomolecular reaction network is a chemical reaction network in which any reaction j
just converts one single metabolite m into another single one m′. Namely just reactions of
the kind A→B, B→C, etc., are allowed. Of course in this monomolecular case also the sto-
ichiometric coefficients are always equal to 1. In our approach we model a monomolecular
reaction network as a strict directed graph Γ with a vertex set M∪{0F , 0E} and an arrow
set A. Here we call a directed graph strict if it has no self-loops and no two arrows have
the same ordered endpoints. A dipath is any acyclic ordered sequence of alternatingly
adjacent vertices and arrows. The vertices belonging to M are called metabolites and the
arrows are called reactions. 0F and 0E are the zero-complexes introduced by Feinberg in
[3]. According to Feinberg, we shall think the zero-complex as ‘a complex in which the
stoichiometric coefficient of every species is zero’ (see for more details [3], Remark 4.A).
0F possesses just outgoing reactions, which are called feed reactions, while 0E possesses
just ingoing reactions, which are called exit reactions. Any dipath that has as ending
element the vertex 0E is called an exit dipath. We sometimes may omit the subscript E

when no ambiguity arises.

For getting from chemical reactions structure to mathematical dynamics, let em ∈ R|M| be
the m-th unit vector, for any nonzero metabolite m ∈M, and define e0 = 0 ∈ R|M|. The
ODE for the dynamics of the vector x=(xm)m∈M of concentrations xm of the metabolites
m ∈M is

ẋ = g(x) = f(r, x) :=
∑
j∈A

rj(xm(j))(eh(j) − em(j)).

Here r = (rj)j∈A are the reaction rate functions and it is crucial to underline that we
consider them as smooth given parameters. With m(j) we refer to the mother, i.e. input,
metabolite of reaction j and with h(j) to the head, i.e. product, metabolite of reaction j.
Moreover, we make some mathematical assumptions, in particular we assume:

1. positivity of the reaction rate functions rj ∈ C1, i.e., rj(ξ) > 0 if ξ > 0,

2. the existence of a positive steady state x∗ > 0, i.e., g(x∗) = 0,

3. the regularity of the network at the steady state x∗, i.e., det fx(r, x∗) 6= 0.

In [1] there is an important result which states that these assumptions imply a structural
feature of our monomolecular reaction network which is crucial to be underlined: from any
metabolite m there exists a dipath to 0E. For more details see [1], Lemma 2.3. Therefore,
in our model, a monomolecular reaction network is precisely a strict directed graph with
a special vertex 0E such that from any other vertex m there exists a dipath from m to
0E.
We skip some mathematical details of what we precisely mean by perturbation of the
rate function rj. Suffice it to say that we consider C1 small perturbations of the kind
rε := r + ερ. As a tool, we can apply the implicit function theorem, thanks to the
regularity assumption. Suppose now that ρ perturbs the reaction j∗, only, and leaves all
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other reaction functions untouched. We define the infinitesimal concentration response
∂xj

∗
m of metabolite m at steady state as

∂xj
∗

m := d
dε
|ε=0x

∗
m(ε).

Moreover, we say that ∂xj∗m is algebraically nonzero if ∂xj∗m 6= 0 as a rational function of
the derivatives rjm := r′j(x

∗
m) with m mother metabolite of reaction j. We define the in-

finitesimal change of the flux through reaction arrow j′, in response to a rate perturbation
of reaction j∗, as

Φj′j∗ := δj′j∗ + rj′m(j′)∂x
j∗

m(j′),

where δj′j∗ is the Kronecker-delta. We then say that a reaction j∗ flux-influences a reac-
tion j′, in symbols j∗  j′, if the flux response Φj′j∗ of reaction j′ to a rate perturbation
as above of reaction j∗ satisfies Φj′j∗ 6= 0, algebraically.

The crucial theorem on the flux-influence relation, according to the paper [1] by Fiedler
and Mochizuki, reads as follows:

Theorem 1 (Fiedler&Mochizuki, 2015). Let the above assumptions hold, and consider
any pair of reaction arrows (j′, j∗), not necessarily distinct. Then j∗ flux-influences j′
(j∗  j′) if, and only if, there exist two dipaths γ0 and γ′ for which the following four
conditions all hold true:

1. both dipaths emanate from m∗, the mother metabolite of j∗;

2. one of the dipaths contains j∗;

3. γ0 terminates at vertex 0E, and γ′ terminates with arrow j′, omitting the head vertex
of j′;

4. except for their shared starting vertex m∗, the two dipaths γ0 and γ′ are disjoint.

For a proof of this result, see section 3 of [1].

We provide here a different, more extended and precise topological characterization and
description of the whole set of reactions flux-influenced by the perturbation of a specific
reaction j. We give a visual description of this set, describe its structure and deepen
its properties. This approach simplifies some otherwise more involved problems. Tran-
sitivity of flux-influence relation becomes in this way a simpler inclusion result on the
flux-influenced sets. Some specific features of flux-influence relation arise now in a crystal
clear way. For instance, the fact that if a metabolite m has only two outgoing reactions,
these two reactions influence exactly the same set.

For doing this, we have to introduce some new concepts which have arisen naturally in the
investigation and description of the structure of the flux-influenced sets. Firstly, we say
that a reaction j is in them0-direction if there exists a dipath γ from metabolitem to 0E
containing j. We will mainly use this definition for outgoing reactions from m. See figure
1. We underline that this is a consistent definition due to the fact that a dipath has to be
acyclic. It may happen, indeed, that the only way for reaching 0E from m going through
j is to make a dicycle around m, which is forbidden by definition of dipath, which has
an injective structure. Moreover, as said before, by structure of monomolecular reaction
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network, from any metabolite m there exists a dipath from m to 0E. This implies that
there is always at least one outgoing reaction from m in the m0-direction. In particular,
if j is an outgoing reaction from metabolite m not in the m0-direction, there is at least
another outgoing reaction j0 from m which is in the m0-direction.

Figure 1: In a generic monomolecular reaction netowork, we have chosen a metabolite m.
In red, we have coloured the subset of the m0-direction.

The second tool is the principal and leading idea of our work: the obliged elements. We
provide three equivalent definitions, to give a viewpoint as wide as possibile. For a
concrete example, see figure 2. The set Om

0 of obliged elements from m to 0 is the
intersection set of all dipaths from m to 0E. In a more graph theoretic language, we may
say that this set Om

0 is the set of the cut-vertices and cut-edges (bridges) of the subnetwork
which consists of all dipaths from m to 0E. Finally, plainly said, this set Om

0 contains all
elements of the network whose deletion renders 0E unreachable by any dipath from m.
This set Om

0 has several interesting properties. It is crucial to mention one of those here:
it possesses a total order. Of course any dipath from m to 0E trivially induces a natural
order in the set of the obliged elements from m to 0, since all the obliged elements are in
particular elements of this dipath, which, being directed, possesses a natural order. By
acyclicity, this order does not depend on the chosen dipath. In particular we may speak
about the first, second, ... obliged element from m to 0. See Section 3, Properties of
obliged elements, for further details.

Figure 2: In a generic example of monomolecular reaction network, we have picked a
metabolite m∗ and, in green, we have marked the obliged elements from m to 0.

Lastly, we define the following subnetwork:

Definition 1 (Balloon). Let x(m) be the first obliged element from m to 0. We define
the (m, 0)-Balloon Bm

0 as the subnetwork reachable fromm with a dipath without passing
through x(m).

A Balloon consists of different components, see figure 3 for a comparison: for any outgoing
reaction j′ from m that is not in the m0-direction then the set reachable with a dipath
from m starting along j′, which we indicate with Rm,j′ , is a subset of the (m, 0)-Balloon.
Moreover, if m has just two outgoing reactions, the above j′ and another reaction j′′, this
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implies that j′′ has to be in the m0-direction, by the structure of monomolecular reaction
networks. Then j′′ is clearly the first obliged element and the (m, 0)-Balloon is just Rm,j′ ,
the set reachable from m with a dipath starting along j′. But, if m has more then two
outgoing reactions, then, for any outgoing reaction j′ from m not in the m0-direction,
Rm,j′ is a strict subset of the (m, 0)-Balloon.

Figure 3: The figure illustrates the structure of a (m, 0)-Balloon. x is the first obliged
element from m to 0. From the metabolite m emanate six outgoing reactions. Three
reactions (1, 2, 3) are not in the m0-direction, three reactions (4, 5, 6) are in the m0-
direction. We underline that the sets reachable with dipaths starting along reaction not
in the m0-direction are contained in the (m, 0)-Balloon. We have marked this part of the
Balloon with greenish colours. In this case the inclusion is strict, since m has more than
one outgoing reactions in the m0-direction.

Now we get to our main theorem, which characterizes precisely the set flux-influenced
by the perturbation of a single reaction. The only exception to this theorem is given by
the artificial feed reactions. We remind that the feed reactions are the outgoing reactions
from 0F . Their influence has indeed a very specific and simple behaviour, which we are
not going to deepen here, see [1]. Suffice it to say that the set flux-influenced by a feed
reaction i is the entire reachable set from 0F with a dipath starting along i. Very simple
structure, indeed. We underline also the fact that these reactions are only a theoretical
tool useful in some circumstances.

Theorem 2 (Characterization of flux-influenced sets). Let j be a reaction with its mother
metabolite m.
Then the set flux-influenced by j, I(j), is characterized as follows:

1. if j is in the m0-direction, then I(j) consists of all reactions in the (m, 0)-balloon
Bm

0 , and no others,

2. if j is not in the m0-direction, then I(j) consists of all reactions in Rm,j, namely
all reactions reachable from m with a dipath starting along j, and no others.
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We underline again that the set Rm,j described in the latter case 2, namely the set flux-
influenced by a perturbation on a reaction which is not in the m0-direction, is a subset
of the (m, 0)-balloon Bm

0 .
In section 4 we deeply analyse in more details the structure of the flux-influenced sets.
The following theorem and corollary arise straightforwardly from this analysis:

Theorem 3 (Inclusion of Flux-influenced sets). If j∗ influences j′, then I(j∗) ⊇ I(j′).

This inclusion theorem leads automatically to the following important property of the
flux-influence relation:

Corollary 4 (Transitivity of Flux-influence relation). The flux-influence relation is a
transitive relation, i.e., j∗  j′  j′′ implies j∗  j′′.

Recently, Brehm and Fiedler generalized this transitivity result to multimolecular net-
works, following a more algebraic approach (for this, see [5]). In future work, it is our
goal to extend this topological and visual approach also to multimolecular networks.

Finally, some structural features which have arisen easily as consequences of our analysis
are worth to be mentioned. They give an example of the advantages of our topological
approach. We have chosen some of them, which are the most significative, in our opinion:

1. For any outgoing reaction from metabolite m, no flux-influence outside the (m, 0)-
Balloon.
Indeed, if the outgoing reaction is in the m0-direction, then the influenced set is
precisely the (m, 0)-Balloon. If it is not in the m0-direction, then it is a subset
(which may be strict or no) of the (m, 0)-Balloon.

2. The set flux-influenced by a reaction j is empty, namely I(j) = ∅, if and only if its
mother metabolite m has just this only one outgoing reaction j.
Indeed, if m has just one outgoing arrow j, then j is in particular the first obliged
element from m to 0. Of course no reaction arrows are reachable from m without
passing through j since j is the only outgoing arrow ofm, then the (m, 0)-Balloon= ∅
and in particular I(j) = ∅.
In the other direction, if m has at least two outgoing arrows j1 and j2, then j1 may
be either in the m0-direction or not. If j1 is in the m0-direction, then j1 influences
for sure j2. In fact j2 is not for sure the first obliged element from m to 0 and hence
it lies in the (m, 0)-Balloon. If j1 is not in the m0-direction, then j1 influences for
sure j1 itself. In both cases, I(j1) 6= ∅.

3. If i and j are two outgoing reactions from metabolite m, both in the m0-direction,
then I(i) = I(j).
Indeed the influenced set of both is defined by the (m, 0)-Balloon whose definiton
does not depend specifically on i or j.

4. If i and j are the two only outgoing reactions from m, then I(i) = I(j).
Indeed: if they are both in the m0-direction, then we have the previous observation.
If one of them, wlog i, is not in the m0-direction, then j has to be the first obliged
element from m to 0. Therefore I(j), the (m, 0)-Balloon, is just the set Rm,i reach-
able by m with a dipath starting along i, namely I(i). Note however that, in this
last case, j flux-influences i while i does not flux-influence j.
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5. In conclusion, if a metabolite m has n outgoing reactions with p ≤ n − 2 not in
the m0-direction, then the number of different flux-influenced sets of the outgo-
ing reactions is exactly p + 1, one for each reaction not in the m0-direction, and
the (m, 0)-Balloon flux-influenced by the reactions in the m0-direction, which, in
particular, contains all the other flux-influenced sets.

The remaining paper is organized as follows. In section 2 we define clearly some tech-
nical graph tools which are needed for giving simpler and more elegant proofs of our
results. Section 3 deepens the features and structure of Obliged Elements. Our results
are completely proven in section 4. The last section 5 provides interesting and important
examples.
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2 PATHS: CONCATENATIONS, SHORTCUTS
Let γ be a dipath. Let p, q be elements of γ. Let

γ̃ = γ[p, q]

denote the subpath of γ which starts at the element p and, following the same sequence
of vertices and arrows as γ, ends with q, including p, q. We will largely use this notation
also for referring generically to a dipath from p to q.
Moreover, when the situation renders impossible to use the above notation, we will use
also the intuitive notations with parenthesis γ(x, y), γ(x, y], γ[x, y) for referring to dipaths
from x to y which do not include, respectively, x and y; x; y.

Let us, now, consider two concatenated dipaths in a graph, i.e., a dipath from x to y and
then a dipath from y to z, where x, y, z are vertices. We want to define an operation
which allows us to easily obtain an existing dipath from x to z. This will be very useful
in our proofs. The definition, then, is as follows. See, for comparison, figure 4.
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Definition 2 (Last-minute shortcut and skipped elements). Consider any two dipaths
γ1 = γ1[x, y] from x to y and γ2 = γ2[y, z] from y to z, with x, y, z vertices of a digraph.
Let w be the last vertex, in the natural order given by γ2, of the nonempty intersection
γ1 ∩ γ2. Then we call the concatenated dipath

γ := γ1[x,w)γ2[w, z]

the last-minute shortcut and we use the notation γ = s(γ1γ2).
Moreover, let p be an element (either a vertex or an arrow) such that p belongs either to
γ1 or to γ2 but not to the last-minute shortcut γ = s(γ1γ2). We call p a skipped element.

Figure 4: In the picture, two concatenated dipaths (in blue from x to y and in green from
y to z). In red we have underlined the last-minute shortcut.

Observation 1. The last-minute shortcut is, by construction, a dipath from x to z. Indeed,
since w is the last intersection between γ1 and γ2 in the order of γ2, this implies that
γ1∩ γ2[w, z] = {w} only, and hence in particular γ1[x,w]∩ γ2[w, z] = {w} only. Therefore
the sequence γ = γ1[x,w)γ2[w, z] counts each elements just once and it is a dipath.

3 PROPERTIES OF OBLIGED ELEMENTS
Let γ = γ[m, 0E] be an exit dipath from m to 0E. Trivially, γ induces a natural order
in Om

0 , the obliged elements from m to 0, since all the obliged elements are in particular
elements of γ, which, as a dipath, possesses a natural order. The following proposition
asserts that any exit dipath from m to 0E agrees on this order.

Proposition 5 (Order property). Any exit dipath γ = γ[m, 0E] from metabolite m to 0E
induces the same order in the set Om

0 of the obliged elements from m to 0 and therefore
Om

0 admits a total order.

Proof. Assume indirectly that exist γ̄, γ̃ exit dipaths from m to 0E that induce in the set
Om

0 a different order, i.e., ∃ p, q ∈ Om
0 , obliged elements from m to 0 such that:

p < q in the order given by γ̄;
q < p in the order given by γ̃.
Consider now the last-minute shortcut γ∗ = s(γ̄[m, p]γ̃[p, 0E]): γ∗ is an exit dipath from
m to 0E, but γ∗ does not contain q. Indeed neither γ̄[x, p] nor γ̃[p, 0E] contains q since γ̄
reaches p before q and γ̃ reaches p after q. Hence q is not an obliged element from m to
0 against our hypothesis and we have a contradiction.
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The following proposition characterizes the topological position of an outgoing reaction j
from metabolite m in terms of obliged elements to 0.

Proposition 6 (Obliged elements and m0-direction). Let j be a reaction with its mother
metabolite m. The following statements are equivalent:

1. j is not in the m0-direction;

2. for every metabolite m̃ in Rm,j, the metabolite m is an obliged element from m̃ to
0E.

[We recall that Rm,j consists of all the elements of the network reachable from metabolite
m with a dipath starting along j.]

Proof. 1)⇒2)
Assume indirectly that m is not an obliged element from m̃ to 0.
Then there exists an exit dipath γm̃0 from m̃ to 0E s.t. m /∈ γm0 . We can therefore consider
the last minute shortcut γ̄=s(γmm̃γm̃0 ) where γmm̃ is any dipath from m to m̃ containing j.
γ̄ is then a dipath fromm to 0E, and it contains j since γm̃0 does not containm, the mother
of j, and hence in particular the last intersection between the two dipaths in the order of
γm̃0 (according with the definition) cannot be m. So we have reached a contradiction.
2)⇒1)
Consider any exit ordered sequence of alternatingly adjacent vertices and arrows, so called
diwalk, even possessing cycles, [mj...0E] from m to 0E with j as first arrow.
Assume now that it is possible to write some of these sequences as a concatenation of
two dipaths [mj...m̃][m̃...0E]. Otherwise trivially j is not in the m0-direction, since any
dipath can be written as a concatenation of two dipaths.
So we have that m̃ is in Rm,j and therefore, by our assumption, m ∈ Om̃

0 .
This holds for every m̃ vertex reachable from m with a dipath starting along j and
therefore every sequence [mj...0E] countsm at least twice, namely no sequence is a dipath.
Hence j is not in the m0-direction.

We now describe an inclusion property of the set of obliged elements. This property is at
the base of proving our more general result on the inclusion of flux-influenced sets.

Proposition 7 (Inclusion property). For any metabolite m̃ in the (m, 0)-Balloon, the
following holds:

Om
0 ⊆ Om̃

0 ,

i.e., the obliged elements from m to 0 are contained in the ones from m̃ to 0.

Proof. Note that if a metabolite m̃ is the (m, 0)-Balloon, by definition of Balloon, in
particular there exists a directed path γm that emanates from metabolite m and ends at
metabolite m̃ withouth passing through any of the obliged elements from m to 0.
Suppose now indirectly that ∃p ∈ Om

0 s.t. p 6∈ Om̃
0 .

Then, by definition of obliged elements from m̃ to 0, there exists a dipath γ̃0 = γ̃0[m̃, 0E]
from m to 0E s.t. p is not in γ̃0.
We can therefore consider the last-minute shortcut γ̄0 = s(γm[m, m̃)γ̃0), by construction
γ̄0 is an exit dipath from m to 0E s.t. p is not in γ0 against the hypothesis that p is an
obliged element from m to 0. Hence we have a contradiction.
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Observation 2. In particular then, since every obliged element p from m to 0 is an obliged
element from every m̃ in the (m, 0)-Balloon there exists a dipath from m̃ to p.

Let us conclude this section by giving a very intuitive and not mathematical explanation
of the last proposition: imagine we are in a room that has a storage room reachable just
with a door from the room where we are. If we go wherever without passing this door,
and then want to reach the storage room, we will eventually have to pass though this
single door.

4 PROOFS
This section is organized as follows: at first we state a crucial lemma, which is needed
for all the proofs. Its proof relies strongly on Menger’s Theorem, a classical graph theory
theorem stated by Karl Menger in 1927 and then generalized in the famous Max-Flow-
Min-Cut theorem in the fifties. We are going to recall this theorem in the version which
perfectly fits our purposes and we derive from it a straighforward but nonetheless useful
corollary. After this we are able to prove lemma 8, theorem 2 and theorem 3.

The main ingredient for the proofs of the above results is to simplify the four conditions
in the Fiedler-Mochizuki theorem 1 and reformulate them using the idea and properties
of the obliged elements. Our reformulation reads as follows.

Lemma 8 (Reformulated influence conditions). Given (j′, j∗,m∗) as before, the Fiedler-
Mochizuki theorem 1 on the flux-influence holds true if, and only if, there exists a dipath
γR such that the following three conditions all hold true:

1. γR emanates from vertex m∗ and terminates with reaction edge j′, not including the
head vertex of j′,

2. γR has empty intersection with the obliged elements from m∗ to 0,

3. j∗ is in the m∗0-direction or it is in γR (both may happen simultaneously).

Transitivity of flux-influence relation may be proven also directly from this lemma, using
properties of the set of the obliged elements. This is indeed a nice example of their ap-
plication. However, we will not do this way here.

Firstly, we recall briefly Menger’s Theorem. The central idea of this theorem, in the
version for directed graphs, is to set an equivalence between the order of cut-sets (namely,
the minimum number of elements whose deletion disconnects the graph) and the number
of internally disjoint dipaths. Two dipaths are called internally disjoint if they share
starting and ending point only, namely they do intersect just in these points and they do
not intersect ‘internally’. There are many versions of Menger’s Theorem, both for directed
and undirected graphs, both for cut-sets consisting just of vertices and cut-sets consisting
just of edges/arrows. We will not pursue here further explanations, which, along with
more references, may be completely found in [6, 7, 8, 9, 10].
We will use the following vertex version of Menger’s Theorem for directed graph.
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Theorem 9 (Menger, 1927). Let x and y be vertices in a directed graph Γ, such that y is
reachable from x. Then the maximum number of dipaths from x to y internally disjoint
is equal to the minimum number of vertices whose deletion renders y unreachable with a
dipath from x.

We state a simple corollary, perfectly suited for our specific purposes here.

Corollary 10. Let m be a metabolite in a monomolecular reaction network, and let x(m)
be the first obliged element from m to 0. If there are not any of them, let us assume
x(m) = 0E. Moreover assume that x(m) is a vertex. Then there exist at least two dipaths
internally disjoint from m to x(m).

Proof. Considering the subnetwork which consists of all dipaths from m to x(m), this
subnetwork has no single cut-elements. Indeed if this was the case, then this cut-element
would be in particular also an obliged element from m to 0. But this is excluded by
our assumption that x(m) is the first of them. If there are no cut-elements, then in
particular the minimum number of metabolites whose deletion renders x(m) unreachable
with a dipath from m has to be at least two. Therefore, according to Menger’s theorem,
the maximum number of dipaths internally disjoint from m to x(m) is at least two, as
well.

We can now start looking at the proof of the crucial lemma 8. Before going on to prove it,
we explain the idea of the proof. The fact that the old formulation implies the new is very
easy to prove. The opposite direction, however, that the new formulation implies the old,
is more complicated. For doing this we will have indeed to build two dipaths as the old
Fiedler-Mochizuki theorem requires. Except from the easy situations, what we generally
need to show is that condition 2 of the lemma implies the existence of two internally
disjoint paths. We use then corollary 10, which guarantees us that two internally disjoint
dipaths exist between m∗ and the first obliged element from m∗ to 0. This provides us an
undirected cycle structure with a source (m∗) and a sink (x(m), the first obliged element
from m∗ to 0). Then we intersecate this structure with γ′R for building the two desired
directed paths.

Proof of lemma 8. We start with the easy part.

Firstly we prove that the conditions of theorem 1 imply the reformulated conditions 1),
2) and 3).
Indeed, assume conditions i), ii), iii), iv) of theorem 1 and let γ′R:=γ′.
Condition 1) of lemma 8 is verified by definition of γ′, which is a dipath from m to j′.
Condition 2) can be proved indirectly: if γ′R ∩ Om∗

0 6= ∅, then there not exists an exit
dipath γ0 that intersects with γ′ only in the emanating metabolite m∗ as in theorem 1,
since any exit dipath γ0 contains all the obliged elements from m∗ to 0.
Condition 3) of lemma 8 is directly implied by condition ii) in theorem 1. Indeed, by
condition ii) of theorem 1, j∗ is either in γ′ or in γ0. In the first case, j∗ is in γ′R, in the
latter it is in the m∗0-direction.
This concludes the proof of the fact that conditions in theorem 1 implies conditions in
lemma 8.

Assume now the reformulated conditions 1, 2 and 3 of lemma 8. Our goal is to show that
there exist two dipaths γ0 and γ′ as in the Fiedler-Mochizuki theorem 1.
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Let us now note two things.
Firstly, j∗ cannot be the only outgoing arrow from m∗. If this would be the case, indeed,
j∗ would be in particular the first obliged element from m∗ to 0 and therefore any dipath
from m∗ would contain the obliged element j∗, contradicting condition 2.
Secondly, if j∗ is the only outgoing arrow from m∗ which lies in the m∗0-direction, in
particular j∗ is the first obliged element from m∗ to 0. Then the dipath γ′R emanates from
m∗ along a reaction arrow i 6= j∗ which is not in the m∗0-direction. In particular, any
exit dipath γ0 from m∗ to 0, belonging to the m∗0-direction, does not intersect γ′R. Hence
we have that the pair of directed paths so defined (γ0, γ

′
R) easily fullfills the conditions i),

ii), iii), iv) of theorem 1.

For this reason, let us now assume that m∗ has at least two outgoing reactions in the
m∗0-direction. The first obliged element from m∗ to 0 is therefore a vertex x(m∗). It
might happen also that there are no obliged elements from m∗ to 0, in this case we set
simply x(m∗) = 0E. We can therefore apply corollary 10 and we obtain two dipaths γ1,2
from m∗ to x internally disjoint. Namely two dipaths that do intersect just in m∗ and
x(m∗), i.e. γ1 ∩ γ2 = {m∗, x(m∗)}. We now want to use the structure of this undirected
cycle of γ1 ∪ γ2.
We have to check all possible cases.
The case in which γ′R intersects γ1 ∪ γ2 just in m∗ is easier. Indeed we take γ′R and
γ̃0 := γ1[m

∗, x(m∗))γx[x(m∗), 0], where γx is any exit dipath from x(m∗) to 0E. As already
noticed, we have that γ′R and γ̃0 do intersect only in m∗. If they intersected in a vertex
w 6= m∗, indeed, in particular w ∈ γx since γ′R intersect γ1 just in m∗. We may consider,
then, the sequence γ′R[m∗, w)γx[w, 0] obtaining a directed ordered sequence of vertices
and arrows from m∗ to 0 not containing the obliged element x, which is a contradiction.
Therefore these two directed paths, γ′R and γ̃0 satisfy conditions i), iii), iv) of Theorem
1. Moreover, if j∗ is not in the m∗0-direction, then it has to be in γ′R and we have also
condition ii).
If γ′R has more than one intersection with γ1 ∪ γ2, in particular we have that j∗ is in the
m∗0-direction, since we can build easily, with a last-minute shortcut, a dipath from m∗

to 0 with j∗ as first arrow.
Let y be the last element, in the order given by γ′R, of [γ1 ∪ γ2] ∩ γ′R. We know for sure
that it is not x(m∗) by condition 2. Without losing our generalities, we assume y ∈ γ1.
We can obtain a new dipath from m∗ to j′ by

γ̃′ := γ1[m
∗, y)γ′R[y, j′]

By construction, we have that γ2 ∩ γ̃′ = {m∗}, namely our new dipath from γ̃′ still does
not intersect γ2 apart from in m∗.
Let γx be any exit dipath from x(m∗) to 0. The two dipaths γ̃0 = γ2γx and γ̃′ already
satisfy conditions i), iii), iv).
In any unfinished situation, we have at least found a pair of directed paths (γ̃0, γ′) such
that the conditions i), iii), iv) of theorem 1. We need now to work on condition ii): j∗
may, indeed, belong to γ̃′, γ̃0 or to none. In the first two cases, we have for free also
condition ii), hence we have finished.
In the third case: j∗ 6∈ γ̃0 ∪ γ̃′, but j∗ has to belong to some γ∗0 exit dipath from m∗, since
we have already noticed that j∗ is in the m∗0-direction.
Let z be now the first element after m∗ of [γ̃0 ∪ γ̃′] ∩ γ∗0 , in the order given by γ∗0 . (For
sure the intersection is not just m∗ since also x surely belongs to this intersection).
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Just the followings can happen:
1) z ∈ γ̃0,
2) z ∈ γ̃′.
In the first case we set γ0 := γ∗0 [m∗, z)γ̃0[z, 0] and γ′ := γ̃′. In the second case we set
γ′ := γ∗0 [m∗, z)γ̃′[z, j′] and γ0 := γ̃0. Considering the couple (γ0, γ

′) as above defined we
easily verify that it satisfies conditions i) ii) iii) iv).

Now we can prove also theorem 2, namely the characterization of the whole set of reaction
arrows flux-influenced by a perturbation on a specific reaction j.

Proof of Theorem 2. Using the reformulated theorem:
Part 1: if j is in the m0-direction, condition 3 of lemma 8 is always satisfied. Therefore we
just need to take care of the fact that j′ is reachable with a dipath with empty intersection
with the obliged elements from m to 0, corresponding to conditions 1 and 2 in the lemma
8. By the total order of the set of the obliged elements, these conditions hold if and only
if j′ is reachable from m with a dipath without passing through x(m), the first of them.
Namely if and only if j′ is in the (m, 0)-Balloon.
Part 2: if j is not in the m0-direction, then, by condition 3 of lemma 8, j has to be in
the influence dipath γ′R, which leads to the influenced reaction arrow j′. Therefore to be
in Rm,j is a necessary condition for any reaction which is flux-influenced by j. By the
structure of the Balloon, we have that this condition is also sufficient, since no exit dipath
from m to 0 intersects with Rm,j if j is not in the m0-direction, except trivially in m. In
particular, no obliged element can be in Rm,j. This concludes our proof.

Now, lastly, we turn on the inclusion result.

Proof of Theorem 3. Let us observe that if m1, m2 are metabolites in a monomolecular
reaction network such that m2 is reachable from m1, then the subgraph Rm2 reachable
with a dipath from m2 is contained in Rm1 reachable with a dipath from m1, namely
Rm2 ⊆ Rm1 if m2 ∈ Rm

1 . Indeed, for any vertex m2 reachable from m1 there exists a
dipath γ1 from m1 to m2. For any vertex m3 reachable from m2 analogously there exists a
dipath γ2 from m2 to m3. Then it is enough to consider the last-minute shortcut s(γ1γ2)
for concluding that any metabolite reachable with a dipath from m2 is also reachable from
m1.
Let us observe moreover that if m2 is reachable from m1 with a dipath starting along j,
outgoing arrow from m1, then any element reachable from m2 with a dipath, which does
not contain m1, is again reachable from m1 with a dipath starting along j. Indeed, it
is enough to consider again a last-minute shortcut. A necessary condition for j to be a
skipped part is that m1 is in the intersection of the two directed paths, fact that we have
excluded.

Let j∗, outgoing arrow from m∗, be in the m∗0-direction, and let j′ be any arrow in the
(m∗0)-Balloon. We have then the following conclusions:
1) j′ is influenced by j∗.
2) x(m∗), first obliged element from m∗ to 0, is an obliged element also from m′ = m(j′),
mother of j′, to 0, according to roposition 6.
Then, by using the above observation, we conclude easily that the influenced set of j′ is
included in the influenced set of j∗. Indeed, the whole (m′, 0)-Balloon is contained in the
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(m∗, 0)-Balloon.

Assume now that j∗∗, outgoing reaction arrow from m∗, is not in the m∗0-direction, then
for any m̃ in Rm∗,j∗∗ , namely reachable from m∗ with a dipath starting along j∗∗, the
flux-influenced set of an outgoing arrow j̃ of m̃ is at most any arrow i reachable from m̃
without passing through m∗, since for sure m∗ is an obliged element from m̃ to 0, again
by proposition 6. Although it might not be the very first. Any reaction arrow of this
kind, in particular, belongs again to Rm∗,j∗∗ according to our observation above.

5 EXAMPLES
In this section we comment on some theoretical examples. Some of them are taken from
[1], in order to provide a source of comparison with the approach of this reference paper.
We will point out some interesting features. Again, we will not focus in our discussion on
the feed reactions, namely the outgoing reactions from the feed zero vertex 0F .

Example I

First of all we simply describe the flux-influence situation in a model Balloon. We consider
again the Balloon in figure 3. Applying our results to this model example, we have that:
1) the set flux-influenced by reaction 1 consists of reactions in light blue;
2) the set flux-influenced by reaction 2 consists of reactions in green without reaction 3;
3) the set flux-influenced by reaction 3 consists of reactons in green without reaction 2
and the other only outgoing reaction from the head metabolite of reaction 2;
4) reactions 4, 5, 6 share the same set of flux-influence, which is the whole (m, 0)-Balloon.

14



Example II

j′  dashed marked reactions
j∗1  (m∗, 0)-Balloon
j∗2  (m∗, 0)-Balloon
j∗∗1  (m∗∗, 0)-Balloon
j∗∗2  (m∗∗, 0)-Balloon
j∗∗∗1  (m∗∗∗, 0)-Balloon
j∗∗∗2  (m∗∗∗, 0)-Balloon

We have labeled seven reactions: j∗1,2, j∗∗1,2, j∗∗∗1,2 and j′. Only j′ is not in the m∗0-direction,
where m∗ is the mother of j′ and j∗. Here above we have listed the sets that they do
flux-influence. In this example we want to point out specifically the connection between
the obliged elements to 0 and the Balloons. j∗1 and j∗2 flux-influence the same set, namely
the (m∗, 0)-Balloon. Analogously for ∗∗ and ∗∗∗. We see indeed that the different balloons
and hence flux-influenced sets of j∗1,2, j∗∗1,2, j∗∗∗1,2 are precisely the 2-connected components
of the graph. This holds in this precise way here because this is a particular example.
This example has been chosen on purpose for showing this feature. But the idea is similar
also in more complicated examples.
Note that the set flux-influenced by j′, marked with dashed reactions, is a subset of the
(m∗, 0)-Balloon, flux-influenced by j∗1,2 since j∗1,2 are in the m∗0-direction while j′ is not.
Looking at this figure, we may be tempted to conclude that the obliged elements from 0F
to 0E divide the networks into different flux-influenced components which do not interact
between each other. This is in general not true. If we add to the network just a simple
reaction arrow, the situation changes significantly. Look at the picture below.
The (m∗∗, 0)-Balloon now contains the (m∗, 0)-Balloon. This happens because the (m∗∗, 0)-
Balloon is, we say it again, the subnetwork reachable from m∗∗ withouth passing through
the first obliged element from m∗∗ to 0. In this case, m∗∗∗. Of course the (m∗, 0)-Balloon
is then included in the (m∗∗, 0)-Balloon.
This suggests, correctly, that the crucial thing for a reaction to influence the largest
amount of reactions is not to be ’close’ to the feed 0F , namely to be one of the first
reaction which happens in the network, but rather to be possibly far away from the exit
0E. In this last example, indeed, j∗1,2 are the very first reactions (together with j′) after
the feed one. But j∗∗ is farther from exit 0E in the sense that j∗ is reachable from j∗∗

and moreover it lies in the (m∗∗, 0)-Balloon.
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Example III

COMPLETE INFLUENCE RELATION:
1  1, 2, 3, 4, 5, 6
2  2, 3, 4, 5
5  2, 3, 4, 5

This example illustrates the flux-influence structure of an undirected cycle. The obliged
elements from 0F to 0E are in this case just 1, A, C, 6. The only metabolite that has
more than one outgoing arrow is A, namely reactions 2 and 5, both in the A0-direction.
The first obliged element from A to 0 is C. Hence reactions 2 and 5 share the same set of
influence, which is the (A, 0)-Balloon: the undirected cycle between the A and C, namely
reactions {2,3,4,5}. The other reactions in this cycle, 3 and 4, do not flux-influence any-
thing, as they are the only outgoing reaction from their mother metabolite.
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Example IV

COMPLETE INFLUENCE RELATION:
1  1, 2, 3, 4, 5, 6, 7, 8, 9
4  6, 7, 2, 3
5  8, 9, 3, 4, 6, 7, 2
6  6, 7, 2, 3
8  8, 9, 3, 4, 6, 7, 2

In this case we focus on metabolite D. It has exactly two outgoing reaction: reaction 5 in
the D0-direction and reaction 8 not in the D0-direction. Reaction 5 is then also the first
obliged element from metabolite D to 0. We know that reactions 5 and 8 do influence the
same set, which in this case is the set RD,8 of reactions reachable from D with a directed
path starting along reaction 8, namely reactions: {8,9,3,4,6,7,2}. These two reactions,
5 and 8, are then of course also the peak of the flux-influence pyramid, the ‘absolute
influencer’, if we exclude from this analysis the exceptional case of the feed reaction 1.
Note that the fact that reactions 5 and 8 share the same set of flux-influence does not
imply that they do flux-influence each other in an equal way. Indeed in this case reaction
5 flux-influences 8, but reaction 8 does not flux-influence reaction 5. Since reactions 4
and 6 are flux-influenced by reactions 5 and 8, their flux-influenced set (reactions 6, 7, 2,
3) is included in the one of reactions 5 and 8.

17



Example V

COMPLETE INFLUENCE RELATION:
1  1, 2, 3, 4, 5, 6, 7, 8
3  2, 3, 4, 6, 7
4  2, 3, 4, 6, 7
5  2, 3, 4, 5, 6, 7
6  2, 3, 4, 6, 7
7  2, 3, 4, 6, 7
8  2, 3, 4, 5, 6, 7

Here again we can apply an identical argument as above on metabolite C and its two
outgoing reactions 5 and 8, which are the peak of the flux-influence pyramid, influencing
reactions 2, 3, 4, 5, 6, 7. Reaction 2 is the only outgoing reaction from metabolite D
and therefore does not influence anything and it is at the bottom of the pyramid. Apart
from this, the first shared obliged element for the remaining metabolites, A and B, is C.
Therefore reactions 5 and 8, outgoing from C, cannot be influenced by outgoing reactions
of A and B. A has two outgoing reactions: 6 and 3, both in the A0-direction and B has
also two outgoing reactions: 4 and 7, both also in the B0-direction. The (A, 0)-Balloon
BA

0 coincides with the (B, 0)-Ballon BB
0 and it contains reactions {2, 3, 4, 6, 7}. Note, how-

ever, that the reactions of this shared Balloon in the A0-direction are reactions {6,3,4}.
The ones in the B0-direction are instead reactions {6,4,7,2}.
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Example VI

COMPLETE INFLUENCE RELATION:
1  1, 2, 3, 4, 5, 6, 7
4  4, 5, 2, 3
6  6, 2, 3
7  4, 5, 6, 2, 3

In this very interesting example we want firstly to focus on metabolite B. It has three
outgoing reactions: 4, 6 and 7. Reaction 7 is in the B0-direction; reactions 4 and 6 are not.
The first obliged element from B to 0 is of course reaction 7 itself. The flux-influenced
set of reaction 4 is made by the reactions reachable from B with a directed path starting
along 4, namely reactions {4,5,2,3,}. Since reaction 6 is not in the B0-direction, its flux-
influenced is made by all the reactions reachable from B with a directed path starting
along 6, namely {7,2,3,5}. Note that the two flux-influenced sets are not the same due to
reactions 4 and 6 itself. In similar situations (metabolite m with two outgoing reactions
not in the m0-direction) the behaviour is identical: the two outgoing reactions cannot
share the same set of influence, due, in particular, to themselves. On the other hand, the
set flux-influenced by reaction 7 are the reactions in the (B, 0)-Balloon which is made
by the union of the sets influenced by reaction 4 and 6, namely reactions: {2,3,4,5,7}.
Metabolites A, C and D have only one outgoing reaction, respectively 5 and 2. Therefore
reactions 3, 5 and 2 do not influence anything.
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