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Abstract

This is the second of three papers on the geometric and combinatorial charac-
terization of global Sturm attractors which consist of a single closed 3-ball. The
underlying scalar PDE is parabolic,

ut = uxx + f(x, u, ux) ,

on the unit interval 0 < x < 1 with Neumann boundary conditions. Equilibria
are assumed to be hyperbolic.

Geometrically, we study the resulting Thom-Smale dynamic complex with cells
defined by the fast unstable manifolds of the equilibria. The Thom-Smale com-
plex turns out to be a regular cell complex. Our geometric description involves a
bipolar orientation of the 1-skeleton, a hemisphere decomposition of the bound-
ary 2-sphere by two polar meridians, and a meridian overlap of certain 2-cell
faces in opposite hemispheres.

The combinatorial description is in terms of the Sturm permutation, alias the
meander properties of the shooting curve for the equilibrium ODE boundary
value problem. It involves the relative positioning of extreme 2-dimensionally
unstable equilibria at the Neumann boundaries x = 0 and x = 1, respectively,
and the overlapping reach of polar serpents in the shooting meander.

In the first paper we showed the implications

Sturm attractor =⇒ Thom-Smale complex =⇒ meander .

The present part 2, closes the cycle of equivalences by the implication

meander =⇒ Sturm attractor .

In particular this cycle allows us to construct a unique Sturm 3-ball attractor
for any prescribed Thom-Smale complex which satisfies the geometric properties
of the bipolar orientation and the hemisphere decomposition. Many explicit ex-
amples and illustrations will be discussed in part 3. The present 3-ball trilogy,
however, is just another step towards the still elusive geometric and combina-
tional characterization of all Sturm global attractors in arbitrary dimensions.
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1 Introduction

For a general introduction we first follow [FiRo16] and the references there. Sturm
global attractors Af are the global attractors of scalar parabolic equations

(1.1) ut = uxx + f(x, u, ux)

on the unit interval 0 < x < 1. Just to be specific we consider Neumann boundary
conditions ux = 0 at x = 0, 1. Standard semigroup theory provides local solutions
u(t, x) for t ≥ 0 and given initial data at time t = 0, in suitable Sobolev spaces
u(t, ·) ∈ X ⊆ C1([0, 1],R). Under suitable dissipativeness assumptions on f ∈ C2,
any solution eventually enters a fixed large ball in X. In fact that large ball of initial
conditions itself limits onto the maximal compact and invariant subset Af which is
called the global attractor. See [He81, Pa83, Ta79] for a general PDE background,
and [BaVi92, ChVi02, Edetal94, Ha88, Haetal02, La91, Ra02, SeYo02, Te88] for global
attractors in general.

Equilibria v = v(x) are time-independent solutions, of course, and hence satisfy the
ODE

(1.2) 0 = vxx + f(x, v, vx)

for 0 ≤ x ≤ 1, again with Neumann boundary. Here and below we assume that all
equilibria v of (1.1), (1.2) are hyperbolic, i.e. without eigenvalues (of) zero (real part)
of their linearization. Let E = Ef ⊆ Af denote the set of equilibria. Our generic
hyperbolicity assumption and dissipativeness of f imply that N := |Ef | is odd.

It is known that (1.1) possesses a Lyapunov function, alias a variational or gradient-
like structure, under separated boundary conditions; see [Ze68, Ma78, MaNa97, Hu11,
Fietal14]. In particular, the global attractor consists of equilibria and of solutions
u(t, ·), t ∈ R, with forward and backward limits, i.e.

(1.3) lim
t→−∞

u(t, ·) = v , lim
t→+∞

u(t, ·) = w .

In other words, the α- and ω-limit sets of u(t, ·) are two distinct equilibria v and w.
We call u(t, ·) a heteroclinic or connecting orbit, or instanton, and write v ; w for
such heteroclinically connected equilibria.

We attach the name of Sturm to the PDE (1.1), and to its global attractor Af because
of a crucial nodal property of its solutions which we express by the zero number z. Let
0 ≤ z(ϕ) ≤ ∞ count the number of (strict) sign changes of ϕ : [0, 1]→ R, ϕ 6≡ 0. Then

(1.4) t 7−→ z(u1(t, ·)− u2(t, ·))

is finite and nonincreasing with time t, for t > 0 and any two distinct solutions u1,
u2 of (1.1). Moreover z drops strictly with increasing t, at any multiple zero of x 7−→
u1(t0, x)−u2(t0, x); see [An88]. See Sturm [St1836] for a linear autonomous version. For
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Figure 1.1: A sketch of the 27 spatial profiles v(x), for all equilibria in a solid Sturm

octahedron Af . The equilibria 1, . . . , 27 are ordered by hf0 , hf1 along the left, right vertical
axis x = 0, 1, respectively. Dots • indicate stable sink equilibria 1, . . . , 6 with Morse index
i = 0. Circles ◦ indicate 8 source equilibria 19, . . . , 26 with unstable dimension i = 2. The
i = 3 central equilibrium of the solid octahedron is O = 27. The remaining equilibria 7, . . . , 18
indicate i = 1 saddles. See also figs. 1.2 and 1.3. For the notations vj±, w

ι
± see also fig. 1.5.

a first introduction see also [Ma82, BrFi88, FuOl88, MP88, BrFi89, Ro91, FiSc03, Ga04]
and the many references there.

The dynamic consequences of the Sturm structure are enormous. In a series of papers,
we have given a combinatorial description of Sturm global attractors Af ; see [FiRo96,

FiRo99, FiRo00]. Define the two labeling bijections hf0 , h
f
1 : {1, . . . , N} → Ef of the

equilibria such that

(1.5) hfι (1) < hfι (2) < . . . < hfι (N) at x = ι = 0, 1 .

See figs. 1.1 and 5.1 for specific examples.
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Our combinatorial description is based on the Sturm permutation σf ∈ SN which was
introduced by Fusco and Rocha in [FuRo91] and is defined as

(1.6) σf := (hf0)−1 ◦ hf1 .

Using a shooting approach to the ODE boundary value problem (1.2), the Sturm per-
mutations σf ∈ SN have been characterized as dissipative Morse meanders in [FiRo99];
see also (1.22)–(1.28) below for details. In [FiRo96] we have shown how to determine
which equilibria v, w possess a heteroclinic orbit connection (1.3), explicitly and purely
combinatorially from σf . A remaining puzzle were different, and even nonconjugate,
Sturm permutations which still give rise to C0 orbit-equivalent Sturm attractors; see
also [FiRo16, fig. 5.2]. We will address this puzzle in theorem 2.7 below.

Already at this elementary level, let us mention the four trivial equivalences generated
by the two commuting involutions x 7→ 1 − x and u 7→ −u; see [FiRo16, definition
2.3]. Evidently, the first involution interchanges h0 with h1, and hence replaces the
Sturm permutation σ = h−1

0 ◦h1 by its inverse σ−1. The second involution reverses the
direction of the boundary orders h0, h1. This replaces σ by its conjugate κσκ under
the flip κ(j) := N + 1− j. Trivially, trivial equivalences give rise to trivially C0 orbit-
equivalent Sturm attractors. It is the remaining nontrivial equivalences, most of all,
which theorem 2.7 aims at.

For an explicit example of a Sturm permutation σf which defines a solid octahedral
Sturm global attractor Af see figs. 1.1 – 1.3 and [FiRo16, section 6]. Fig. 1.1 sketches
the spatial profiles v = v(x) for the N = 27 equilibria v ∈ Ef . The boundary label
maps hfι are, specifically,

(1.7)
h0 : 1 10 20 9 4 13 24 17 6 18 5 14 25 15 22 16 23 12 19 27 21 7 26 8 3 11 2 ;

h1 : 1 8 19 9 4 12 23 17 6 16 3 11 22 15 25 18 24 13 20 27 26 7 21 10 5 14 2 .

Fig. 1.2 depicts a stylized shooting meander Mf associated to the octahedral Sturm
permutation σf which results from the boundary labels hfι of the equilibria v ∈ Ef at
x = ι = 0, 1, in ascending order. By (1.6) and (1.7),

(1.8)

σ = {1, 24, 19, 4, 5, 18, 17, 8, 9, 16, 25, 26, 15, 14,

13, 10, 7, 6, 3, 20, 23, 22, 21, 2, 11, 12, 27} =

= (2 24) (3 19) (6 18) (7 17) (10 16) (11 25) (12 26) (13 15) (21 23) .

Indeed, the (v, vx) phase plane of ODE (1.2) at x = 1 features the horizontal v-axis
with equilibrium order hf1 , as a Neumann boundary condition. The meander curve
Mf is the image, at x = 1, which results, by shooting, from the Neumann initial
conditions at x = 1. Hence the intersections of Mf with the horizontal axis represent

the equilibrium set Ef . The ascending labeling hf0 of equilibria, at x = 0, is the ordering

of these intersections along Mf . The ascending labeling hf1 of equilibria, at x = 1, is
the ordering of these same intersections along the horizontal axis.

In fact it is the Sturm property of (1.4) which implies the Morse-Smale property, for
hyperbolic equilibria. Indeed unstable and stable manifolds W u(v), W s(w), which

3
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Figure 1.2: The Sturm meander Mf of the solid octahedron Af of fig. 1.1. Equilibrium

labels above the horizontal h1-axis, and Sturm permutation σf = (hf0)−1 ◦hf1 below. Note how

the shooting curve hf0 and the horizontal axis hf1 follow the equilibrium labels according to
their enumerations in fig. 1.2. Note consistency of all Morse numbers iv with Morse indices
i(v), for all equilibria v, according to fig. 1.1.

intersect precisely along heteroclinic orbits v ; w, are automatically transverse:
W u(v) −t W s(w). See [He85, An86]. In the Morse-Smale setting, Henry already ob-
served, that a heteroclinic orbit v ; w is equivalent to w belonging to the boundary
∂W u(v) of the unstable manifold W u(v−); see [He85].

More geometrically, global Sturm attractors Af and Ag with the same Sturm permuta-
tion σf = σg are C0 orbit-equivalent [FiRo00]. Only for C1-small perturbations, from
f to g, this global fact follows from C0 structural stability of Morse-Smale systems; see
e.g. [PaSm70] and [PaMe82].

For planar Sturm attractors Af , i.e. for equilibrium sets Ef with a maximal Morse
index two [Br90, Jo89, Ro91], a slightly more geometric approach had been initiated
in the planar Sturm trilogy [FiRo08, FiRo09, FiRo10]. It was clarified which planar
graphs H do arise as connection graphs H = Hf of planar Sturm attractors Af , and
which ones do not. Meanwhile, a Schoenflies theorem has also been proved to hold for
the closure W

u
(v) ⊆ X of the unstable manifold W u of any hyperbolic equilibrium

v; see [FiRo15]. In particular W
u
(v) is the homeomorphic Euclidean embedding of a

closed unit ball B
i(v)

of dimension i(v). In [FiRo14] this allowed us to reformulate the
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combinatorial results of [FiRo08, FiRo09, FiRo10], in a more geometric and topological
language, as follows.

We consider finite regular CW-complexes

(1.9) C =
⋃
v∈E

cv ,

i.e. finite disjoint unions of cell interiors cv with additional gluing properties. We think
of the labels v ∈ E as barycenter elements of cv. For CW-complexes we require the
closures cv in C to be the continuous images of closed unit balls Bv under characteristic
maps. We call dimBv the dimension of the (open) cell cv. For positive dimensions of
Bv we require cv to be the homeomorphic images of the interiors Bv. For dimension
zero we write Bv := Bv so that any 0-cell cv = Bv is just a point. The m-skeleton Cm
of C consists of all cells of dimension at most m. We require ∂cv := cv \ cv ⊆ Cm−1 for
any m-cell cv. Thus, the boundary (m− 1)-sphere Sv := ∂Bv = Bv \Bv of any m-ball
Bv, m > 0, maps into the (m− 1)-skeleton,

(1.10) ∂Bv −→ ∂cv ⊆ Cm−1 ,

for the m-cell cv, by restriction of the continuous characteristic map. The map (1.10)
is called the attaching (or gluing) map. For regular CW-complexes, in contrast, the
characteristic maps Bv → cv are required to be homeomorphisms, up to and including
the attaching (or gluing) homeomorphism. We moreover require ∂cv to be a sub-
complex of Cm−1, then. See [FrPi90] for a background on this terminology.

The disjoint dynamic decomposition

(1.11) Af =
⋃
v∈Ef

W u(v)

of the global attractor Af into unstable manifolds W u of equilibria v is called the
Thom-Smale complex or dynamic complex ; see for example [Fr79, Bo88, BiZh92]. In
our Sturm setting (1.1) with hyperbolic equilibria v ∈ Ef , the Thom-Smale complex is
a finite regular CW-complex. The open cells cv are the unstable manifolds W u(v) of the
equilibria v ∈ Ef . The proof is closely related to the Schoenflies result of [FiRo15]; see
[FiRo14]. We can therefore define the Sturm complex Cf to be the regular Thom-Smale
dynamic complex

(1.12) Cf :=
⋃
v∈Ef

W u(v)

of the Sturm global attractor Af , provided all equilibria v ∈ Ef are hyperbolic. Again
we call the equilibrium v ∈ Ef the barycenter of the cell cv = W u(v).

A planar Sturm complex Cf , for example, is the Thom-Smale complex of a planar
Sturm global attractor Af for which all equilibria v ∈ Ef have Morse indices i(v) ≤ 2.
See section 3 for a detailed discussion, based on our planar Sturm trilogy [FiRo08,
FiRo09, FiRo10]. See fig. 1.3 for the Sturm complex of the solid octahedron attractor
Af defined by the Sturm permutation σf of (1.8) and figs. 1.1, 1.2.
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Figure 1.3: Sketch of the labeling bijections (hf0 , h
f
1) in the bipolar dynamic 3-cell complex

of the solid octahedron Af of fig. 1.1. The backwards face 1 2 3 of the octahedron is exterior.
Note the hemisphere decomposition W, E by the two meridians EW and WE from pole N
to pole S. The paths hfι with respect to equilibrium labels in the figure are listed in (1.7). See
also (1.8) for the resulting Sturm permutation σ = h−1

0 ◦ h1, and fig. 1.2 for the resulting
Sturm meander.

Our main objective, in the present trilogy of papers, is a geometric and combinatorial
characterization of those global Sturm attractors, which are the closure

(1.13) Af = clos W u(O)

of the unstable manifold W u of a single equilibrium v = O with Morse index i(O) = 3.
We call such an Af a 3-ball Sturm attractor. Recall that we assume all equilibria v ∈ Ef
to be hyperbolic: sinks have Morse index i = 0, saddles have i = 1, and sources i = 2.
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Figure 1.4: A 3-cell template. Shown is the S2 boundary of the single 3-cell cO with poles
N, S, hemispheres W (green), E and separating meridians EW, WE (green). The right
and the left boundaries denote the same EW meridian and have to be identified. Dots •
are sinks, and small circles ◦ are sources. Note the hemisphere decomposition (ii), the edge
orientations (iii) at meridian boundaries, and the meridian overlaps (iv) of the N-adjacent
meridian faces ⊗ = wι− with their S-adjacent counterparts � = wι+. For wι± see also (1.29).
For a specific octahedron example see fig. 1.3.

This terminology also applies when viewed within the flow-invariant and attracting
boundary 2-sphere

(1.14) Σ2 = ∂W u(O) := (clos W u(O)) rW u(O) .

Correspondingly we call the associated cells cv = W u(v) of the dynamic cell complex,
or of any regular cell complex, vertices, edges, and faces. The graph of vertices and
edges, for example, defines the 1-skeleton C1 of the 3-ball cell complex C =

⋃
v cv.

For a geometric characterization of 3-ball Sturm attractors Af in (1.13), by their dy-
namic complexes (1.11), we now drop all Sturmian PDE interpretations. Instead we
define 3-cell templates, abstractly, in the class of regular cell complexes and without
any reference to PDE or dynamics terminology. See fig. 1.4 for an illustration.

Definition 1.1. A finite disjoint union C =
⋃
v∈E cv of cells cv is called a 3-cell tem-

plate if C is a regular cell complex and the following four conditions all hold.

(i) C = clos cO = S2 ∪̇ cO is the closure of a single 3-cell cO.

(ii) The 1-skeleton C1 of C possesses a bipolar orientation from a pole vertex N
(North) to a pole vertex S (South), with two disjoint directed meridian paths
WE and EW from N to S. The circle of meridians decomposes the boundary
sphere S2 into remaining hemisphere components W (West) and E (East), both
open in S2.

7



(iii) Edges are oriented towards the meridians, in W, and away from the meridians,
in E, at end points on the meridians other than the poles N, S.

(iv) Let NE, SW denote the unique faces in W, E, respectively, which contain the
first, last edge of the meridian WE in their boundary. Then the boundaries of
NE and SW overlap in at least one shared edge of the meridian WE.

Similarly, let NW, SE denote the unique faces in W, E, adjacent to the first,
last edge of the other meridian EW, respectively. Then their boundaries overlap
in at least one shared edge of EW.

We recall here that an edge orientation of the 1-skeleton C1 is called bipolar if it is
without directed cycles, and with a single “source” vertex N and a single “sink” vertex
S on the boundary of C. Here “source” and “sink” are understood, not dynamically
but, with respect to edge orientation. To avoid any confusion with dynamic i = 0 sinks
and i = 2 sources, below, we call N and S the North and South pole, respectively.

With the above notation and definition we can now formulate the main result of the
present paper.

Theorem 1.2. Let C =
⋃
v∈E cv be a finite disjoint union of cells. Then C = Cf is the

Thom-Smale dynamic cell complex of a 3-ball Sturm attractor Af if, and only if, C is
a 3-cell template. More precisely, there exists a cell-preserving homeomorphism

(1.15) Φ : C =
⋃
v∈E

cv −→
⋃
v∈Ef

W u(v) = Cf = Af

with Φ(cv) = W u (Φ(v)).

Here Φ also identifies the abstract labels v ∈ E of the cells cv with the generating equilib-
ria Φ(v) ∈ Ef of the unstable manifolds W u(v) of Morse index dimension dim cv = i(v).

In [FiRo14] we have proved a precursor of theorem 1.2: any finite regular cell complex
which is the closure of a single 3-cell is, in fact, the dynamic complex of a suitable
Sturm 3-ball. This requires condition (i) of definition 1.1, only. The full geometric
characterization of Sturm 3-balls as 3-cell templates, in theorem 1.2, is much more
detailed, of course. It turns out that any finite regular 2-sphere complex possesses a
bipolar orientation, with edge adjacent poles, and a hemisphere decomposition, with
a single Western face, which defines a 3-cell template. Therefore theorem 1.2 refines
[FiRo14].

In section 2 we translate the geographic language of definition 1.1, for 3-cell templates,
into the broader concept of signed hemisphere decompositions. At the heart of this is
a convenient notational variant of the zero number z. We write

(1.16) z(ϕ) = j±

to indicate j strict sign changes of ϕ, by j, and ±ϕ(0) > 0, by the index ±. For
example z(±ϕj) = j±, for the j-th Sturm-Liouville eigenfunction ϕj. By the Schoenflies

8



result [FiRo15] and [FiRo16, proposition 3.1] this provides a disjoint signed hemisphere
decomposition

(1.17) ∂W u(v) =
⋃

0≤j<i(v)

Σj
±(v)

of the boundary sphere Σi(v)−1 = ∂W u(v) of any unstable manifold, such that

(1.18) Σj
±(v) :=

⋃
v;w

z(w−v)=j±

W u(w) .

For the fast unstable manifolds W k of v with dimensions 1 ≤ k ≤ i(v), we obtain
analogously

(1.19) ∂W k(v) =
⋃

0≤j<k

Σj
±(v) .

See (2.8)–(2.15) for details. With the abbreviation Σj
±:= Σj

±(O), the translation
table between the signed hemispheres decomposition (1.17), (1.18) of ∂W u(O) =
AfrW u(O), for the Sturm 3-ballAf in theorem 1.2, and the geographic 3-cell template
C of definition 1.1, is as follows:

(1.20)

(Σ0
−,Σ

0
+) 7→ (N,S)

(Σ1
−,Σ

1
+) 7→ (EW,WE)

(Σ2
−,Σ

2
+) 7→ (W,E) .

In theorem 2.6 below we refine theorem 1.2, such that the homeomorphism Φ respects
a signed hemisphere decomposition, not only for ∂W u(O) but, for the sphere boundary
∂W u(v) of any unstable manifold in Af . In theorem 2.7 we will show how the Sturm
permutation σf , and therefore the Sturm global attractor Af itself (up to C0 orbit
equivalence), is determined uniquely by the signed hemisphere decompositions (1.17),
(1.18).

As an elementary example, in section 3, we review and adapt our results from the planar
trilogy [FiRo08, FiRo09, FiRo10] to the present setting of signed hemispheres. Our
focus is on the equivalence of boundary bipolar orientations with the above language
of signed hemisphere decompositions and fast unstable manifolds. In particular we
recall, and justify, the face transition rules of [FiRo16, definition 2.2] for ZS-pairs
(h0, h1) in bipolar planar cell complexes, in corollary 3.2, using the language of signed
hemisphere complexes.

In [FiRo16, theorem 5.2] of part 1 we have associated a certain Sturm global attractor
Af to any abstractly given 3-cell template C. In fact we have constructed abstract
paths hι in C, for ι = 0, 1, by recipe or decree ex cathedra, such that the abstract
permutation

(1.21) σ := h−1
0 ◦ h1

9



was a dissipative Morse meander and hence, by [FiRo96], a Sturm permutation σ = σf
for some concrete nonlinearity f .

Let us now recall this terminology in some detail. Abstractly, a meander is an ori-
ented planar C1 Jordan curveM which crosses a positively oriented horizontal axis at
finitely many points. The curve M is assumed to run from Southwest to Northeast,
asymptotically, and all N crossings are assumed to be transverse; see [Ar88, ArVi89].
Note N is odd. Enumerating the N crossing points v ∈ E along the meander M and
along the horizontal axis, respectively, we obtain two labeling bijections

(1.22) h0, h1 : {1, . . . , N} → E .

Define the meander permutation σ ∈ SN as

(1.23) σ := h−1
0 ◦ h1.

We call the meander M dissipative if

(1.24) σ(1) = 1, σ(N) = N

are fixed under σ. We define Morse numbers iv for the intersections v ∈ E of the
meander M with the horizontal h1-axis, recursively, by

(1.25)
ih0(1) := ih0(N) := 0 ,

ih0(j+1) := ih0(j) + (−1)j+1sign(σ−1(j + 1)− σ−1(j)) .

Equivalently, by recursion along h1:

(1.26)
ih1(1) := ih1(N) := 0 ,

ih1(j+1) := ih1(j) + (−1)j+1sign(σ(j + 1)− σ(j)) .

Note how the enumeration of intersections v ∈ E by hι: {1, . . . , N} → E depends on hι,
of course, but the Morse numbers iv only depend on the Sturm permutation σ which
defines the meander M.

We call the meander M Morse, if

(1.27) iv ≥ 0 ,

for all v ∈M.

We call M Sturm meander, if M is a dissipative Morse meander; see [FiRo96]. Con-
versely, given any permutation σ ∈ SN , we can define an associated curveM of arches
over the horizontal axis which switches sides at the intersections E = {1, . . . , N} on
the axis, in the order of σ. This fixes the labeling h1 = id and h0 = σ−1. A Sturm
permutation σ is a permutation such that the associated curveM is a Sturm meander.
The main paradigm of [FiRo96] is the equivalence of Sturm meandersM with shooting
curves of the Neumann ODE problem (1.2). In fact, the Neumann shooting curve is
a Sturm meander, for any dissipative nonlinearity f with hyperbolic equilibria. Con-
versely, for any permutation σ of a Sturm meander M there exist dissipative f with

10



hyperbolic equilibria such that σ = σf is the Sturm permutation of f . In particular,
the intersections v of the meander M with the horizontal v-axis are the boundary
values of the equilibria v ∈ Ef at x = 1, and the Morse number

(1.28) iv = i(v)

is the Morse index of v. For that reason we have used closely related notation to
describe either case.

In particular, (1.28) extends the terminology of sinks iv = 0, saddles iv = 1, and
sources iv = 2 to abstract Sturm meanders. We insist, however, that our above defini-
tion (1.22)–(1.27) is completely abstract and independent of this ODE/PDE interpre-
tation.

For example, consider the case iO = 3 of a single intersection v = O with Morse
number 3. Suppose iv ≤ 2 for all other Morse numbers. Then (1.25) implies i = 2 for
the two h0-neighbors h0(h−1

0 (O)±1) of O along the meanderM. In other words, these
neighbors are both sources. The same statement holds true for the two h1-neighbors
h1(h−1

1 (O) ± 1) of O along the horizontal axis. To fix notation, we denote these hι-
neighbors by

(1.29) wι± := hι(h
−1
ι (O)± 1) ,

for ι = 0, 1. The hι-extreme sources are the first and last source intersections v of the
meander M with the horizontal axis, in the order of hι.

Reminiscent of cell template terminology, we call the extreme sinks N = h0(1) = h1(1)
and S = h0(N) = h1(N) the (North and South) poles of the Sturm meander M. A
polar hι-serpent, for ι = 0, 1, is a set of v = hι(m) ∈ E for a maximal interval of integers
m which contains a pole, N or S, such that

(1.30) ihι(m) ∈ {0, 1}

for all m. To visualize the serpent we often include the meander or axis path joining v
in the serpent. See figs. 1.2 and 1.5 for examples. We call N-polar serpents and S-polar
serpents anti-polar to each other. An overlap of anti-polar serpents simply indicates a
nonempty intersection. For later reference, we call a polar hι-serpent full if it extends
all the way to the saddle which is h1−ι-adjacent to the opposite pole. Full hι-serpents
always overlap with their anti-polar h1−ι-serpent, of course, at least at that saddle.

Definition 1.3. An abstract Sturm meander M with axis intersections v ∈ E is called
a 3-meander template if the following four conditions hold, for ι = 0, 1.

(i) M possesses a single axis intersection v = O with Morse number iO = 3, and no
other Morse number exceeds 2.

(ii) Polar hι-serpents overlap with their anti-polar h1−ι-serpents in at least one shared
vertex.

(iii) The intersection v = O is located between the two intersection points, in the order
of h1−ι, of the polar arc of any polar hι-serpent.

11
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Figure 1.5: A 3-meander template. Note the N-polar h1-serpent N = v2n
+ . . . vν+ terminated

at vν+ by the source w0
− which is, both, h1-extreme minimal and the lower h0-neighbor of

O. This serpent overlaps the anti-polar, i.e. S-polar, h0-serpent vν
′

+ . . . vν+ . . . v
0
+ = S, from

vν
′

+ to vν+. Similarly, the N-polar h0-serpent N = v0
− . . . v

µ′

− overlaps the anti-polar, i.e. S-

polar, h1-serpent vµ− . . . v
µ′

− . . . v
2n
− = S, from vµ− to vµ

′

− . The h1-neighbors w1
± of O are the

h0-extreme sources, by the two polar h0-serpents. Similarly, the h0-neighbors w0
± of O define

the h1-extreme sources. Compare also the octahedral example of fig. 1.2.

(iv) The hι-neighbors wι± of v = O are the i = 2 sources which terminate the polar
h1−ι-serpents.

See fig. 1.5 for an illustration of 3-meander templates. Property (iv), for example,
asserts that the hι-neighbor sources wι± of O are the h1−ι-extreme sources, for ι = 0, 1.
For the Sturm boundary orders hfι this is a useful exercise in polar serpents; see [FiRo16,
lemma 4.3(iii)].

In [FiRo16, theorem 5.2] we have established the passage

(1.31) 3-cell template =⇒ 3-meander template ,

based on the above construction. The 3-meander template M and its Sturm permu-
tation σ = h−1

0 h1, in turn, define a Sturm nonlinearity f such that σf = σ. Let Af
denote the Sturm global attractor of f .
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In theorem 5.1 below, we claim that Af is in fact a Sturm 3-ball. We prepare the
proof, in section 4, by a formal scoop of noses and signed hemispheres, which does not
affect heteroclinic connectivity in the closure of the opposite hemisphere; see (4.4) and
definition 4.2.

We prove the refined version, theorem 2.6, of theorem 1.2, and uniqueness theorem 2.7
on the Sturm permutations of prescribed Sturm 3-cell templates, in the final section 7.
This is based on the crucial identity

(1.32) hfι = hι

between the labeling orders hfι : {1, . . . , N} → Ef of equilibria v ∈ Ef , according to
the order of their boundary values v(x) at x = ι = 0, 1, and the SZS labeling paths
hι in the abstract Sturm complex C = Cf of the cells cv = W u(v), for all v ∈ E = Ef .
More precisely we will prove (1.32) for the scoops ȟι and the paths h±ι defined by the
abstract planar signed hemisphere complexes; see lemma 6.1. In particular, the signed
hemisphere complexes Csf of Sturm 3-ball attractors are in one-to-one correspondence
with 3-template cell complexes, which are signed complexes Cs, via the translation table
(1.20). This shows that any prescribed 3-cell template C can be realized as the signed
hemisphere complex Csf of a Sturm 3-ball attractor Af . It also shows how C determines
σ = σf uniquely; see theorem 2.7. Moreover it closes the cycle of implications

(1.33) Sturm attractor

px

Thom-Smale complex +3 meander

dl

for Sturm 3-balls.
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2 Signed hemispheres

The basic tool in the proof of our main theorem 1.2, and its refinements, is a detailed
analysis of the signed zero number

(2.1) z(ϕ) = j± ,
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which denotes z(ϕ) = j and ±ϕ(0) > 0; see (1.16). In definition 2.1 below, this is used
to define configurations of Sturm equilibria v ∈ Ef which we call signed hemisphere
templates. We recall how to derive the relevant information from Sturm permutations
σf , directly and explicitly. For independent readability later on, we also discuss Morse

indices i(v) and (signed) connection graphs H(s)
f , briefly. Proposition 2.2 recalls, from

[FiRo16], how signed zero numbers relate to the hemisphere decomposition by bound-
aries ∂W j of fast unstable manifolds W j. In proposition 2.3 we return to the planar
and 3-ball cases, to summarize how the boundary label paths hfι of the equilibrium
orders (1.5) at x = ι = 0, 1 traverse edges W u(v) of i(v) = 1 saddles, faces W u(v)
of i(v) = 2 sources, and the 3-ball W u(O) of i(O) = 3, in the Thom-Smale dynamic
complex Cf of a Sturm 3-ball Af . We compare this description with the formal defini-
tion of formal ZS-pairs and SZS-pairs (h0, h1) in 3-ball templates. Compare [FiRo16,
definitions 2.2, 5.1] and definitions 2.4, 2.5 below. Noting the equivalence of proposi-
tion 2.3 and definition 2.5, in section 7, will prove theorem 2.6 which refines our main
theorem 1.2: we establish the existence of a Sturm 3-ball attractor Af such that the
signed Thom-Smale complex Csf of Af coincides with any prescribed 3-cell template
(1.20). The equivalence is by a cell-preserving signed homeomorphism Φs, as in (1.15),
which also preserves the additional sign structure. We conclude, in theorem 2.7, by
stating uniqueness of the Sturm permutation σf , as defined by the prescribed 3-cell
template.

Let Af be any Sturm global attractor. Recall how Af comes with boundary label

paths hfι , the Sturm permutation σf = (hf0)−1 ◦ hf1 and its meander Mf , the set Ef
of (hyperbolic) equilibria, and heteroclinic orbits w ; v between certain equilibria
w, v ∈ Ef . We write

(2.2) v ;± w ,

if v ; w and ±(w − v) > 0 at x = 0, respectively. The directed connection graph Hf

consists of the equilibrium vertices Ef and directed edges w ; v, indicating heteroclinic
orbits between equilibria of adjacent Morse indices i(w) = i(v) + 1. Due to a cascading
principle, general heteroclinic orbits w ; v, between not necessarily adjacent Morse
levels i, are equivalently represented by di-paths in Hf ; see [BrFi89, FiRo96] and the
summary in [FiRo16]. The signed connection graph Hs

f , analogously, features signed
directed edges ;±, instead.

Fix any unstable equilibrium v ∈ Ef , with Morse index i(v) = dimW u(v) > 0. We
decompose the heteroclinic targets v ; w according to their signed zero number (2.1)
as

(2.3)
E j±(v) := {w ∈ Ef | v ;± w , z(w − v) = j}

= {w ∈ Ef | v ; w , z(w − v) = j±} .

Here 0 ≤ j < i(v), because j = z(u − v) < i(v) for all u ∈ clos W u(v) r {v}; see
[BrFi86].

Definition 2.1. We call the partitions E j±(v), 0 ≤ j < i(v), of the equilibria w ∈
∂W u(v), the signed hemisphere template of the Sturm attractor Af .

14



In the special case of a Sturm 3-ball Af we call these partitions the signed 2-hemisphere
template.

The relevant Morse and Sturm data i(v) and z(w− v) can easily be derived, explicitly,
from the labeling paths hι = hfι ∈ SN in (1.5) and the Sturm permutation σ = σf =

(hf0)−1 ◦ hf1 , as follows. Recursively, the Morse numbers iv, v ∈ Ef have been defined
in (1.21). Then [FuRo91] have shown that

(2.4) i(v) = iv

for all v ∈ Ef . Similarly, define the zero numbers zv1v2 for v1, v2 ∈ Ef , recursively, as

(2.5)

zvv := i(v) ,

zh0(j+1)h0(k) := zh0(j)h0(k) + 1
2
(−1)j+1·

·
[
sign

(
σ−1(j + 1)− σ−1(k)

)
− sign

(
σ−1(j)− σ−1(k)

)]
.

Then [Ro91, FiRo96] have shown that

(2.6) z(w − v) = zwv .

for equilibria w 6= v. The signed version of (2.6) follows easily from sign(h−1
0 (w) −

h−1
0 (v)).

Definition 2.1 in fact provides partitions of the equilibria w ∈ ∂W u(v), with the excep-
tion of those w which are never the target of any heteroclinic orbit v ; w from some
equilibrium v with higher Morse index i(v) > i(w). In the case of signed 2-hemisphere
templates, this only excludes the 3-ball equilibrium w = O with i(w) = 3. To see
this we invoke the Morse-Smale property again; see section 1. Indeed all equilibria
w ∈ ∂W u(v) are then targets of heteroclinic orbits v ; w. This shows the equivalence
of the connection graph Hf with the incidence relations,

(2.7) v ; w ⇐⇒ cw ⊆ ∂cv .

in the Sturm complex of cells cw ⊆ ∂cv. For example, any equilibrium w 6= O satisfies
w ∈ ∂W u(O), and is therefore the target of a heteroclinic orbit O ; w.

Our definition 2.1 of signed hemisphere templates differs slightly from the corresponding
notion in [FiRo16, definition 1.1]. To clarify this point we have to recall first how the
Schoenflies result [FiRo15] provides a disjoint hemisphere decomposition

(2.8) ∂W u(v) =
⋃

0≤j<i(v)

Σj
±

of the topological boundary ∂W u:= clos W u(v) r W u(v) of the unstable manifold
W u(v), for any hyperbolic equilibrium v. The construction of the disjoint hemispheres
Σj
± = Σj

±(v) can be summarized as follows. For 1 ≤ j ≤ i(v), let W j denote the
j-dimensional fast unstable manifold of v. The tangent space to W j at v is spanned
by the eigenfunctions ϕ0, . . . , ϕj−1 of the linearization of (1.2) at v, for the first j
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eigenvalues λ0 > . . . > λj−1 > 0. Consider any orbit u(t, ·) ∈ W j+1 rW j, t ∈ R. Then

(2.9) lim
t→−∞

(u (t, ·)− v) / |u (t, ·)− v| = ±ϕj ;

by normalization of ϕj in the appropriate norm of the phase space X ↪→ C1. Here and
below we fix signs such that ϕj(0) > 0. In particular, the signed zero number z of (1.4)
satisfies

(2.10) lim
t→−∞

z (u (t, ·)− v) = z(±ϕj) = j± .

See [BrFi86] for further details on the construction of W j.

The signed hemispheres Σj
± are defined, recursively, by the disjoint unions

(2.11) Σj := ∂W j+1 = Σj
− ∪ Σj

+ ∪ Σj−1 ,

for 0 ≤ j < i(v), with the convention Σ−1:= ∅. The hemisphere closures

(2.12) clos Σj
± = Σj

± ∪̇Σj−1

can be obtained as ω-limit sets of protocap hemispheres which are C1-small, nearly
parallel, perturbations of clos W j in clos W j+1, in the eigendirections±ϕj, respectively.
In particular (2.9), (2.10) hold in the interior of the protocaps, and for any heteroclinic
orbit v ; w ∈ Σj

±. See [FiRo15] for complete details.

The following proposition was proved in [FiRo16, proposition 3.1], again with the
abbreviations Σj

± = Σj
±(v).

Proposition 2.2. With the above notation the following statements hold true for equi-
libria v, w, w1, w2, and all 0 ≤ j < i(v):

w ∈ Σj =⇒ i(w) ≤ j(i)

w ∈ Σj =⇒ z(w − v) ≤ j(ii)

w ∈ Σj
± =⇒ z(w − v) = j±(iii)

w1, w2 ∈ clos Σj
+ or w1, w2 ∈ clos Σj

− =⇒ z(w1 − w2) ≤ j − 1 .(iv)

In [FiRo16, definition 1.1] the sets E j±(v) of the signed hemisphere templates (2.3) had
been defined as

(2.13) Ẽ j±(v) := Ef ∩ Σj
±(v) ,

instead. By proposition 2.2(iii), the sets E j±(v) and Ẽ j±(v) coincide, for each j.

Conversely, we can describe the signed hemispheres Σj
±(v) directly, via the signed

hemisphere template (2.3) of equilibrium sets E j±(v). Indeed (1.18) now reads

(2.14) Σj
±(v) =

⋃
w∈Ej±(v)

W u(w) .
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This allows us to define a signed Sturm complex Csf , as a refinement of the Sturm
complex Cf with (regular) Thom-Smale cells W u(v), v ∈ Ef . We simply keep track, in
Csf , which cells W u(w) of Cf belong to which hemisphere Σj

±(v) in the signed hemisphere
decomposition of Cf .

We now focus on the case of a Sturm 3-ball Af . Our next proposition describes, in
terms of the dynamic cell decompositions of Af by the Thom-Smale cells cv ∈ W u(v),
how the labeling bijections hfι , ι = 0, 1, traverse each cell. Let 0 < n:= i(v) ≤ 3 be the
Morse index of v. For fixed n, consider sequences s = s0 . . . sn−1 of n symbols si ∈ {±}.
In fact, let us restrict to the four cases of constant and alternating sequences of signs
si. For any such prescribed sequence s = s0 . . . sn−1 let w = w(s) ∈ Σn−1

sn−1
(v) denote

the unique equilibrium such that v ; w starts a heteroclinic cascade

(2.15) v ; vn−1 ; . . .; v0

with w = vn−1 and vi ∈ Σi
si

(v) of descending Morse indices i(vi) = i = n − 1, . . . , 0.
Equivalently, by (2.7), we may express the same definition on the level of Thom-Smale
cells as

(2.16) cvi ⊆ ∂cvi+1
∩ Σi

si
(v) ,

with v = vn, w = wn−1, and vi ∈ Σi
si

(v) of ascending Morse indices i(vi) = i =
0, . . . , n− 1.

Again, we do not claim existence of w(s) except in the four cases of constant and
alternating signs si. Uniqueness of w(s), for given symbol sequence s, can be proved
by induction on n. For some v, however, certain equilibria w(s) with different symbol
sequences may happen to coincide.

Proposition 2.3. Fix 0 < n:= i(v) ≤ 3, ι = 0, 1, and assume v ∈ Ef is not already
directly preceded, or directly followed, by an equilibrium of higher Morse index than
n = i(v), along the labeling bijection hfι : {1, . . . , N} → Ef . Then the unclaimed parts
of hfι through v follow the template table

hf0 hf1
n = i(v) = 1 . . . w(−) v w(+) . . . . . . w(−) v w(+) . . .
n = i(v) = 2 . . . w(+−) v w(−+) . . . . . . w(++) v w(−−) . . .
n = i(v) = 3 . . . w(−+−) v w(+−+) . . . . . . w(−−−) v w(+ + +) . . .

Proof. By adjacency (1.25), (1.26) of Morse indices for hι-adjacent equilibria, we only
have to consider the case i(w) = n − 1, i(v) = n for the w-entries in the table. In
particular, the unique heteroclinic orbits u(t):= v ; w imply z(w − v) = (n − 1)sn−1

with

(2.17) sn−1 =

{
sign (h0(w)− h0(v)) , for ι = 0 ,

(−1)n−1 sign (h1(w)− h1(v)) , for ι = 1 .
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This fixes the last entries sn−1 in the arguments s of w(s) in the table, and takes care
of the trivial case n = 1.

For n = 2 let w denote the direct hf0 -successor of v. We may assume i(w) = i(v)−1 = 1,
or else nothing has been claimed. Hence w ∈ Σ1

+(v). We have to show w = w(−+),
i.e. N(v):= Σ0

−(v) = Σ0
−(w)=: N(w). Suppose, indirectly, that N(w) 6= N(v). Then

(2.18) N(v) < N(w) < w .

Indeed, the right inequality holds by definition, for all 0 ≤ x ≤ 1. Moreover w ∈ Σ1
+(v)

implies N(w) ∈ clos Σ1
+(v) ≥ N(v), by invariance. Hence N(w) 6= N(v) implies the

left inequality of (2.18). Because w is the direct hf0 -successor of v 6= N(w), we can also
conclude

(2.19) N(w) < v

at x = 0. Since w ∈ Σ1
+(v) implies z(w − v) = 1+, the same inequality (2.19) holds

at x = 1, because N(w) < w < v there. Since N(w) ∈ clos Σ1
+(v) ⊆ Σ1(v) implies

z(N(w)− v) ≤ 1, by proposition 2.2(ii), we conclude that (2.19) holds for all 0 ≤ x ≤
1. But then z-dropping (1.4) and N(w) > N(v) block the heteroclinic orbit u(t, ·):
v ; N(v) = Σ0

−(v), which exists by definition. Indeed z(u(t, ·)−N(w)) = 0± for large
±t > 0 would have to drop below zero when u(t0, ·) = N(w) at the Neumann boundary
x = 0. This contradiction shows Σ0

−(w) = N(w) = N(v) = Σ0
−(v) and hence confirms

w = w(−+). The remaining cases for n = i(v) = 2 are omitted because they are
analogous, thanks to the four trivial equivalences generated by x 7→ 1−x and u 7→ −u;
see our introduction and [FiRo16, definition 2.3] .

The above idea of blocking heteroclinic orbits by elementary arguments on z-dropping
goes back to [BrFi88, BrFi89]. For a refined version due to Wolfrum see lemma 5.2
below.

It remains to address the case n = i(v) = 3, i.e., v = O. The four trivial equivalences,
again, reduce the problem to showing that w(− + −) is the h0-predecessor of O. We
invoke [FiRo16, theorem 4.1]. There, it was shown that the Thom-Smale complex
cv = W u(v) of any Sturm 3-ball is in fact a 3-cell template with the translation table
(1.20) between signed hemispheres and geographic terminology. In fig. 1.4 of the general
3-cell template, this identifies w(−+−) as the source

(2.20) w0
− = w(−+−)

of the face NE. Indeed NE is the unique face of W = Σ2
−(O), which is adjacent to the

unique 1-cell W u(v1) of WE = Σ1
+(O) which, in turn, is itself adjacent to the unique

0-cell v0 = N = Σ0
−(O). See (2.16) and (2.15).

We show that O is the direct h0-successor of w0
−. We first claim

(2.21) Σ1
+(w0

−) ⊆WE = Σ1
+(O) .

By definition 1.1(iii), the non-meridian edges of the cell boundary ∂cw0
−

are oriented to-

wards the unique boundary minimum Σ0
+(w0

−) ⊆WE∪S. Hence one of the hemisphere
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Figure 2.1: Traversing a face vertex v by a ZS-pair (h0, h1). Note the resulting shapes “Z”
of h0 (red) and “S” of h1 (blue). The paths hι may also continue into neighboring faces,
beyond wι±, without turning into the face boundary ∂c.

boundaries Σ1
±(w0

−) must be entirely contained in the meridian WE = Σ1
+(O). For

the boundary Σ1
−(w0

−), this is impossible because w0
− ∈ Σ2

−(O) implies Σ1
−(w0

−) < O at
x = 0, rather than Σ1

−(w0
−) > O. This proves claim (2.21).

Next suppose, indirectly, that O is not the direct h0-successor of w0
−. Then the current

proposition applies to v:= w0
− with Morse index i(v) = 2. This identifies the direct h0-

successor of v = w0
− to be the unique equilibrium w with 1-cell cw ⊆ Σ1

+(w0
−) adjacent

to Σ0
−(w0

−) = N. By (2.21) this implies

(2.22) w ∈ Σ1
+(w0

−) ⊆ Σ1
+(O) .

Evaluation at x = 0, in proposition 2.2(iii), provides the right inequality of

(2.23) w0
− < O < w ,

at x = 0. Likewise, the left inequality at x = 0 follows from w0
− = w(−+−) ∈ Σ2

−(O);
see (2.20). Therefore w cannot be the direct h0-successor of w0

−.

This contradiction to the definition of w proves the proposition. ./

In [FiRo16, definitions 2.2 and 5.1] we have introduced formal ZS-pairs and SZS-pairs of
paths (h0, h1) associated to bipolar planar cell complexes and 3-cell templates, respec-
tively. In the following sections we will see how these formal recipes coincide, precisely,
with the template table of proposition 2.3, for the traversals of the Sturm paths (hf0 , h

f
1)

through the dynamic cells cv = W u(v) of planar and 3-ball Sturm attractors, in terms
of their signed hemisphere decompositions.

More precisely, let us first recall [FiRo16, definition 2.2]; see also [FiRo09]. Let C =⋃
v∈E cv ⊆ R2 be a finite regular planar cell complex with boundary bipolar orientation

of the 1-skeleton C1. Let v indicate any source, i.e. the barycenter of a 2-cell face
cv in C. By planarity of C it turns out that the bipolar orientation of C1 defines
unique orientation extrema on the boundary circle ∂cv of the 2-cell cv. Let w0

− be the
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Figure 2.2: The SZS-pair (h0, h1) in a 3-cell template C, with poles N,S, hemispheres W,E
and meridians EW,WE. Left, (a): schematics of the 3-cell template, as in fig. 1.4. Right,
(b): schematics of the SZS-pair. Dashed lines indicate the hι-ordering of vertices in the closed
hemisphere, when O and the other hemisphere are ignored, according to definition 2.5(i).
The actual paths hι tunnel, from wι− ∈W through the 3-cell barycenter O, and re-emerge at

wι+ ∈ E, respectively. Note the boundary overlap of the faces NW,SE of w1
−, w

0
+ from vµ−1

−
to vµ

′+1
− on the EW meridian. Similarly, the boundaries of the faces NE,SW of w0

−, w
1
+

overlap from vν−1
+ to vν

′+1
+ along WE.

barycenter on ∂cv of the edge to the right of the minimum, and w0
+ the edge barycenter

to the left of the maximum. Similarly, let w1
− be the edge barycenter to the left of the

minimum, and w1
+ to the right of the maximum. See fig. 2.1.

Definition 2.4. The paths of labeling bijections h0, h1: {1, . . . , N} → E are called a
ZS-pair (h0, h1) in the finite, regular, planar and bipolar cell complex C =

⋃
v∈E cv if

the following three conditions all hold true:

(i) h0 traverses any face cv as . . . w0
−vw

0
+ . . .

(ii) h1 traverses any face cv as . . . w1
−vw

1
+ . . .

(iii) both hι follow the bipolar orientation of the 1-skeleton C1, if not already defined
by (i), (ii).

We call (h0, h1) an SZ-pair, if (h1, h0) is a ZS-pair, i.e. if the roles of h0 and h1 in the
rules (i) and (ii) of the face traversals are reversed.
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This definition enters the variant of unique SZS-Pairs (h0, h1), [FiRo16, definition 5.1],
associated to 3-cell templates, as follows. See fig. 2.2 for an illustration.

Definition 2.5. Let C =
⋃
v∈E cv be a 3-cell template with oriented 1-skeleton C1, poles

N,S, hemispheres W,E, and meridians EW, WE. A path pair (h0, h1) of labeling
bijections hι: {1, . . . , N} → E is called the SZS-pair assigned to C if the following two
conditions hold.

(i) The restrictions of range hι to clos W form an SZ-pair (h0, h1), in the closed
Western hemisphere. The analogous restrictions form a ZS-pair (h0, h1) in the
closed Eastern hemisphere clos E. See definition 2.4.

(ii) In the notation of fig. 2.2, and for each ι = 0, 1, the paths hι traverse O in the
orders . . . wι−Owι+ . . ., respectively.

In [FiRo16, theorem 5.2] we have show that the permutation

(2.24) σ := h−1
0 ◦ h1

associated to the SZS-pair (h0, h1) of any 3-cell template C is a Sturm meander, i.e.
σ is a dissipative Morse meander in the sense of [FiRo96]. In particular there exists
a dissipative nonlinearity f with hyperbolic equilibria in (1.1), such that the Sturm
permutation σf coincides with the formal permutation σ associated to (the SZS-pair
(h0, h1) of) the arbitrarily prescribed 3-cell template C:

(2.25) σf = σ .

Moreover, σf comes with the associated Sturm global attractor Af , equilibria Ef and
the Thom-Smale regular cell complex Cf =

⋃
v∈Ef cv, cv = W u(v); see (1.12).

Roughly speaking our main theorem 1.2 claims

(2.26) Cf = C ,

by a cell preserving homeomorphism (1.15). To refine this statement, in view of the
signed hemisphere decompositions (2.3), (2.13) of the equilibria Ef into E j±(v), and
of the sphere boundaries Σj(v) = ∂W j+1(v) into signed hemispheres Σj

±(v), we now
define a formal hemisphere decomposition Cs on any 3-cell template C. Let cv denote
any cell of C, with dimension iv = dim cv > 0. If iv = 3, i.e. for v = O, we define the
formal hemispheres Sj±(O), j = 0, . . . , 3, analogously to the hemispheres Σj

±(O) in the
translation table (1.20). If iv = 1, i.e. for edge saddles v, we define S0

+(v) as the head
vertex and S0

−(v) as the tail vertex of the edge cv under the bipolar orientation of the
1-skeleton C1. For iv = 2 faces, we define S0

−(v) as the max and S0
+(v) as the min vertex

on the circle boundary ∂cv ⊆ C1, under its (downward) bipolar orientation; see fig. 2.1.
For face sources v ∈ E =: S2

+(O), we define the remaining right part of the boundary
∂cv as S1

−(v), and the left part as S1
+(v). For v ∈ W =: S2

−(O), we flip these sides
of S1

±(v), so that S1
−(v) is left and S1

+(v) right. In summary, the formal hemisphere
decomposition Cs of C consists of C itself, together with the sign information on

(2.27) cw ⊆ Sj±(v) , for any cw ⊆ ∂cv , 0 ≤ j < iv .
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In other words, definition 1.1(ii) of bipolarity and meridians in a 3-cell template C is
equivalent to the definition of a formal hemisphere decomposition Cs. The translation
table for the hemispheres Sj±(O) is completely analogous to (1.20) with the identifica-
tion

(2.28) Sj±(O) = Σj
±(O) ,

0 ≤ j ≤ 2. In particular [FiRo16, theorem 4.1] has already identified the dynamic
Sturm complex Cf associated to any signed 2-hemisphere template E j±(v), v ∈ Ef , as a
3-cell template Cs with formal hemisphere decomposition Sj±(v) given by bipolarity, the
meridians, and the identification (2.28). The following theorem addresses the converse
of this construction.

Theorem 2.6. Let Cs =
⋃
v∈E be a 3-cell template with associated formal hemisphere

decomposition Sj±(v) as in (2.27) above. Let Cf be the Sturm dynamic complex (1.12)
associated to Cs, by the above construction (2.24), (2.25) of an SZS-pair (h0, h1). Let
Σj
±(v), v ∈ Ef , 0 ≤ j < i(v) be the signed hemisphere decomposition (2.8) on Cf .

Then there exists a cell-preserving homeomorphism

(2.29) Φs : Cs =
⋃
v∈E

cv −→
⋃
v∈Ef

W u(v) = Csf = Af

with Φs(cv) = W u(Φs(v)). Moreover Φs is signed, i.e. Φs also preserves the signed
hemisphere structure

(2.30) Φs
(
Sjδ(v)

)
= Σj

δ (Φs(v)) ,

for all v ∈ E, 0 ≤ j < iv, and δ = ±.

In short the SZS-pair (h0, h1) designs a Sturm global attractor Af such that the Thom-
Smale complex Csf coincides with the given 3-cell template Cs, including the signed
hemisphere structure.

Along the proof of the signed realization theorem 2.6, we can also settle the longstand-
ing puzzle on different, not even conjugate, Sturm permutations σf , σg with apparently
equivalent Sturm attractors Af = Ag – at least for Sturm 3-balls, and hence also for
planar attractors.

Theorem 2.7. Let Cf and Cg be two Sturm 3-ball dynamic complexes, alias 3-cell
templates. Assume there exists a cell-preserving homeomorphism

(2.31) Φs : Af = Csf =
⋃
v∈Ef

W u
f (v) −→

⋃
v∈Eg

W u
g (v) = Csg = Ag ,

with Φs(W u
f (v)) = W u

g (Φs(v)). Assume Φs is signed, i.e. Φs also preserves the signed
hemisphere decompositions

(2.32) Φs
(
Σj
δ(v)

)
= Σj

δ (Φs(v)) ,
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for all v ∈ Ef , 0 ≤ j < i(v), and δ = ±.

Then the Sturm permutations of f and g coincide:

(2.33) σf = σg .

Moreover, Φs can be chosen to respect all fast unstable manifolds,

(2.34) Φs
(
W j+1
f (v)

)
= W j+1

g (Φs(v)) ,

0 ≤ j < i(v), together with their signed versions.

For an example we refer to [FiRo16, (5.6) and fig. 5.2]. Any cell-preserving homeomor-
phism Φ, in that example, would have to interchange the respective 2-hemispheres of
O,

(2.35) Φ : Σ2
f,±(Of ) −→ Σ2

g,∓(Og) .

This accounts for different Sturm permutations σf 6= σg, which are not trivially conju-
gate either. See also [FiRo17, fig. 4.6].

3 Planar Sturm attractors

As a prelude to the proof of theorem 2.6 for 3-ball Sturm global attractors we recall
the case of planar disks, in theorem 3.1. See [FiRo16, section 2] for details. A central
construction, in definition 2.4 above, assigns a ZS-Hamiltonian pair of paths h0, h1:
{1, . . . , N} → E through the vertices v ∈ E of the cells cv of a prescribed planar
bipolar cell complex C. The construction of h0, h1 ensures that the permutation σ:=
h−1

0 ◦ h1 ∈ SN is Sturm, σ = σf and hence defines a Sturm meander Mf . Moreover,
the associated Sturm global attractor Af is planar with Thom-Smale cell complex Cf
as prescribed by C. See theorem 3.1. We then refine the analysis of the cell complex
equality Cf = C, in the planar case. In fact Cf = C is understood in terms of a cell-
to-cell homeomorphism Φ: C → Cf . We refine this to a signed homeomorphism Φs:
Cs → Csf between signed cell complexes. In other words, Φs(Sjδ(v)) = Σj

δ(Φ
s(v)) maps

corresponding hemispheres of Cs and Csf onto each other, for all equilibria v, signs
δ = ±, and dimensions 0 ≤ j < i(v); see (3.2) and corollary 3.2. In particular we
show how the disk orientations of the planar embedding C ⊆ R2, together with the
bipolar orientation of the 1-skeleton C1, already fix a signed hemisphere structure of
Cs, and hence determine the boundary orders hfι = hι and the Sturm permutation
σf = h−1

0 h1 uniquely. See (3.9)–(3.13). For a topological disk C, we recall how the
remaining freedom of sign choices when passing to Cs amounts to trivially equivalent
global attractors Af = Cf , under x 7→ 1−x and u 7→ −u, once the target sink equilibria
of the one-dimensional fast unstable manifolds W 1(v) have been fixed, for all i = 2
source equilibria v.

We first consider planar Sturm global attractors Af and complexes C which are topolog-
ical disks. By this we mean that Af , C are allowed to contain several sources of Morse
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Figure 3.1: The closed hemisphere Thom-Smale complexes, alias topological disk attractors,
of the 3-cell octahedron from fig. 1.3. Western hemisphere (a), and Eastern hemisphere (b).
See (c), (d) for the associated meanders, respectively. Vertex annotations, viz. equilibrium
labels, correspond to fig.1.3.

index i = 2, alias faces, but Af , C are homeomorphic to the standard closed disk.
We recall definition 2.1 of the signed hemisphere template E j±(v) of Af , according to
equilibria in the hemisphere decomposition Σj

±(v) of ∂W u(v), for all equilibria v ∈ Ef
and 0 ≤ j < i(v). In [FiRo16, theorem 2.4] we proved the following theorem.

Theorem 3.1.

(i) Let (h0, h1) be the ZS-pair of a given planar bipolar topological disk complex C ⊆
R2 with poles N, S on the circular boundary of C. Then the Sturm permutation
σf = σ:= h−1

0 h1 defines a topological disk Sturm global attractor Af with dynamic
complex Cf = C, and hence a unique signed hemisphere template E j±(v).

(ii) Conversely, let E j±(v) be the signed hemisphere template of a given planar Sturm
global attractor Af . Then E j±(v) defines a unique bipolar orientation of the planar
Thom-Smale complex Cf of Af , and hence a unique ZS-pair hι:= hfι , ι = 0, 1.

See fig. 3.1(b) for an illustration of theorem 3.1, featuring the ZS-pair (h0, h1) for the
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given orientation of the Eastern hemisphere part of the solid octahedron from fig. 1.3.
In fig. 3.1(a) the SZ-pair (h0, h1) is illustrated for the Western hemisphere of the same
example.

Since theorem 3.1 will play a central role in our proof of theorems 2.6 and 2.7, let us
comment on the precise interpretation of the equality C = Cf here; see [FiRo08] for
further details. As in the 3-ball case of theorem 2.6, equality is understood in the sense
of a cell preserving homeomorphism

(3.1) Φs : C =
⋃
v∈E

cv −→
⋃
v∈Ef

W u(v) = Cf = Af

with Φs(cv) = W u(v), which also preserves the signed hemisphere structure

(3.2) Φs
(
Sjδ(v)

)
= Σj

δ (Φs(v)) ,

for all v ∈ E , 0 ≤ j < iv, and δ = ±. First, this requires a bijective identification

(3.3) Φs : E −→ Ef ,

for the restriction of Φs to the barycenters v ∈ E of the cells cv ∈ C. Recalling [FiRo08,
lemma 5.2], this identification is defined by the ZS-pair (h0, h1) in E and the boundary
orders (hf0 , h

f
1) in Ef as

(3.4) Φs := hfι ◦ h−1
ι .

Since h−1
0 ◦h1 = σ = σf = (hf0)−1 ◦hf1 , the two choices ι = 0, 1 define the same bijection

Φs in (3.3), (3.4). We therefore use the same symbol v to denote v ∈ E and Φs(v) ∈ Ef .
With this convention we obtain

(3.5) hι = hfι

for ι = 0, 1.

In [FiRo08, lemma 5.3] we have shown that the vertex identification (3.3), (3.4) between
C and Cf already defines an isomorphism between the filled graph G2 of C and the
(unsigned) connection graph Hf of Cf . Here the filled graph G2 of C is augmented by
the edges from any face center v, of 2-dimensional cells cv in C, to all saddles w of
edges cw ⊆ ∂cv, in addition to the bipolar 1-skeleton C1. Sometimes G2 is called the
quadrangulation of C1 to emphasize the partitions of cv into quadrangles. The graph
isomorphism preserves orientation on C1. By transitivity and cascading of heteroclinic
connectivity in the Sturm attractor Af = Cf we also conclude

(3.6) dim cv = dimW u(v) = i(v) = iv ,

i.e. the vertex identification (3.3) preserves cell dimension. More precisely, the graph
isomorphism Φs: G2 → Hf ensures the left equivalence in

(3.7) cw ⊆ ∂cv ⇐⇒ v ; w ⇐⇒ W u(w) ⊆ ∂W u(v) .
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The right equivalence follows from Morse-Smale transversality in the Thom-Smale com-
plex, as we recall from the introduction. This allows us to define the homeomorphism
Φs by induction over the cell dimensions i(v) as follows.

The identification of 0-cells cv, alias sink vertices i(v) = 0, takes care of the case
i(v) = 0. Once the homeomorphism Φs: Ci−1 → Ci−1

f has been constructed for the
(i− 1)-skeleta, i ≥ 1, we can define the extension

(3.8) Φs : Ci −→ Cif ,

separately on each closed cell cv of dimension i(v) = i. Indeed, we may simply extend
Φs, already defined on the sphere boundary Si−1(v) = ∂cv ⊆ Ci−1 of any regular cell
cv ⊆ Ci, radially inwards towards the cell center v.

The construction of a signed homeomophism Φs, however, requires a little extra care.
On 1-cell edges cw of the bipolar 1-skeleton C1 we observe how the graph isomorphism
Φs in (3.3), (3.4) maps tails S0

−(w) and heads S0
+(w) of the bipolar orientation to the

signed hemi“sphere” boundaries Σ0
−(w) and Σ0

+(w) of the edge W u(w), respectively.

See our definition of Sj± above (2.27). Indeed, we first note that both hfι traverse the
sink equilibrium Σ0

−(w) before Σ0
+(w) > w > Σ0

−(w), simply because both hfι proceed
according to the boundary order at x = ι = 0, 1.

We show next how each of the paths hι in C, likewise, traverses the tail vertex S0
−(w)

before the head vertex S0
+(w). Indeed the ZS-rules of definition 2.4 for the ZS-pair

(h0, h1) of Hamiltonian paths in G2 ensure that both hι traverse the vertex S0
−(w)

before S0
+(w). In fact, each hι defines an extension of the partial bipolar order on

C1 ∩ E to a total order of all vertices E of G2. To see this we just observe that each
hι defines a polar Jordan curve from N to S in the planar complex C; see also fig. 2.1.
Therefore Φs is signed, automatically, on the 1-skeleta C1 and C1

f .

It remains to understand why Φs is also signed on each face closure cv → clos W u(v),
for i = 2 sources v. Again we note how both hfι traverse Σ0

−(v) before, and Σ0
+(v) after,

any other equilibrium in clos W u(v). The same holds true for the paths hι in the closed
2-cell cv, with respect to the boundary minimum S0

−(v) and the boundary maximum
S0

+(v), respectively, under the bipolar orientation of the 1-skeleton C1. Therefore Φs

maps the vertices S0
δ (v) to the equilibria Σ0

δ(v), respectively, for δ = ±.

Our choice of the ZS-pair (h0, h1) for the labeling maps hι, in the cell complex C, and
the identification hι = hfι in (3.4), (3.5) further imply

(3.9) Φs
(
S1
δ (v)

)
= Σ1

δ(v) ,

for any i = 2 source v and any δ = ±. Indeed, the boundary order hf0 traverses
w(+−), and hence all equilibria in Σ1

−(v), before the face center v; see proposition 2.3.

Similarly, hf0 traverses w(−+), as well as all other equilibria in Σ1
+(v), after v. In the

exact same way, the abstract path h0 traverses all vertices in the right boundary S1
−(v)

of the face cv before, and the left boundary S1
+(v) after, the face center v itself. This

proves (3.9). It also shows that the homeomorphism Φs, defined by radial extension
above, is already a signed homeomorphism, i.e. Φs: C → Cf preserves the signed
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hemisphere decompositions of C and Cf . It is useful to rethink the above observations,

based on h1 = hf1 instead h0 = hf0 – with identical results.

Next consider two planar Sturm attractors Af and Ag which are topological disks. Sup-
pose Af and Ag possess the same signed hemisphere decompositions Σj

f,±(v), Σj
g,±(v)

of their Sturm complexes Cf and Cg. By this we mean a bijection Ef → Eg of equilib-
ria vf 7→ vg, with isomorpic connection graphs Hf

∼= Hg, such that the signed zero
numbers coincide,

(3.10) z(wf − vf ) = z(wg − vg) ,

whenever vf ; wf , alias vg ; wg. By the above arguments, we then have a signed
homeomorphism

(3.11)
Φs : Csf −→ Csg

Φs := Φs
g ◦
(
Φs
f

)−1

of their signed Sturm complexes, which preserves the respective signed hemisphere
decompositions:

(3.12) Φs
(
Σj
f,±(vf )

)
= Σj

g,±(vg) .

Moreover, (3.5) implies hfι = hgι , for ι = 0, 1, and hence the Sturm permutations
σ = h−1

0 ◦ h1 coincide,

(3.13) σf = σg .

In this sense, theorems 2.6 and 2.7 hold true for planar Sturm attractors which are
topological disks.

Let us add a word about orientation. Suppose we had chosen an SZ-pair (h0, h1) in the
planar topological disk C, instead of a ZS-pair. Then we should define the left, rather
than the right, boundary of all faces cv to be S1

−(v). The right boundaries would then
become S1

+(v), instead. By the above arguments, the homeomorphism Φs would then
remain signed. Effectively this amounts to a homeomorphic description of the Sturm
complex Cf by a planar complex of the opposite orientation. Comparing the separated
Western and Eastern hemispheres of the solid octahedron in fig. 1.3, as depicted in
fig. 3.1(a), (b), the hemisphere descriptions differ by precisely this orientation reversal.
This is due to the fact that we present both hemispheres Σ2

±(O) of Σ2(O) in the same
coordinate frame. Note however, how the identified meridians WE = Σ1

+(O) and
EW = Σ1

−(O) of fig. 1.3 and table (1.20) entirely consist of edges in Σ1
+(v) and Σ1

−(v),
respectively, in either planar orientation. In [FiRo16, fig. 5.2], we have presented an
example of orientation reversal in a Sturm 3-ball.

We can now extend theorem 3.1 to general planar Sturm attractors Af which are not
topological disks. Such attractors consists of a linear chain of a number d ≥ 0 of
topological disks with intermediate one-dimensional chains, glued on. This possibly
includes a prepended and/or appended one-dimensional spike. The chains consist of
alternating sinks and saddles, each chain with a first and, possibly identical, last sink.

27



For a single topological disk, the orientation reversal of the planar embedding of a single
2-cell face reverses the orientation of all other cells. For several disk components, d > 1,
we may choose the orientation of each cell, individually. In general, this will lead to
cell-homeomorphic planar Sturm attractors Af with different Sturm permutations σf .
Fixing the signed hemisphere decomposition, alias the ZS-rule for face traversing pairs
(h0, h1), alias the right/left rule for S1

±(v) in cell faces, will still determine the signed
Sturm complex C1

f (v) and the Sturm permutation σf uniquely.

These remarks prove the following variant of theorem 3.1, in terms of signed planar
cell complexes.

Corollary 3.2.

(i) Let (h0, h1) be the ZS-pair of any given planar bipolar complex Cs ⊆ R2 with
poles N, S on the boundary of Cf . This identifies C as a signed complex Cs; see
(2.27). Then the Sturm permutation σf = σ:= h−1

0 h1 defines a unique signed
Sturm complex

(3.14) Csf = Cs ,

in the sense of (2.3), (2.14). Equality in (3.14) is understood by a signed home-
omorphism Φs as in (3.1), (3.2) above.

(ii) Conversely, let Csf be the signed Sturm complex of a given planar Sturm attractor
Af . Then the signed hemisphere decomposition Csf defines a planar embedding of
Csf , with unique orientation of each disk component of Csf , such that the boundary

orders hι:= hfι , ι = 0, 1 are a ZS-pair.

We conclude this section by recalling the role of the fast unstable manifolds W uu(v) =
W 1(v) of i = 2 sources v in 2-cells cv = W u(v). Their role is usually ignored in the
study of Thom-Smale dynamic complexes. Our goal is to clarify the extent to which
these fast unstable manifolds already determine the sign information in the signed
Sturm complex Csf , given just the Sturm complex Cf itself. Since z(· − v) = 0± on
W 1(v) r {v}, these manifolds are heteroclinic orbits

(3.15) v ; Σ0
±(v) ;

see proposition 2.2(iii). In particular their targets identify the bipolar extrema Σ0
±(v)

in the circular cell boundary ∂W u(v) = ∂cv, up to sign. Flipping this sign in one single
2-cell flips all signs, in unison. This defines the bipolar orientation on the 1-skeleton
C1
f , up to global sign reversal.

In a planar Sturm attractor it only remains to determine the 1-hemispheres Σ1
±(v), for

a complete specification of the signed Sturm complex Csf . For the case d = 1 of a single
topological disk, only, this follows globally from the bipolar orientation, up to a global
simultaneous swap of all Σ1

+(v) with their respective counterparts Σ1
−(v).

Both the global reversal of the bipolar orientation and the global orientation flip of
the planar embedding can be achieved by the trivial equivalences x 7→ 1− x, u 7→ −u;
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Figure 4.1: Upper arc noses {v1, v2}, such that h−1
0 (v2) = h−1

0 (v1) + 1. (a) All cases with
Morse numbers ivj ≤ 3 (in parentheses). Note how the meanderM crosses the horizontal h1-
axis upwards, at even Morse numbers (iv1), and downwards at odd (iv2). (b) Configurations
with i(v2) = i(v1) + 1, including h0-predecessors v1 of v1 and successors v2 of v2. Lower
shortcut arcs in M̌, from v1 to v2 after retraction of the nose {v1, v2} are dashed.

see the introduction and [FiRo16, corollary 2.5]. In conclusion, the Sturm complex
Cf determines its signed version Csf uniquely, up to trivial equivalences, for the case
d = 1 of a single topological disk. By corollary 3.2, this determines the realizing Sturm
permutation σ = σf of the prescribed (unsigned) Sturm complex C = Cf uniquely, up
to a flip conjugation kσk and taking inverses, once the target equilibria of the fast
unstable manifolds W 1(v) are specified.

This planar result neither extends to the case d ≥ 2 of planar Sturm attractors Af
with multiple topological disk components, nor to 3-ball Sturm attractors.

4 Noses and scoops

In this section we study noses {v1, v2} ∈ E of concrete and abstract Sturm permutations
σf = σ. Abstractly, let hι: {1, . . . , N} → E be labeling maps such that σ:= h−1

0 h1 is
Sturm. Then we call the pair {v1, v2} a nose if the elements vj are adjacently labeled
by both maps hι, i.e.

(4.1) |h−1
ι (v1)− h−1

ι (v2)| = 1 ,

for ι = 0, 1. We exclude the polar cases of h−1
ι (v1) or h−1

ι (v2) in {1, N} just for simplicity
of notation in the nose retractions below. The naming comes from the resulting arc
configuration in the meander M associated to σ. See also [FiRo99]. See fig. 4.1 for
the list of upper nose examples, i.e. M-arcs above the horizontal h1-axis, with Morse
numbers i ≤ 3. Without loss of generality we fix

(4.2) h−1
0 (v2) = h−1

0 (v1) + 1 .
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By (1.25), (1.26) the More numbers ivj are also adjacent,

(4.3) |i(v1)− i(v2)| = 1 ,

and of the opposite even/odd parity compared to either label h−1
ι (vj). The meander

itself crosses the horizontal h1-axis upwards, at odd labels, and downwards, at even
labels.

A nose retraction passes from hι, σ to ȟι, σ̌, simply skipping a nose {v1, v2} and its
labels. Thus ȟι: {1, . . . , N − 2} → Ě := E r {v1, v2} and

(4.4) σ̌ := ȟ−1
0 ◦ ȟ1 .

The associated meander M̌ of σ̌ connects the intersection v1:= h0(h−1
0 (v1)− 1) of the

v1-predecessor to the v2-successor v2:= h0(h−1
0 (v2)+1) by a direct arc of M̌, in the half

plane opposite to the arc v1v2. The shortcut ȟ0: . . . v1v2 . . . is dashed in fig. 4.1(b).

In proposition 4.1 below we show that nose retractions do not affect the Sturm property,
Morse indices, or signed zero numbers of the remaining elements. We caution the
reader, however, that the remaining heteroclinic orbits of the connection graph H may
well be affected. In definition 4.2 we introduce certain sequences of successive nose
retractions, called scoops. In proposition 4.3, these scoops reduce permutations σ of
3-meander templates to Sturm permutations σ± of planar Sturm attractors A±. In
section 5, we will identify A± as the closed hemispheres of the Sturm 3-ball attractor
of σ itself.

Proposition 4.1. Let σ ∈ SN be any Sturm permutation, and let σ̌ ∈ SN−2 arise by
nose retraction of {v1, v2} from σ; see (4.4).

Then σ̌ is again a Sturm permutation. The Morse indices iv and the signed zero
numbers zwv of v 6= w are all inherited from σ, without any change, for v, w ∈ Ě:=
E r {v1, v2}.

Proof. Without loss of generality, and to simplify language, suppose {v1, v2} is an
upper arc nose. Else apply the trivial equivalence u 7→ −u, which rotates all Sturm
meanders by 180◦. By the labeling (4.2) this implies i:= iv1 is even and iv2 = iv1 ± 1 is
odd.

We first show how σ̌,M̌ define a meander. In the meanderM associated to σ we only
consider the case of a right oriented, and hence right turning, upper nose arc from v1

to v2. Then iv2 = iv1 + 1. The other case, iv2 = iv1 − 1, is analogous and will be
omitted. See fig. 4.1(b) for the resulting arc configurations and the Morse numbers of
h0: . . . v1v1v2v2 . . .. The nose vertices v1 and v2 = h1(h−1

1 (v1) + 1) are also h1-adjacent,
by definition (4.1). The dashed lower arc shortcuts ȟ0: . . . v1v2 . . . which skip the
retracted nose {v1, v2}, therefore define a meander M̌ . In particular the permutation σ̌
defined by M̌ is a meander. Moreover σ̌ is dissipative by our exclusion of polar noses
{v1, v2}.

To show preservation of Morse numbers under nose retraction we again consult the
three cases of fig. 4.1(b), only. We compare the recursion (1.25) for the passage from
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iv1 to iv2 before and after nose retraction of {v1, v2}. By induction from j = 0 to
j1 = h−1

0 (v1), the Morse numbers iv1 coincide. By inspection of fig. 4.1(b), the resulting
Morse numbers iv2 = ih0(j1+3) = iȟ0(j1+1) coincide in all cases. This proves preservation
of Morse numbers. In particular σ̌ is Morse, as σ is, which proves σ̌ is Sturm.

We prove preservation of the signed zero numbers žvw = zvw under nose retraction of
{v1, v2}, next. Since nose retraction does not alter the h0-order <0 of the remaining
vertices in Ě , it is sufficient to prove preservation of the unsigned zero numbers. In
view of the explicit recursions (2.5) and preservation of Morse numbers, it is sufficient
to prove

(4.5) žv2w − žv1w = zv2w − zv1w

for h0: . . . v1v1v2v2 . . . and any w <0 v1. Here ž refers to ȟι, σ̌ after nose retraction of
{v1, v2}. With the notation k, j1 for h−1

0 (w), h−1
0 (v1), and the abbreviations ζj, ζ̌j and

sj for unsigned zh0(j)h0(k), žh0(j)h0(k), and 1
2
sign(σ−1(j) − σ−1(k)), respectively, claim

(4.5) reads

(4.6) ζ̌j1 − ζ̌j1−1 = ζj1+2 − ζj1−1 .

To prove claim (4.6), we first note that recursion (2.5) asserts

(4.7) ζj+1 − ζj = (−1)j+1 (sj+1 − sj) .

Note sj1+1 = sj1 for the adjacent nose equilibria v2 = h0(j1 + 1) and v1 = h0(j1).
Summing (4.7) from j = j1 − 1 to j = j1 + 1 therefore implies

(4.8)

ζj1+2 − ζj1−1 =

= (−1)j1 (sj1 − sj1−1) + (−1)j1+1 (sj1+1 − sj1) + (−1)j1+2 (sj1+2 − sj1+1) =

= (−1)j1 (−sj1−1 + 2sj1 − 2sj1+1 + sj1+2) =

= (−1)j1 (sj1+2 − sj1−1) =

= ζ̌j1 − ζ̌j1−1 .

Here we have used šj1−1 = sj1−1 and šj1 = sj1+2 in the last equality. This proves
signed invariance of signed zero numbers under nose retraction, and also proves the
proposition. ./

From now on, and for the remaining paper, we return to a 3-meander template M
with associated Sturm permutation σf = σ, Sturm attractor Af , Sturm complex Cf ,
and boundary orders hfι at x = ι = 0, 1. See definition 1.3. Our first task is to work
towards identifying Af as a Sturm 3-ball, in theorem 5.1 below. As candidates E ′j±
for the equilibrium sets E j± in the signed hemisphere decomposition Σj

± of the 2-sphere
∂W u(O), we define the following sets of vertices E , alias equilibria Ef :

(4.9)

E ′−
0 := {hfι (1)} , E ′+

0 := {hfι (N)} ;

E ′−
1 := {v1

−, v
2
−, . . . , v

2m−1
− } , E ′+

1 := {v1
+, v

2
+, . . . , v

2n−1
+ } ;

E ′j :=
⋃

k≤j, δ=±

E ′δ
k
, clos E ′δ

j := E ′δ
j ∪ E ′j−1

;

E ′δ
2 := {v ∈ E r E ′1 | v 6= O , δO < δv at x = 1} .
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Here j = 0, 1, 2 and δ = ±.

Definition 4.2. We define the East scoop M− with scooped Sturm permutation σ−:=
(ȟ0)−1 ◦ ȟ1 as the result of the removal of O ∪ E ′+

2, by successive nose retraction. This
leads to the replacement of the meander part

(4.10)

h0 : v0
− . . . v

µ
− . . . v

µ′

−w
1
− . . . v

2m−1
− . . . w0

−Ow0
+ . . . v

2n−1
+ . . . w1

+v
ν′

+ . . . vν+ . . . v
0
+

by

ȟ0 : v0
− . . . v

µ
− . . . v

µ′

−w
1
− . . . v

2m−1
− . . . w0

−v
2n−1
+ . . . vν

′

+ . . . vν+ . . . v
0
+ .

Similarly ȟ1 just skips the vertices O ∪ E ′+
2. Here ȟ0 and ȟ1 terminate along a full

S-polar h0-serpent.

Analogously, the West scoopM+, σ+:= (ȟ0)−1 ◦ ȟ1 removes O∪E ′−
2 by successive nose

retraction. This replaces

(4.11)

h0 : v0
− . . . v

µ
− . . . v

µ′

−w
1
− . . . v

2m−1
− . . . w0

−Ow0
+ . . . v

2n−1
+ . . . w1

+v
ν′

+ . . . vν+ . . . v
0
+

by

ȟ0 : v0
− . . . v

µ
− . . . v

µ′

− . . . v
2m−1
− w0

+ . . . v
2n−1
+ . . . w1

+v
ν′

+ . . . vν+ . . . v
0
+ .

Similarly ȟ1 just skips the vertices O ∪ E ′−
2. Here ȟ0 and ȟ1 start along a full N-polar

h1-serpent.

To see how, say, the East scoop is actually feasible by successive nose retraction, let us
consider fig. 1.5 of a 3-meander template again. We first note that all vertices of E ′+

2

are located (nonstrictly) between w1
+ and w0

+ along the h1-axis, excepting the vertices

of type vj−:

(4.12) E ′+
2

= {w ∈ E |w1
+ ≤1 w ≤1 w

0
+}r E ′−

1
.

Here and below <ι denotes the ordering at x = ι, or by hι, for ι = 0, 1. The reason for
(4.12) is the overlap of the polar serpents, by definition 1.3(ii), together with extremal-
ity of wι±. By successive nose retractions under the upper arcs of v2

−v
3
−, . . . , v

µ−1
− vµ−

we can achieve µ = 1. In other words, v1
− is the immediate h1-successor of w0

+. We
can then eliminate all vertices from O to w0

+ by lower nose retraction, to arrive at the
situation of definition 4.2. Analogous arguments justify the West scoop of

(4.13) E ′−
2

= {w ∈ E |w0
− ≤1 w ≤ w1

+}r E ′+
1
.

Proposition 4.3. The scoops σf± = σ± of definition 4.2 are Sturm permutations of
planar Sturm attractors A±:= Af±. In particular equilibria v 6= w in Ef satisfy

v, w ∈ clos E ′δ
1

=⇒ i(v) ≤ 1, z(v − w) = 0(4.14)

v, w ∈ clos E ′δ
2

=⇒ i(v) ≤ 2, z(v − w) ≤ 1(4.15)

for δ = ±, in the notation of (4.9).
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Proof. By definition 4.2, the permutations σ± arise via successive nose reduction. By
proposition 4.1, the permutations are therefore Sturm. Let σf± = σ± with associated
Sturm attractors A±. By proposition 4.1 again, all Morse numbers and zero numbers
of σ are inherited by σ±. By definition 1.3(i) and the scooping of O, the resulting
Morse numbers iv = i(v) cannot exceed 2. Therefore A± are planar Sturm attractors.
In particular (4.15) holds on A+ and on A−, respectively; this observation goes back
as far as [Br90]. This proves claim (4.15) on E ′δ

2 ⊆ Ag.

To prove claim (4.14) we note that E ′−
1 is part of the full S-polar serpents ȟι after the

West scoop. By definition, (4.14) holds along polar serpents. The argument for E ′+
1 is

analogous. This proves the proposition. ./

5 Sturm 3-balls from 3-meander templates

We continue our analysis of the global attractor Af associated to the Sturm permuta-
tion σf = σ of the general 3-meander template M, σ from definition 1.3 and fig. 1.5.
In theorem 5.1 we state that Af is a Sturm 3-ball. In other words,

(5.1) Af = clos W u(O)

is the closure of the unstable manifold of the single equilibrium O, at which the me-
ander M crosses the horizontal h1-axis with maximal Morse number iO = 3; see
definition 1.3(i). Our proof only requires to show the existence of heteroclinic orbits

(5.2) O ; v ,

for all equilibria v ∈ Ef r {O}. In lemma 5.2 we therefore recall the Wolfrum version
of heteroclinicity in Sturm attractors, based on zero number. The required input is
collected in proposition 5.3, so that we can conclude this section with the proof of
theorem 5.1.

Theorem 5.1. Any 3-meander templateM, σ defines a Sturm 3-ball attractor Af with
Sturm permutation σf = σ and meander M.

The notion of k-adjacency is central for Wolfrum’s reformulation, in [Wo02], of the
heteroclinicity results in [FiRo96, FiRo99]. We say two distinct equilibria v1, v2 are
k-adjacenct if there does not exist a third equilibrium w between them, say at x = 0,
such that the signed zero numbers

(5.3) z (w − v1) = k± = z (v2 − w)

coincide with either k+ or k−, depending on the sign in ±(v2(0)− v1(0)) > 0.

Lemma 5.2 ([Wo02]). Let Af be a Sturm global attractor with distinct equilibria
v1, v2 ∈ Ef . Then v1 ; v2 if, and only if, i(v1) > i(v2) and v1, v2 are z(v2 − v1)-
adjacent.
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We comment on the proof of this lemma in the appendix. Suffice it here to recall how
violation of k-adjacency, i.e. the existence of an in-between equilibrium w with (5.3),
blocks the existence of a heteroclinic orbit u(t, ·) between v1 and v2. Indeed the zero
number z(u(t, ·)− w) would have to drop strictly, when the boundary values of u(t, ·)
and w cross each other at x = 0 or at x = 1. For t → ±∞, on the other hand, that
zero number has to coincide with k. For k = 0, we have already encountered such a
blocking argument in the proof of proposition 2.3. See also [BrFi89].

Based on the decomposition (4.9) of the equilibrium set

(5.4) Ef rO =
⋃

j≤2, δ=±

E ′δ
j
,

in the Sturm attractor Af of the 3-meander template M with σ = σf , we now collect
information on the zero numbers on these sets. This information coincides, verba-
tim, with the corresponding statements of [FiRo16, proposition 3.1] on the hemisphere
decomposition

(5.5) Ef rO =
⋃

j≤2, δ=±

E jδ

by the equilibrium sets E jδ = Ef ∩Σj
δ. A posteriori, i.e. after theorem 5.1 is proved and

Af is identified as a Sturm 3-ball, indeed, we will have arrived at the identification

(5.6) E ′jδ = E jδ

for all 0 ≤ j ≤ 2 and both signs δ = ±. For the moment, however, [FiRo16, propo-
sition 3.1] cannot be invoked and we must prove the following version, independently.
See fig. 5.1 for an illustration of this result, but not its proof.

Proposition 5.3. In the above setting and with the notation (4.9) for the equilibrium
sets E ′j±, the following statements hold true for all 0 ≤ j ≤ 2 and δ = ±.

v ∈ E ′j =⇒ i(v) ≤ j(i)

v ∈ clos E ′j =⇒ z(v −O) ≤ j(ii)

v ∈ E ′j± =⇒ z(v −O) = j±(iii)

v1, v2 ∈ clos E ′δ
j

=⇒ z(v1 − v2) < j .(iv)

Proof. Claim (iv) is void for j = 0. For j = 1, 2, claims (i),(iv) have already been
proved in proposition 4.3. Claims (i), (iii) for j = 0 just reiterate iv = 0 for v ∈
{hfι (1), hfι (N)}, by dissipativeness; see (1.25), (1.26), (2.5). Claim (ii) follows from
claim (iii), by definition (4.9) of the sets clos E ′j.

Therefore it only remains to prove claim (iii). Although it is possible to invoke scoops,
except for the last nose retraction involving O itself, we proceed more directly this
time. With the abbreviations ζj:= z(h0(j) − O), for the unsigned zero numbers, and
with sj:=

1
2
sign(σ−1(j)− h−1

1 (O)), the explicit recursion (2.5) reads

(5.7) ζj+1 − ζj = (−1)j+1(sj+1 − sj) ;
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Figure 5.1: An impressionist sketch of the spatial profiles v(x), for all equilibria v ∈ Ef of
a general Sturm 3-meander template. The drawing illustrates the results of proposition 5.3,
as well as certain aspects of definition 1.3. For the specific case of a solid octahedron see also
fig. 1.1.

see also (4.7). Here 1 ≤ j < k and k = h−1
0 (O) in (2.5). Note that h−1

1 (O) =
h−1

1 h0(k) = σ−1(k). We omit sub- and superscripts f in this proof. We only prove
claim (iii) for E ′−

j; the cases of E ′+
j are analogous by the trivial equivalence u 7→ −u.

The recursion (5.7) is initialized with

(5.8) ζ1 = 0 , s1 = −1/2 , h0(1) <0 O ,

by dissipativeness. This proves claim (iii) for the pole N = hι(1) and settles j = 0.

We follow the meander path of h0 along the N-polar h0-serpent

(5.9) h0 : N v1
−v

2
− . . . v

µ
− . . . v

µ′

− . . .
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Figure 5.2: The trapping region interior(Γ), in a West scoop, and the types of trapped
equilibria of a 3-meander template; see the proof of proposition 5.3, (5.14)–(5.16).

up to vµ
′

− , next. By definition 1.3(iii), we have

(5.10) N = h0(1) <1 O <1 v
1
− <1 v

2
− <1 . . . <1 v

µ
− <1 . . . <1 v

µ′

−

along that serpent. See also fig. 1.5. Since vj− = h0(j + 1), for 0 ≤ j ≤ µ′, this implies

(5.11) s2 = . . . sµ+1 = . . . sµ′+1 = 1/2 .

With recursion (5.7) and initialization (5.8) this proves

(5.12) ζ2 = . . . = ζµ+1 = . . . ζµ′+1 = 1 .

By definition 1.3(iv), the N-polar h0-serpent is terminated by w1
− or w1

+. In fact
O ; wι±, because hι-neighbors cannot be blocked. Hence i(O) = 3 implies i(wι±) = 2
and, by (2.5),

(5.13) z
(
wι± −O

)
= 2± .

This proves that the h0-successor of the serpent termination vµ
′

− is w1
−, rather than

w1
+; see fig. 1.5 again. Similarly, the h0-predecessor w0

− of O terminates the N-polar
h1-serpent v2n

+ . . . vν+ along the h1-axis. By the Jordan curve property, this traps the
meander segment M, from the entry w1

− to the exit w0
−, inside the trapping region

defined by the Jordan curve

(5.14) Γ : vµ
′

−w
1
− O w0

−v
ν
+ . . . v

2
+v

1
+ S .
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See fig. 5.2. Here Γ consists of h0- and h1-arcs, alternatingly, and terminates with the
part vν+ . . .S of the S-polar h0-serpent. The Jordan curve Γ is not closed. We consider
the remaining part

(5.15) vµ
′+1
− . . . v2m−1

−

of the S-polar h1-serpent to still be inside the trapping region Γ of our meander M
segment from w1

− to w0
−.

Equilibrium vertices v = h0(j) inside Γ consist of two types:

(5.16)
type 1 : w0

− ≤1 v ≤1 w
1
− <1 O , and

type 2 : v ∈ {vµ
′+1
− , . . . , v2m−1

− } >1 O .

Suppose the meander path h0 changes type along the M-arc from h0(j) to h0(j + 1).
We claim j must be even. Indeed, the trapping region Γ ensures that a change of type
can only occur via a lower h0-arc of the meander M. Therefore the meander must
cross the h1-axis downward at vj:= h0(j), upward at vj+1 = h0(j + 1), and j must be
even.

The types distinguish the signs of sj to be

(5.17) sj =

{
− 1/2 for h0(j) of type 1 ;

+ 1/2 for h0(j) of type 2 .

Indeed the relative ordering of σ−1(j) = h−1
1 (vj) and h−1

1 (O) distinguishes the type
of vj = h0(j). In particular, the recursion (5.7) determines the values ζj inside the
trapping region, with the initialization ζ = 2 at w1

−, to be

(5.18) ζj =

{
2 for h0(j) of type 1 ;

1 for h0(j) of type 2 .

Here we have used that j is even at any type change from vj = h0(j) to vj+1 = h0(j+1).
Hence (5.17) implies a decrease of ζj by 1, upon passage from type 1 to type 2, and an
increase by 1 upon return. Without change of type, both sj and ζj remain unchanged.

By definition (4.9) of E ′δ
2, we see how (5.18) proves claim (iii) for E ′−

2. Type 2, together

with our previous observation (5.12) proves claim (iii) for E ′−
1 and completes the proof

of the proposition. ./

Proof of theorem 5.1. It is sufficient to establish heteroclinic orbits O ; v from
the unique iO = 3 equilibrium to any other equilibrium O 6= v ∈ Ef . By the Wolfrum
lemma 5.2 this is equivalent to showing that

(5.19) O, v are z(v −O)-adjacent .

Note iv ≤ 2. The relevant information on zero numbers z is listed in proposition 5.3,
for the decomposition

(5.20) v ∈ Ef r {O} =
⋃

j=0,1,2

(
E ′−

j ∪ E ′+
j
)

;
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see (4.9), (5.4). Let v ∈ E ′δ
j, δ = ±. By proposition 5.3(iii) this is equivalent to

z(v−O) = jδ. To show j-adjacency ofO, v, as required by (5.19), we proceed indirectly.
Suppose there exists w ∈ Ef r {O, v} such that

(5.21) z(w −O) = jδ = z(v − w) ;

see (5.3). Then the left equality and proposition 5.3(iii) imply w ∈ E ′δ
j. Hence v, w are

both in E ′δ
j, and proposition 5.3(iv) implies

(5.22) z(v − w) < j .

This contradicts the right equality in (5.21), proves (5.19), establishes O ; v, and
hence proves theorem 5.1. ./

6 Signed homeomorphisms for Sturm 3-balls

In this section we prove theorems 2.6 and 2.7. Theorem 2.6 establishes signed homeo-
morphisms Φs between abstract signed 3-cell templates C and the signed hemisphere
decompositions of the Thom-Smale dynamic complex Csf of the associated Sturm global
attractor Af . Theorem 1.2 is the unsigned corollary.

In theorem 2.6 we pass from an abstract signed 3-cell template Cs of cells cv, v ∈ E ,
with a formally prescribed hemisphere decomposition Sj±(v), to a concrete signed Sturm
complex Csf of unstable manifolds W u(v), v ∈ Ef , with hemisphere decomposition

Σj
±(v) such that the signed dynamic complex Csf = Cs realizes the prescribed signed 3-

cell template Cs. More precisely, we have to construct a cell preserving homeomorphism

(6.1) Φs : Cs −→ Csf

such that the restrictions define bijections

Φs : E −→ Ef ;(6.2)

Φs : cv −→ W u (Φs(v)) ;(6.3)

Φs : Sjδ(v) −→ Σj
δ (Φs(v)) ;(6.4)

for all v ∈ E and δ = ±. This is based on the specific construction of the SZS-pair of
bijections

(6.5) hι : {1, . . . , N} −→ E ,

ι = 0, 1, which is associated to the signed 3-cell template Cs by definition 2.5. As a
consequence,

(6.6) σ := h−1
0 ◦ h1
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is associated to a 3-meander template. See [FiRo16, theorem 5.2]. In theorem 5.1
above we have established that any 3-meander template M, σ in fact defines, not just
some Sturm attractor but, a Sturm 3-ball Af via

(6.7) σf := σ .

In particular Af comes with boundary orders

(6.8) hfι : {1, . . . , N} −→ Ef

of the equilibria v(x) at x = ι = 0, 1 and defines the Sturm 3-cell template Csf .

Theorem 2.7 then shows, conversely, that any two nonlinearities f, g which satisfy
(6.1)–(6.4) for respective signed homeomorphisms Φs

f ,Φ
s
g, possess identical Sturm per-

mutations

(6.9) σf = σg .

In particular their global attractors Af ,Ag are C0 orbit-equivalent; see [FiRo00]. The
homeomorphism

(6.10) Φs
g ◦
(
Φs
f

)−1
: Csf −→ Csg

can be required to respect decompositions into fast unstable manifolds, as well.

Proof of theorem 2.6. We establish a signed homeomorphism Φs: Cs → Csf as in
(6.1)–(6.4), by successive extension. Our basic strategy is similar to the planar case
discussed in section 3; see in particular the proof of corollary 3.2. As in (3.4) we start
from the identical bijections

(6.11) Φs := hfι ◦ h−1
ι : E −→ Ef ,

for ι = 0, 1. Indeed this map does not depend on ι because h−1
0 ◦ h1 = σ = σf =

(hf0)−1 ◦hf1 . This proves claim (6.2). To simplify notation we will use (6.11) to identify
barycenter vertices v ∈ E of the cells cv ∈ Cs, i.e. intersections of the meanderM of σ
with the horizontal h1-axis, with the equilibria Φs(v) ∈ Ef , i.e. with the corresponding
intersection ofMf viewed as an equilibrium via the shooting curve of f . In particular
Ef = E and

(6.12) hfι = hι .

In the remaining proof we will first invoke corollary 3.2(i), on planar Sturm attractors,
to establish signed homeomorphisms between the two closed hemispheres

(6.13) Φs
δ : clos S2

δ (O) −→ clos Σ2
δ(O) ,

for δ = ±. We will then show how Φs
± can be assumed to coincide on the intersection

meridian circle

(6.14) S1(O) = clos S2
+(O) ∩ clos S2

−(O) .
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In our final step we extend Φs
± to the interior of the unique 3-cell cO.

We have to show how Σ2
−(O) = Wf and Σ2

+(O) = Ef , in the signed 3-cell template
Csf , coincide with the hemispheres W and E of the prescribed 3-cell template Cs,
respectively, via hemisphere homeomorphisms Φs

± as in (6.12). We construct Φs
+ for

the closure clos Ef = clos Σ2
+(O) of the eastern hemisphere by a West scoop; the

East scoop for clos Wf = clos Σ2
−(O) works analogously. See definition 4.2. The

construction of the signed homeomorphism

(6.15) Φs
+ : clos E = clos S2

+(O) −→ clos Σ2
+(O) = clos Ef

for the planar Sturm attractor A+ of the scooped meander M+, σ+ simply invokes
corollary 3.2(i); see (3.14) in particular.

This step requires to show the following claim. Let (h+
0 , h

+
1 ) be the ZS-pair of the

complex

(6.16) Cs+ := clos E = clos S2
+(O) ,

viewed as a planar bipolar, and hence signed, complex. Then the West scooped meander
permutation σ+ coincides with the Sturm permutation defined by h+

ι :

(6.17) σ+ =
(
h+

0

)−1 ◦ h+
1 .

We will show this claim in lemma 6.1 below.

In lemma 6.2 we will then show how the signed Sturm dynamic complex A+ = Csf+ of
f+, with σf+ = σ+, coincides with the restriction (Csf )+ of the signed Sturm dynamic
complex A = Csf to the closed hemisphere clos Σ2

+(O):

(6.18) Csf+ = (Csf )+

Combined, (6.16) and (6.18) construct the homeomorphism (6.14) on clos E.

The construction for clos W is analogous, but might differ on the shared boundary
meridian S1(O), see (6.13). To remedy this point, let us recall the precise construction
of the signed homeomorphisms Φs

± in the planar case. By (3.8) we first extend Φs
± to

the 1-skeleta C1
± before extending to faces. The faces of Cs± are disjoint. On the shared

boundary meridian S1(O), it is sufficient to construct Φs
+ and then define Φs

−:= Φs
+,

there.

This completes the construction of Φs as a signed homeomorphism on the 2-sphere

(6.19) Φs :
S2(O) = clos S2

−(O) ∪ clos S2
+(O) −→

−→ Σ2(O) = clos Σ2
−(O) ∪ clos Σ2

+(O) .

The radial extension to the respective interiors cO → W u(O) is now obvious and
completes the proof of theorem 2.6, up to the next two lemmas 6.1 and 6.2. ./
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Lemma 6.1. Let (h+
0 , h

+
1 ) be the ZS-pair of the planar signed complex Cs+ defined by

the restriction of the 3-cell template Cs to the closed Eastern hemisphere clos E =
clos S2

+(O). Let ȟι denote the West scooped paths hι of the SZS-pair (h0, h1) for Cs.

Then the paths h+
ι and ȟι coincide,

(6.20) ȟι = h+
ι ,

for ι = 0, 1. In particular, consider the Sturm permutation

(6.21) σ∗ :=
(
h+

0

)−1 ◦ h+
1

of the planar complex Cs+. Then σ∗ coincides with the scooped meander permutation σ+

of definition 4.2, i.e.

(6.22) σ+ = σ∗ ,

as claimed in (6.17).

The analogous statements hold for the SZ-pair (h−0 , h
−
1 ) on clos W = clos S2

−(O) and

the East scooped paths ȟι.

Proof. Since the ZS-pair (h+
0 , h

+
1 ) is unique, we only have to show that the West

scooped pair (ȟ0, ȟ1) of definition 4.2, (4.11) forms a ZS-pair in the closed hemisphere
clos E, according to definition 1.1. Let (h0, h1) denote the original SZS-pair of the 3-cell
template Cs, prior to the West scoop. By construction, the Hamiltonian paths hι form a
ZS-pair in clos E, from their respective first emergence vertex wι+ ∈ E onwards. Before,
h0 and h1 follow the meridians N∪EW and N∪WE, respectively, in bipolar order and
with interspersed excursions into W. See figs. 1.4 and 2.2. Omitting precisely these
Western excursions, in the scooped pair (ȟ0, ȟ1), generates the full N-polar serpents

(6.23)
ȟ0 : N = v0

−v
1
− . . . v

2m−1
− w0

+ . . .

ȟ1 : N = v2n
+ v2n−1

+ . . . v1
+w

1
+ . . .

By [FiRo16, lemma 2.7], the N-polar serpents h+
ι of the ZS-pair (h+

0 , h
+
1 ) in the East

hemisphere clos E are also full. Hence the scooped paths ȟι and the ZS paths hι
coincide everywhere, ȟι = hι, as claimed in (6.20). Indeed these paths coincide, both,
in their initial N-polar serpent parts before wι+, and from wι+ onwards, for ι = 0, 1.

Since σ+ = ȟ−1
0 ◦ ȟ1, by definition, (6.20) proves (6.22) and the lemma. ./

Lemma 6.2. As claimed in (6.18), the signed Sturm dynamic complex A+ = Csf+ of
the West scoop σf+ = σ+ of σf = σ coincides with the restriction (Csf )+ of the signed
Sturm dynamic complex Csf to the closed Eastern hemisphere clos Σs

+(O).

The analogous statement holds for A− = Csf− of the East scoop σf− = σ− and the
Western restriction (Csf )− = clos Σs

−(O).
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Proof. Consider the Eastern restriction (Csf )+ as a given abstract planar signed com-
plex,

(6.24) Cs+ := (Csf )+ .

We then have to show that the planar signed Sturm complex A+ = Af+ = Csf+ of f+

with σf+ = σ+ coincides with the abstract planar complex Cs+:

(6.25) Csf+ = C2
+ .

But in lemma 6.1 we have already observed how the defining scoop paths (ȟ0, ȟ1) of
σf+ = σ+ coincide with the ZS-pair (h+

0 , h
+
1 ) of the prescribed planar complex Cs+.

Therefore corollary 3.2(i), (3.14) proves claim (6.25) and the lemma. ./

With the above two lemmas, the proof of theorem 2.6 is now also complete.

Proof of theorem 2.7. By assumptions (2.31), (2.32) we have a signed homeomor-
phism Φs which identifies the signed versions Csf , Csg of two Sturm 3-ball dynamic
complexes Cf , Cg. In short,

(6.26) Csf = Csg .

We have to show that the Sturm permutations σf and σg coincide; see (2.33). Moreover,
we have to show how Φs can be chosen to preserve the fast unstable manifolds; see
(2.34).

To show the first claim, σf = σg, we only have to show that the boundary orders hfι , h
g
ι

of the equilibria in Ef , Eg at x = ι = 0, 1 coincide. Identifying Ef , Eg via Φs, we can
write this claim as

(6.27) hfι = hgι ,

for ι = 0, 1. Indeed (6.27) implies (2.33) by

(6.28) σf = (hf0)−1 ◦ hf1 = (hg0)−1 ◦ hg1 = σg .

To prove claim (6.27) we invoke proposition 2.3. The signed homeomorphism Φs:
Csf → Csg identifies the equilibria Ef with Eg, and all E jf,±(v) = Ef ∩ Σj

f,±(v) with their

counterparts E jg,±(v) = Eg ∩ Σj
g,±(v). In particular, Φs identifies all f -equilibria wf (s)

with their g-counterparts wg(s), for identical sign sequences s = s0 . . . sn−1, sk ∈ {±}.
By the table of proposition 2.3, this shows that the boundary orders hfι , h

g
ι of the

respective equilibria coincide, as claimed in (6.27).

We show next how the signed homeomorphism Φs can be chosen to respect fast un-
stable manifolds W j+1(v), as claimed in (2.34). Let Φs

f : Cs → Csf denote the signed
homeomorphism which describes Csf as an abstract 3-cell template Cs = Csf = Csg . See
(6.1). We only have to recall how Φs

f was constructed by ascending dimensions iv = i(v)
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of Thom-Smale cells cv → W u(v). On the closed ball cv with barycenter v we extended
Φs
f radially inwards from the boundary,

(6.29) Φs
f : ∂cv −→ ∂W u

f (v) = Σ
i(v)−1
f (v) .

The fast unstable manifolds W j+1
f , likewise, possess sphere boundaries and, by induc-

tion on cell dimension, we may assume

(6.30) Φs
f : Sj(v) −→ ∂W j+1

f (v) = Σj
f (v) ,

for 0 ≤ j < i(v). Since Φs
f is a signed homeomorphism, and passing to the notation of

signed hemispheres, we have,

(6.31) Φs
f : Sjδ(v) −→ Σj

δ(v) ,

for δ = ±. The Schoenflies result [FiRo15] provided extensions of (6.31), to the interior
balls Bj+1(v), such that the standard eigenspaces Ej+1 mapped to W j+1

f (v). Similarly,

positive and negative half spaces are mapped to the signed versions of W j+1
f (v), sep-

arated by W j
f (v), for 0 ≤ j < i(v). Replacing radial extensions by this more refined

construction of Φs
f we see how standard (half) eigenspaces just get mapped to (signed)

fast unstable manifolds. Since the same statement holds for Φs
g: Cs → Csg , on the same

3-cell template complex Cs, the combined signed homeomorphism

(6.32) Φs = Φs
g ◦
(
Φs
f

)−1
: Csf −→ Csg

respects signed fast unstable manifolds. This completes the proof of claim (2.34), and
the proof of theorem 2.7. ./

7 Appendix: Wolfrum’s lemma

In this technical appendix we comment on, and repair, a gap in the original proof of
Wolfrum’s lemma 5.2.

In [Wo02, theorem 2.1] the lemma has first been formulated in the present form. The
gap in the proof arises, formally, by an overinterpretation of realization results in
[FiRo99] to provide templates for arbitrary sequences of saddle-node bifurcations. This
is not what had been proved there. The relevant result is [FiRo99, lemma 3.1]. Already
in the simplest case it is based, first, on a “short arc” nose retraction, via a saddle-
node bifurcation. Second, the resulting nose in the meander M has to be retracted
counterclockwise towards the lower, reduced, number of equilibria. See [FiRo99, fig. 3].
This brings the relevant Sturm shooting meandersM into canonical form, as specified
in [FiRo99]. The counterclockwise restriction in the second step has not been addressed
in [Wo02].

In fact, the results in [FiRo99] do allow a nose removal by a saddle-node bifurcation
which pushes its “short arc” of M nearly vertically through the horizontal axis. This

43



addresses the first step, locally. Neither before, nor after, such a local sadlle-node
bifurcation, however, would the resulting meander be in canonical form, globally.

Therefore it remains crucial to lift the clockwise restriction in the second step, towards
canonical meanders. We use the global rigidity of Sturm attractors proved in [FiRo00]:
global Sturm attractors Af and Ag with identical Sturm permutations σf = σg are
C0 orbit equivalent. In view of that global rigidity, the Sturm permutations on either
side of the local saddle-node bifurcation can therefore be realized by shooting curves,
again, which are canonical meanders. As a caveat we add that it is still unknown to us
whether that second step can be achieved by a global parameter homotopy of Sturm
nonlinearities f , within the PDE class (1.1). Instead, the rigidity proof in [FiRo00]
used a discretization, and subsequent dimensional augmentation, to provide parame-
ter homotopies in the potentially much wider ODE class of finite-dimensional Jacobi
systems. At any rate, this remedies both gaps in the proof of [Wo02, theorem 2.1].

The proof of Wolfrum’s lemma is independent of a Conley index argument in [FiRo96]
which led to a weaker result. See [Wo02, remark 4.1]. Above we have indicated how
arguments of [FiRo99, FiRo00] enter, instead.
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[BrFi89] P. Brunovský and B. Fiedler. Connecting orbits in scalar reaction diffusion equa-
tions II: The complete solution. J. Diff. Eqns. 81 (1989), 106–135.

[ChVi02] V.V. Chepyzhov and M.I. Vishik. Attractors for Equations of Mathematical
Physics. Colloq. AMS, Providence, 2002.

[Edetal94] A. Eden, C. Foias, B. Nicolaenko, R. Temam. Exponential Attractors for Dissi-
pative Evolution Equations. Wiley, Chichester, 1994.

[Fi02] B. Fiedler (ed.) Handbook of Dynamical Systems 2, Elsevier, Amsterdam, 2002.

[FiRo96] B. Fiedler and C. Rocha. Heteroclinic orbits of semilinear parabolic equations.
J. Diff. Eqns. 125 (1996), 239–281.

[FiRo99] B. Fiedler and C. Rocha. Realization of meander permutations by boundary
value problems. J. Diff. Eqns. 156 (1999), 282–308.

[FiRo00] B. Fiedler and C. Rocha. Orbit equivalence of global attractors of semilinear
parabolic differential equations. Trans. Amer. Math. Soc. 352 (2000), 257–284.

[FiRo08] B. Fiedler and C. Rocha. Connectivity and design of planar global attractors of
Sturm type, II: Connection graphs. J. Diff. Eqns. 244 (2008), 1255–1286.

[FiRo09] B. Fiedler and C. Rocha. Connectivity and design of planar global at-
tractors of Sturm type, I: Bipolar orientations and Hamiltonian paths.
J. Reine Angew. Math. 635 (2009), 71–96.

[FiRo10] B. Fiedler and C. Rocha. Connectivity and design of planar global attractors of
Sturm type, III: Small and Platonic examples. J. Dyn. Diff. Eqns. 22 (2010),
121–162.

[FiRo14] B. Fiedler and C. Rocha. Nonlinear Sturm global attractors: unstable manifold
decompositions as regular CW-complexes. Discr. Cont. Dyn. Sys. 34 (2014),
5099-5122.

[FiRo15] B. Fiedler and C. Rocha. Schoenflies spheres as boundaries of bounded unstable
manifolds in gradient Sturm systems. J. Dyn. Diff. Eqns. 27 (2015), 597–626.

[FiRo16] B. Fiedler and C. Rocha. Sturm 3-balls and global attractors 1: Dynamic com-
plexes and meanders. arXiv:1611.02003 [math.DS], 2016.

[FiRo17] B. Fiedler and C. Rocha. Sturm 3-balls and global attractors 3: Examples. In
preparation, 2017.

[FiSc03] B. Fiedler and A. Scheel. Spatio-temporal dynamics of reaction-diffusion pat-
terns. In Trends in Nonlinear Analysis, M. Kirkilionis et al. (eds.), Springer-
Verlag, Berlin 2003, 23–152.

[Fietal14] B. Fiedler, C. Grotta-Ragazzo and C. Rocha. An explicit Lyapunov function for
reflection symmetric parabolic differential equations on the circle. Russ. Math.
Surveys. 69 (2014), 419–433.

[Fr79] J.M. Franks. Morse-Smale flows and homotopy theory. Topology 18 (1979), 199–
215.

[FrPi90] R. Fritsch and R.A. Piccinini. Cellular Structures in Topology. Cambridge Uni-
versity Press, 1990.

45



[FuOl88] G. Fusco and W. Oliva. Jacobi matrices and transversality. Proc. Royal Soc.
Edinburgh A 109 (1988) 231–243.

[FuRo91] G. Fusco and C. Rocha. A permutation related to the dynamics of a scalar
parabolic PDE. J. Diff. Eqns. 91 (1991), 75–94.

[Ga04] V.A. Galaktionov. Geometric Sturmian Theory of Nonlinear Parabolic Equations
and Applications. Chapman & Hall, Boca Raton, 2004.

[Ha88] J.K. Hale. Asymptotic Behavior of Dissipative Systems. Math. Surv. 25. AMS,
Providence, 1988.
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