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Universidade de Lisboa14

Avenida Rovisco Pais15

1049–001 Lisbon, Portugal16

17



Abstract1

Examples complete our trilogy on the geometric and combinatorial character-
ization of global Sturm attractors A which consist of a single closed 3-ball. The
underlying scalar PDE is parabolic,

ut = uxx + f(x, u, ux) ,

on the unit interval 0 < x < 1 with Neumann boundary conditions. Equilibria2

vt = 0 are assumed to be hyperbolic.3

4

Geometrically, we study the resulting Thom-Smale dynamic complex with cells5

defined by the fast unstable manifolds of the equilibria. The Thom-Smale com-6

plex turns out to be a regular cell complex. In the first two papers we char-7

acterized 3-ball Sturm attractors A as 3-cell templates C. The characterization8

involves bipolar orientations and hemisphere decompositions which are closely9

related to the geometry of the fast unstable manifolds.10

11

An equivalent combinatorial description was given in terms of the Sturm per-12

mutation, alias the meander properties of the shooting curve for the equilibrium13

ODE boundary value problem. It involves the relative positioning of extreme 2-14

dimensionally unstable equilibria at the Neumann boundaries x = 0 and x = 1,15

respectively, and the overlapping reach of polar serpents in the shooting meander.16

17

In the present paper we apply these descriptions to explicitly enumerate all 3-ball18

Sturm attractors A with at most 13 equilibria. We also give complete lists of19

all possibilities to obtain solid tetrahedra, cubes, and octahedra as 3-ball Sturm20

attractors with 15 and 27 equilibria, respectively. For the remaining Platonic21

3-balls, icosahedra and dodecahedra, we indicate a reduction to mere planar22

considerations as discussed in our previous trilogy on planar Sturm attractors.23
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1 Introduction1

For our general introduction we first follow [FiRo16, FiRo17] and the references there.2

Sturm global attractors Af are the global attractors of scalar parabolic equations3

(1.1) ut = uxx + f(x, u, ux)

on the unit interval 0 < x < 1. Just to be specific we consider Neumann boundary4

conditions ux = 0 at x = 0, 1. Standard semigroup theory provides local solutions5

u(t, x) for t ≥ 0 and given initial data at time t = 0, in suitable Sobolev spaces6

u(t, ·) ∈ X ⊆ C1([0, 1],R). Under suitable dissipativeness assumptions on f ∈ C2,7

any solution eventually enters a fixed large ball in X. In fact that large ball of initial8

conditions itself limits onto the maximal compact and invariant subset Af which is9

called the global attractor. See [He81, Pa83, Ta79] for a general PDE background,10

and [BaVi92, ChVi02, Edetal94, Ha88, Haetal02, La91, Ra02, SeYo02, Te88] for global11

attractors in general.12

Equilibria v = v(x) are time-independent solutions, of course, and hence satisfy the13

ODE14

(1.2) 0 = vxx + f(x, v, vx)

for 0 ≤ x ≤ 1, again with Neumann boundary. Here and below we assume that all15

equilibria v of (1.1), (1.2) are hyperbolic, i.e. without eigenvalues (of) zero (real part)16

of their linearization. Let E = Ef ⊆ Af denote the set of equilibria. Our generic17

hyperbolicity assumption and dissipativeness of f imply that N := |Ef | is odd.18

It is known that (1.1) possesses a Lyapunov function, alias a variational or gradient-19

like structure, under separated boundary conditions; see [Ze68, Ma78, MaNa97, Hu11,20

Fietal14]. In particular, the global attractor consists of equilibria and of solutions21

u(t, ·), t ∈ R, with forward and backward limits, i.e.22

(1.3) lim
t→−∞

u(t, ·) = v , lim
t→+∞

u(t, ·) = w .

In other words, the α- and ω-limit sets of u(t, ·) are two distinct equilibria v and w.23

We call u(t, ·) a heteroclinic or connecting orbit, or instanton, and write v ; w for24

such heteroclinically connected equilibria.25

We attach the name of Sturm to the PDE (1.1), and to its global attractor Af because26

of a crucial nodal property of its solutions which we express by the zero number z. Let27

0 ≤ z(ϕ) ≤ ∞ count the number of (strict) sign changes of ϕ : [0, 1]→ R, ϕ 6≡ 0. Then28

29

(1.4) t 7−→ z(u1(t, ·)− u2(t, ·))

is finite and nonincreasing with time t, for t > 0 and any two distinct solutions u1,30

u2 of (1.1). Moreover z drops strictly with increasing t, at any multiple zero of x 7−→31

u1(t0, x)−u2(t0, x); see [An88]. See Sturm [St1836] for a linear autonomous version. For32

a first introduction see also [Ma82, BrFi88, FuOl88, MP88, BrFi89, Ro91, FiSc03, Ga04]33
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and the many references there. As a convenient notational variant of the zero number1

z, we also write2

(1.5) z(ϕ) = j±

to indicate j strict sign changes of ϕ, by j, and ±ϕ(0) > 0, by the index ±. For3

example z(±ϕj) = j±, for the j-th Sturm-Liouville eigenfunction ϕj.4

The dynamic consequences of the Sturm structure are enormous. In a series of papers,5

we have given a combinatorial description of Sturm global attractors Af ; see [FiRo96,6

FiRo99, FiRo00]. Define the two boundary orders hf0 , h
f
1 : {1, . . . , N} → Ef of the7

equilibria such that8

(1.6) hfι (1) < hfι (2) < . . . < hfι (N) at x = ι = 0, 1 .

The combinatorial description is based on the Sturm permutation σf ∈ SN which was9

introduced by Fusco and Rocha in [FuRo91] and is defined as10

(1.7) σf := (hf0)−1 ◦ hf1 .

Using a shooting approach to the ODE boundary value problem (1.2), the Sturm per-11

mutations σf ∈ SN have been characterized as dissipative Morse meanders in [FiRo99];12

see also (1.24)–(1.27) below. In [FiRo96] we have shown how to determine which equi-13

libria v, w possess a heteroclinic orbit connection (1.3), explicitly and purely combina-14

torially from σf .15

More geometrically, global Sturm attractors Af and Ag with the same Sturm permu-16

tation σf = σg are C0 orbit-equivalent [FiRo00]. For C1-small perturbations, from f to17

g, this global rigidity result is based on C0 structural stability of Morse-Smale systems;18

see e.g. [PaSm70] and [PaMe82]. In fact it is the Sturm property of (1.4) which implies19

the Morse-Smale property, for hyperbolic equilibria. Indeed stable and unstable mani-20

folds W u(v−), W s(v+), which intersect precisely along heteroclinic orbits v− ; v+, are21

automatically transverse: W u(v−) −t W s(v+). See [He85, An86]. In the Morse-Smale22

setting, Henry already observed, that a heteroclinic orbit v− ; v+ is equivalent to v+23

belonging to the boundary ∂W u(v−) of the unstable manifold W u(v−); see [He85].24

More recently, a more explicitly geometric approach has been pursued. We consider25

finite regular CW-complexes26

(1.8) C =
⋃
v∈E

cv ,

i.e. finite disjoint unions of cell interiors cv with additional gluing properties. We think27

of the labels v ∈ E as barycenter elements of cv. For CW-complexes we require the28

closures cv in C to be the continuous images of closed unit balls Bv under characteristic29

maps. We call dimBv the dimension of the (open) cell cv. For positive dimensions of30

Bv we require cv to be the homeomorphic images of the interiors Bv. For dimension31

zero we write Bv := Bv so that any 0-cell cv = Bv is just a point. The m-skeleton Cm32

of C consists of all cells of dimension at most m. We require ∂cv := cv \ cv ⊆ Cm−1 for33
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any m-cell cv. Thus, the boundary (m− 1)-sphere Sv := ∂Bv = Bv \Bv of any m-ball1

Bv, m > 0, maps into the (m− 1)-skeleton,2

(1.9) ∂Bv −→ ∂cv ⊆ Cm−1 ,
for the m-cell cv, by restriction of the continuous characteristic map. The map (1.9)3

is called the attaching (or gluing) map. For regular CW-complexes, in contrast, the4

characteristic maps Bv → cv are required to be homeomorphisms, up to and including5

the attaching (or gluing) homeomorphism. We moreover require ∂cv to be a sub-6

complex of Cm−1, then. See [FrPi90] for a background on this terminology.7

The disjoint dynamic decomposition8

(1.10) Af =
⋃
v∈Ef

W u(v) =: Cf

of the global attractor Af into unstable manifolds W u of equilibria v is called the9

Thom-Smale complex or dynamic complex ; see for example [Fr79, Bo88, BiZh92]. In10

our Sturm setting (1.1) with hyperbolic equilibria v ∈ Ef , the Thom-Smale complex is11

a finite regular CW-complex. The open cells cv are the unstable manifolds W u(v) of12

the equilibria v ∈ Ef . The proof is closely related to the Schoenflies result of [FiRo15];13

see [FiRo14]. We can therefore define the Sturm complex Cf to be the regular Thom-14

Smale complex Cf of the Sturm global attractor Af , provided all equilibria v ∈ Ef are15

hyperbolic.16

Again we call the equilibrium v ∈ Ef the barycenter of the cell cv = W u(v). The17

dimension i(v) of cv is called the Morse index of v. A planar Sturm complex Cf , for18

example, is the regular Thom-Smale complex of a planar Af , i.e. of a Sturm global19

attractor for which all equilibria v ∈ Ef have Morse indices i(v) ≤ 2.20

Our main result, in the first two parts [FiRo16, FiRo17] of the present trilogy, was a21

geometric and combinatorial characterization of those global Sturm attractors, which22

are the closure23

(1.11) Af = clos W u(O)

of the unstable manifold W u of a single equilibrium v = O with Morse index i(O) = 3.24

We call such an Af a 3-ball Sturm attractor. Recall that we assume all equilibria25

v1, . . . , vN to be hyperbolic: sinks have Morse index i = 0, saddles have i = 1, and26

sources i = 2. This terminology also applies when viewed within the flow-invariant27

and attracting boundary 2-sphere28

(1.12) Σ2 = ∂W u(O) := (clos W u(O)) rW u(O) .

Correspondingly we call the associated cells cv = W u(v) of the Thom-Smale cell com-29

plex, or of any regular cell complex, vertices, edges, and faces. The graph of vertices30

and edges, for example, defines the 1-skeleton C1 of the 3-ball cell complex C =
⋃
v cv.31

Any abstractly prescribed regular 3-ball complex C possesses a realization as the Sturm32

dynamic complex33

(1.13) Cf = C
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of a suitably chosen nonlinearity f with Sturm 3-ball Af ; see [FiRo14]. However, there1

may be many meander permutations σf 6= σg which realize the same complex,2

(1.14) Cf = C = Cg ,

up to homeomorphisms which preserve the cell structure. In section 2 we review3

trivial equivalences as a (trivial) cause: f, g, and hence σf , σg, may be related by4

transformations x 7→ 1− x or u 7→ −u. But there are much more subtle causes for the5

phenomenon (1.14), where even the cycle lengths of the Sturm permutations σf , σg6

disagree. The examples of sections 5 and 6 will realize Sturm 3-ball attractors Af = Cf7

with prescribed 3-ball complex C, as in (1.13), and will provide lists of all realizing8

permutations σf , in the sense of (1.14).9

These results are crucially based on the disjoint signed hemisphere decomposition10

(1.15) ∂W u(v) =
�⋃

0≤j<i(v)

Σj
±(v)

of the topological boundary ∂W u = ∂cv = cvrcv of the unstable manifold W u(v) = cv,11

for any equilibrium v. As in [FiRo17, (1.19)] we define the hemispheres by their Thom-12

Smale cell decompositions13

(1.16) Σj
±(v) :=

�⋃
w∈Ej±(v)

W u(w)

with the equilibrium sets14

(1.17) E j±(v) := {w ∈ Ef | z(w − v) = j± and v ; w} ,

for 0 ≤ j < i(v). Equivalently, we may define the hemisphere decompositions, induc-15

tively, via the topological boundary j-spheres16

(1.18) Σj(v) :=
�⋃

0≤k<j

Σk
±(v)

of the fast unstable manifolds W j+1(v). Here W j+1(v) is tangent to the eigenvectors17

ϕ0, . . . , ϕj of the first j + 1 unstable eigenvalues λ0 > . . . > λj > 0 of the linearization18

at the equilibrium v. See [FiRo16] for details.19

For 3-ball Sturm attractors, the signed hemisphere decomposition (1.15) reads20

(1.19) Σ2 = ∂W u(O) =
2⋃
j=0

Σj
± .

at v = O with Morse index i(O) = 3. See (1.11), (1.12). Here Σ0
± = {N,S} is the21

boundary of the one-dimensional fastest unstable manifold W 1 = W 1(O), tangent to22
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Figure 1.1: A 3-cell template. Shown is the S2 boundary of the single 3-cell cO with poles
N, S, hemispheres W (green), E and separating meridians EW, WE (green). The right
and the left boundaries denote the same EW meridian and have to be identified. Dots • are
sinks, and small circles ◦ are sources. (a) Note the hemisphere decomposition (ii), the edge
orientations (iii) at meridian boundaries, and the meridian overlaps (iv) of the N-adjacent
meridian faces ⊗ = wι− with their S-adjacent counterparts � = wι+; see also (1.31). (b) The
SZS-pair (h0, h1) in a 3-cell template C, with poles N,S, hemispheres W,E and meridians
EW,WE. Dashed lines indicate the hι-ordering of vertices in the closed hemisphere, when
O and the other hemisphere are ignored, according to definition 2.4(i). The actual paths hι
tunnel, from wι− ∈W through the 3-cell barycenter O, and re-emerge at wι+ ∈ E, respectively.

Note the boundary overlap of the faces NW,SE of w1
−, w

0
+ from vµ−1− to vµ

′+1
− on the EW

meridian. Similarly, the boundaries of the faces NE,SW of w0
−, w

1
+ overlap from vν−1+ to

vν
′+1

+ along WE. For many examples see sections 5, 7.

the positive eigenfunction ϕ0 at O. Indeed, solutions t 7→ u(t, x) in W 1 are monotone1

in t, for any fixed x. Accordingly2

(1.20) z(N−O) = 0− , z(S−O) = 0+ ,

i.e. N < O < S for all 0 ≤ x ≤ 1. The poles N,S split the circle boundary Σ1 =3

∂W 2(O) of the 2-dimensional fast unstable manifold into the two meridian half-circles4

Σ1
±. The circle Σ1, in turn, splits the boundary sphere Σ2 = ∂W u(O) of the whole5

unstable manifold W u of O into the two hemispheres Σ2
±.6

For the geometric characterization of 3-ball Sturm attractors Af in (1.11), by their7

Thom-Smale dynamic complexes (1.10), we now drop all Sturmian PDE interpreta-8

tions. Instead we define 3-cell templates, abstractly, in the class of regular cell com-9
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plexes C and without any reference to PDE or dynamics terminology. See fig. 1.1 for1

an illustration.2

Definition 1.1. A finite regular cell complex C =
⋃
v∈E cv is called a 3-cell template if3

the following four conditions all hold.4

(i) C = clos cO = S2 ∪̇ cO is the closure of a single 3-cell cO.5

(ii) The 1-skeleton C1 of C possesses a bipolar orientation from a pole vertex N6

(North) to a pole vertex S (South), with two disjoint directed meridian paths7

WE and EW from N to S. The meridians decompose the boundary sphere S2
8

into remaining hemisphere components W (West) and E (East).9

(iii) Edges are oriented towards the meridians, in W, and away from the meridians,10

in E, at end points on the meridians other than the poles N, S.11

(iv) Let NE, SW denote the unique faces in W, E, respectively, which contain the12

first, last edge of the meridian WE in their boundary. Then the boundaries of13

NE and SW overlap in at least one shared edge of the meridian WE.14

Similarly, let NW, SE denote the unique faces in W, E, adjacent to the first,15

last edge of the other meridian EW, respectively. Then their boundaries overlap16

in at least one shared edge of EW.17

We recall here that an edge orientation of the 1-skeleton C1 is called bipolar if it is18

without directed cycles, and with a single “source” vertex N and a single “sink” vertex19

S on the boundary of C. Here “source” and “sink” are understood, not dynamically20

but, with respect to edge orientation. To avoid any confusion with dynamic i = 0 sinks21

and i = 2 sources, below, we call N and S the North and South pole, respectively.22

The hemisphere translation table between Af and Cf = C is, of course, the following:23

(1.21)

(Σ0
−,Σ

0
+) 7→ (N,S)

(Σ1
−,Σ

1
+) 7→ (EW,WE)

(Σ2
−,Σ

2
+) 7→ (W,E)

Here Σj
± abbreviates Σj

±(O).24

Theorem 1.2. [FiRo17, theorems 1.2 and 2.6]. A finite regular cell complex C co-25

incides with the Thom-Smale dynamic complex cv = W u(v) ∈ Cf of a 3-ball Sturm26

attractor Af if, and only if, C is a 3-cell template, with the above translation of the27

hemisphere decomposition of ∂W u(O).28

In [FiRo16, theorem 4.1] we proved that the dynamic complex C:= Cf of a Sturm 3-ball29

Af indeed satisfies conditions (i)–(iv) of definition 1.1 on a 3-cell template. The 3-cell30

property (i) on cO = W u(O) is obviously satisfied. The bipolar orientation (ii) of the31

edges cv of the 1-skeleton, alias the one-dimensional unstable manifolds cv = W u(v) of32

i(v) = 1 saddles v, is simply the strict monotone order from vertex Σ0
−(v) to vertex33
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Σ0
+(v), uniformly for 0 ≤ x ≤ 1. The meridian cycle is the boundary Σ1 of the two-1

dimensional fast unstable manifold. Properties (iii) and (iv) are less obvious, at first2

sight.3

The proof of the converse requires the design of a 3-ball Sturm attractor Af with4

a prescribed 3-cell template Cf = C for the signed hemisphere decomposition (1.21).5

This has been achieved via the notion of a 3-meander templateM, σ which we explain6

below. Suffice it here to say that we introduced a construction of a suitable SZS-pair7

of Hamiltonian paths8

(1.22) hι : {1, . . . , N} −→ E ,
for ι = 0, 1, i.e. a pair of bijections onto the barycentric vertex set v ∈ E of the given9

3-cell template C = (cv)v∈E . In fact we constructed the abstract paths hι in C, for10

ι = 0, 1, by recipe or decree ex cathedra, such that the abstract permutation11

(1.23) σ := h−10 ◦ h1
is a dissipative Morse meander and hence, by [FiRo96], a Sturm permutation σ = σf12

for some concrete nonlinearity f .13

More precisely, [FiRo16, theorem 5.2] showed that the construction (1.23) of σ, ex14

cathedra, results in a 3-meander template, for any prescribed 3-cell template C. In15

[FiRo17, theorem 3.1] we showed that the resulting permutation σ is a dissipative16

Morse meander, and hence is a Sturm permutation σ = σf , for some suitable nonlin-17

earities f with Sturm attractor Af . In [FiRo17, theorem 5.1] we showed that Af , thus18

constructed, is indeed a Sturm 3-ball. In [FiRo17, theorem 2.6], finally, we showed that19

the Thom-Smale dynamic Sturm complex Cf of Af coincides with the prescribed 3-cell20

template C, i.e. Cf = C, by a cell homeomorphism which, in addition, preserves the21

signed hemisphere translation table (1.21). In particular the 3-cell template C = Cf22

determines the Sturm permutation σ = σf uniquely, [FiRo17, theorem 2.7].23

It remains to recall the two main concepts mentioned in the above proof of theorem 1.2:24

meanders M and SZS-pairs (h0, h1) of Hamiltonian paths in C.25

Abstractly, a meander is an oriented planar C1 Jordan curve M which crosses a pos-26

itively oriented horizontal axis at finitely many points. The curve M is assumed to27

run from Southwest to Northeast, asymptotically, and all N crossings are assumed to28

be transverse; see [Ar88, ArVi89]. Note N is odd. Enumerating the N crossing points29

v ∈ E , by h0 along the meander M and by h1 along the horizontal axis, respectively,30

we obtain two labeling bijections (1.22). We define the meander permutation σ ∈ SN31

by (1.23). We call the meander M dissipative if32

(1.24) σ(1) = 1, σ(N) = N

are fixed under σ.33

For M-adjacent crossings v = h0(j), ṽ = h0(j + 1) we define Morse numbers iṽ, iv,34

recursively, by35

(1.25)
ih0(1) := ih0(N) := 0 ,

ih0(j+1) := ih0(j) + (−1)j+1 sign(σ−1(j + 1)− σ−1(j)) .

7



We call the meander M Morse, if1

(1.26) iv ≥ 0 ,

for all v ∈M.2

Equivalently, by recursion along h1:3

(1.27)
ih1(1) := ih1(N) := 0 ,

ih1(j+1) := ih1(j) + (−1)j+1 sign(σ(j + 1)− σ(j)) .

Note how the enumeration of intersections v ∈ E by hι: {1, . . . , N} → E depends on4

hι, of course. The Morse numbers iv, however, only depend on the Sturm permutation5

σ which defines the meander M.6

We call M Sturm meander, if M is a dissipative Morse meander; see [FiRo96]. Con-7

versely, given any permutation σ ∈ SN , we label N crossings along the axis in the order8

of σ. Define an associated curve M of arches over the horizontal axis which switches9

sides at the labels {1, . . . , N}, successively. This fixes h0 = id and h1 = σ. A Sturm10

permutation σ is a permutation such that the associated curveM is a Sturm meander.11

The main paradigm of [FiRo96] is the equivalence of Sturm meandersM with shooting12

curvesMf of the Neumann ODE problem (1.2). In fact, the Neumann shooting curve13

is a Sturm meander, for any dissipative nonlinearity f with hyperbolic equilibria. Con-14

versely, for any permutation σ of a Sturm meander M there exist dissipative f with15

hyperbolic equilibria such that σ = σf is the Sturm permutation of f . In that case, the16

intersections v of the meanderMf with the horizontal v-axis are the boundary values17

of the equilibria v ∈ Ef at x = 1, and the Morse number iv are the Morse indices i(v):18

(1.28) iv = dim cv = dimW u(v) = i(v) ≥ 0 .

This allows us to identify

Ef = E ;(1.29)

hfι = hι ;(1.30)

For that reason we have used closely related notation to describe either case.19

In particular, (1.30) justifies the terminology of sinks iv = 0, saddles iv = 1, and20

sources iv = 2 for abstract Sturm meanders. We insist, however, that our above21

definition (1.24)–(1.27) is completely abstract and independent of this ODE/PDE in-22

terpretation.23

We return to abstract Sturm meanders M as in (1.24)–(1.27). For example, consider24

the case iO = 3 of a single intersection v = O with Morse number 3. Suppose iv ≤ 225

for all other Morse numbers. Then (1.25) implies i = 2 for the two h0-neighbors26

h0(h
−1
0 (O)± 1) of O along the meander M. In other words, these neighbors are both27

sources. The same statement holds true for the two h1-neighbors h1(h
−1
1 (O)± 1) of O28

along the horizontal axis. To fix notation, we denote these hι-neighbors by29

(1.31) wι± := hι(h
−1
ι (O)± 1) ,

8



Figure 1.2: A 3-meander template. Note the N-polar h1-serpent N = v2n+ . . . vν+ terminated
at vν+ by the source w0

− which is, both, h1-extreme minimal and the lower h0-neighbor of

O. This serpent overlaps the anti-polar, i.e. S-polar, h0-serpent vν
′

+ . . . vν+ . . . v
0
+ = S, from

vν
′

+ to vν+. Similarly, the N-polar h0-serpent N = v0− . . . v
µ′

− overlaps the anti-polar, i.e. S-

polar, h1-serpent vµ− . . . v
µ′

− . . . v
2n
− = S, from vµ− to vµ

′

− . The h1-neighbors w1
± of O are the

h0-extreme sources, by the two polar h0-serpents. Similarly, the h0-neighbors w0
± of O define

the h1-extreme sources. See also sections 6, 7 for specific examples.

for ι = 0, 1. The hι-extreme sources are the first and last source intersections v of the1

meander M with the horizontal axis, in the order of hι.2

Reminiscent of cell template terminology, we call the extreme sinks N = h0(1) = h1(1)3

and S = h0(N) = h1(N) the (North and South) poles of the Sturm meander M. A4

polar hι-serpent, for ι = 0, 1, is a set of v = hι(j) ∈ E , for a maximal interval of integers5

j, which contains a pole, N or S, and satisfies6

(1.32) ihι(j) ∈ {0, 1}

for all j. To visualize serpents we often include the meander or axis path joining v7

in the serpent. See fig. 1.2 and sections 6, 7 for examples. We call N-polar serpents8

and S-polar serpents anti-polar to each other. An overlap of anti-polar serpents simply9

indicates a nonempty intersection. For later reference, we call a polar hι-serpent full if10

it extends all the way to the saddle which is h1−ι-adjacent to the opposite pole. Full11

hι-serpents always overlap with their anti-polar h1−ι-serpent, of course, at least at that12

saddle.13

9



Definition 1.3. An abstract Sturm meander M with intersections v ∈ E is called a1

3-meander template if the following four conditions hold, for ι = 0, 1.2

(i) M possesses a single intersection v = O with Morse number iO = 3, and no3

other Morse number exceeds 2.4

(ii) Polar hι-serpents overlap with their anti-polar h1−ι-serpents in at least one shared5

vertex.6

(iii) The intersection v = O is located between the two intersection points, in the order7

of h1−ι, of the polar arc of any polar hι-serpent.8

(iv) The hι-neighbors wι± of v = O are the i = 2 sources which terminate the polar9

h1−ι-serpents.10

See fig. 1.2 for an illustration of 3-meander templates. Property (iv), for example,11

asserts that the hι-neighbor sources wι± of O are the h1−ι-extreme sources, for ι = 0, 1.12

The passage from 3-cell templates to 3-meander templates is based on a detailed con-13

struction of an SZS-pair (h0, h1) of paths in the given 3-cell template. The construction14

relies heavily on our previous trilogy [FiRo09, FiRo08, FiRo10] on the planar case. In15

section 2 we construct h0 and h1, separately, for each closed hemisphere W and E. Each16

closed hemisphere, by itself, will be viewed as a planar Sturm attractor in [FiRo17].17

The remaining paper is organized as follows. In section 2 we recall the construction18

of the SZS-pair (h0, h1) of Hamiltonian paths for any 3-cell template C. Section 319

comments on the effects of the trivial equivalences x 7→ 1 − x and u 7→ −u on 3-cell20

templates and SZS-pairs. In section 4 we discuss face lifts from certain planar disk21

complexes to 3-cell complexes via attachment of a Western hemisphere which consists22

of a single cell. Duality, a useful tool in the analysis of planar Sturm attractors, is23

lifted to 3-balls in section 5. With these general preparations, and based on the results24

in our planar Sturm trilogy [FiRo09, FiRo08, FiRo10], we enumerate all 3-ball Sturm25

attractors with at most 13 equilibria, in section 6. Section 7 is devoted to the Platonic26

solids as Sturm global attractors. We conclude, in section 8, with the “Snoopy burger”:27

a regular cell complex C of two 3-cells and a total of only 9 equilibria, which cannot be28

realized as a Sturm dynamic complex Cf .29
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Figure 2.1: Traversing a face vertex O by a ZS-pair h0, h1. Note the resulting shapes “Z”
of h0 (red) and “S” of h1 (blue). The paths hι may also continue into adjacent neighboring
faces, beyond wι±, without turning into the face boundary ∂cO.

2 Hamiltonian pairs in 3-cell templates1

We recall results from [FiRo16, section 2]. The design and enumeration of 3-ball2

Sturm attractors Af with prescribed 3-cell template C = (cv)v∈E is based on a recipe,3

or definition, of an SZS-pair (h0, h1) of Hamiltonian paths hι: {1, . . . , N} → E . See4

definition 2.1. The definition is satisfied by the boundary orders hfι of 3-ball Sturm5

attractors Af . The identifications E = Ef and hι = hfι of (1.29), (1.30) therefore6

mandate the form of the recipe, as stated below.7

As a preparation we consider planar regular CW-complexes C, first, with a bipolar8

orientation of the 1-skeleton C1. Here bipolarity requires that the unique poles N and9

S of the orientation are located at the boundary of the regular complex C ⊆ R2.10

To label the vertices v ∈ E of a planar complex C, we construct a pair of Hamiltonian11

paths12

(2.1) h0, h1 : {1, . . . , N} → E

as follows. Let O indicate any source, i.e. (the barycenter of) a 2-cell face cO in13

C. (We temporarily deviate from the standard 3-ball notation, here, to emphasize14

analogies with the passage of hι through a 3-cell later.) By planarity of C the bipolar15

orientation of C1 defines unique extrema on the boundary circle ∂cO of the 2-cell cO.16

Let w0
− be the saddle on ∂cO (of the edge) to the right of the minimum, and w0

+ the17

saddle to the left of the maximum. Similarly, let w1
− be the saddle to the left of the18

minimum, and w1
+ to the right of the maximum. See fig. 2.1.19

Definition 2.1. The bijections h0, h1 in (2.1) are called a ZS-pair (h0, h1) in the finite,20

regular, planar and bipolar cell complex C =
⋃
v∈E cv if the following three conditions21

all hold true:22

(i) h0 traverses any face cO from w0
− to w0

+;23

(ii) h1 traverses any face cO from w1
− to w1

+24

11



Figure 2.2: The Sturm disk with source O, m + n sinks, m + n saddles, and hemisphere
decomposition Σj

±, j = 0, 1, of A = clos W u(O). Saddles and sinks are enumerated by
vk± with odd and even exponents k, respectively. (a) The associated Thom-Smale dynamic
complex C. Arrows on the circle boundary indicate the bipolar orientation of the edges of
the 1-skeleton. Edges are the whole one-dimensional unstable manifolds of the saddles; the
orientation of the edge runs against the time direction on half of each edge. The poles N,
S are the extrema of the bipolar orientation. The bipolar orientation determines the ZS-
pair (h0, h1), by definition 2.1. Colors h0 (red), h1 (blue). (b) The meander M defined by
the ZS-pair (h0, h1) of (a). Equilibria v ∈ E are ordered according to the oriented path h1
(blue), increasing along the horizontal axis. The oriented path h0 (red) defines the arcs of the
meander M. Note the two full polar h0-serpents v0−v

1
− . . . v

2m−1
− and v0+v

1
+ . . . v

2n−1
+ . The two

full polar h1-serpents are v2n+ . . . v1+ and v1− . . . v
2m
− . Also note how the hι-neighboring saddles

wι± to the source O, at x = ι, become the h1−ι-extreme saddles at the opposite boundary.

(iii) both hι follow the bipolar orientation of the 1-skeleton C1, if not already defined1

by (i), (ii).2

We call (h0, h1) an SZ-pair, if (h1, h0) is a ZS-pair, i.e. if the roles of h0 and h1 in the3

rules (i) and (ii) of the face traversals are reversed.4

In fig. 2.2 we illustrate definition 2.1 for the simple case of a single 2-disk with m+ n5

sinks, m+ n saddles on the boundary, and a single source O. The bipolar orientation6

of the 1-skeleton, in (a), in fact follows from the boundary Σ0 = {N,S} of the fast7

unstable manifold W uu(O). Indeed z(v −O) = 0± uniquely characterizes v ∈ Σ0
±.8

The planar trilogy [FiRo08, FiRo09, FiRo10] contains ample material on the planar9

case. In particular it has been proved that a regular finite cell complex C is the Thom-10

Smale dynamic cell complex Cf of a planar Sturm attractor Af if, and only if, C ⊆ R2
11

is planar and contractible with bipolar 1-skeleton C1.12

See [FiRo16, theorem 2.1]. Moreover we can identify Cf = C via Ef = E , hfι = hι, as13

in (1.29), (1.30). See [FiRo08, FiRo09, FiRo10] for proofs and many more examples.14

12



Figure 2.3: Western (W) and Eastern (E) planar topological disk complexes. In W, (a), all
edges of the 1-skeleton W1 with a vertex v 6= N on the disk boundary are oriented outward, i.e.
towards v. In E, (b), all 1-skeleton edges with a vertex v 6= S on the disk boundary are oriented
inward, i.e. away from v. Note the respective full S-polar h0, h1-serpents v2n−1+ . . . v0+ = S,
v1− . . . v

2m
− = S, dashed red/blue in (a), and the full N-polar h0, h1-serpents N = v0− . . . v

2m−1
− ,

N = v2n+ v2n−1+ . . . v1+, dashed red/blue in (b). Here we use ZS-pairs (h0, h1) in E, but SZ-pairs
(h0, h1) in W.

For a later comeback as hemisphere constituents clos W, clos E in 3-cell templates1

C, we now single out bipolar topological disk complexes which already satisfy the2

properties (ii) and (iii) of definition 1.1.3

Definition 2.2. A bipolar topological disk complex clos E with poles N,S on the cir-4

cular boundary ∂E is called Eastern disk, if any edge of the 1-skeleton in E, with at5

least one vertex v ∈ ∂E \S, is oriented inward, i.e. away from that boundary vertex v.6

Similarly, we call such a complex clos W Western disk, if any edge of the 1-skeleton7

in W, with at least one vertex v ∈ ∂W \ N, is oriented outward, i.e. towards that8

boundary vertex v.9

See fig. 2.3. For SZ- and ZS-pairs (h0, h1) this leads to full polar serpents as follows.10

Lemma 2.3. [FiRo16, lemma 2.7] Let W,E be bipolar topological disk complexes with11

poles N,S on their circular boundaries. Let (h0, h1) denote an SZ- or ZS-pair.12

Then the disk clos W is Western, if and only if the S-polar hι-serpents are full, for13

ι = 0, 1, i.e. they contain all points of their respective boundary half-circle, except the14

antipodal pole N.15

13



Similarly, the disk clos E is Eastern, if and only if the N-polar hι-serpents are full, for1

ι = 0, 1, i.e. they contain all points of their respective boundary half-circle, except the2

antipodal pole S.3

After these preparations we can now return to general 3-cell templates C and define4

the SZS-pair (h0, h1) associated to C.5

Definition 2.4. Let C =
⋃
v∈E cv be a 3-cell template with oriented 1-skeleton C1, poles6

N,S, hemispheres W,E, and meridians EW, WE. A pair (h0, h1) of bijections hι:7

{1, . . . , N} → E is called the SZS-pair assigned to C if the following conditions hold.8

(i) The restrictions of range hι to clos W form an SZ-pair (h0, h1), in the closed9

Western hemisphere. The analogous restrictions form a ZS-pair (h0, h1) in the10

closed Eastern hemisphere clos E. See definition 2.1.11

(ii) In the notation of figs. 1.1, 2.3, and for each ι = 0, 1, the permutation hι traverses12

wι−,O, wι+, successively.13

The swapped pair (h1, h0) is called the ZSZ-pair of C.14

See fig. 1.1(b) for an illustration. Condition (i) identifies the closed hemispheres as15

the Thom-Smale dynamic complexes of planar Sturm attractors; see lemma 2.3. The16

resulting full polar serpents of hι are indicated by dashed lines.17

It is easy to see why the SZS-pair (h0, h1) is unique, for any given 3-cell template C.18

Indeed, the bipolar orientation of C fixes the orders of h0 and h1 uniquely on the 1-19

skeleton of C. The SZ- and ZS-requirements of (i) determine how hι traverses each face,20

except for the faces of the hι-neighbors wι± of O. That final missing piece is uniquely21

prescribed to be wι−Owι+, by requirement (ii) of definition 2.4. This assigns a unique22

SZS-pair (h0, h1) of Hamiltonian paths, from pole N to pole S, for any given 3-cell23

template C.24

With the above construction of the SZS-pair (h0, h1), for any given 3-cell template C,25

the construction of the unique Sturm permutation σf = σ = h−10 ◦h1 is complete. This26

also identifies the unique 3-meander template Mf = M and 3-ball Sturm attractor27

Af , up to C0 flow-equivalence, with prescribed Thom-Smale dynamic complex Cf = C28

and prescribed hemisphere decomposition (1.21).29

3 Trivial equivalences30

To reduce the number of cases in complete enumerations, a proper consideration of31

symmetries is mandatory. For 3-cell templates C there are two sources of such sym-32

metries. First, there are the automorphisms of the cell complex C itself. The isotropy33

subgroups of the orthogonal group O(3) for the five Platonic solids provide a rich source34

of examples. Second, there are certain trivial equivalences which arise from the signed35

hemisphere decomposition (1.21) of C; see definition 1.1. In our examples below, we36

easily eliminate isotropies in an adhoc manner, based on certain choices of poles and37

14



bipolar orientations. The effect of the trivial equivalences, elementary as it may be,1

deserves some careful attention to avoid duplications and omissions in the resulting2

lists of cases. We summarize the results of this section in fig. 3.1 and table 3.1 below.3

Already in [FiRo96], trivial equivalences were defined as the Klein 4-group with com-
muting involutive generators

(κu)(x) := −u(x) ;(3.1)

(ρu)(x) := u(1− x) .(3.2)

In the PDE (1.1), the u-flip κ induces a linear flow equivalence Af → κAf = Afκ where4

fκ(x, u, p):= f(x,−u,−p). Similarly, the x-reversal ρ induces a linear flow equivalence5

Af → ρAf = Afρ via fρ(x, u, p):= f(1− x, u,−p).6

Since C = Cf , hfι = hι and σf = σ we may also describe the effect of trivial equiv-
alences on the level of 3-cell templates, alias signed hemisphere complexes, via the
actions of γ = κ, ρ on the hemispheres Σj

±(v), for 0 ≤ j < i(v) ≤ 3. Here and below
A, C, hι, σ, Σj

±(v) refer to f , whereas Aγ, Cγ, hγι , σγ, Σγ,j
± (v) will refer to fγ. By

definition (1.16), (1.17) of Σj
± we observe

Σκ,j
± (κv) = κΣj

∓(v) ;(3.3)

Σρ,j
± (ρv) =

{
ρΣj
±(v) , for j = 0, 2 ;

ρΣj
∓(v) , for j = 1 .

(3.4)

Let us consider the effect of the u-flip κ = −id first. See fig. 1.1 again, and fig. 3.1(a),(b).7

The orientation of the 3-cell template C = Cf , and of each odd-dimensional cell cv, is8

reversed by κ. In particular, the involution κ reverses the bipolar orientation, and9

swaps poles, meridians, hemispheres, and overlap faces as10

(3.5)

N ←→ S ;

WE ←→ EW ;

κ : W ←→ E ;

NE ←→ SE ;

NW ←→ SW .

More precisely, let Nκ, Sκ denote the North and South poles Σκ,0
− (κO), Σκ,0

+ (κO) in11

κC = −C, respectively. Then12

(3.6) Nκ = κS , Sκ = κN ,

by (3.3) with j = 0 and v = O. The other claims of (3.5) are understood as analo-13

gous abbreviations. For example, let wκ,0− , wκ,1− , wκ,0+ , wκ,1+ denote the face centers of14

NEκ, NWκ, SEκ, SWκ, respectively. Then15

(3.7) wκ,ι± = κwι∓

for ι = 0, 1, in agreement with the last two lines of (3.5).16

15



Figure 3.1: The effects of the trivial equivalences κ, ρ, and κρ on a 3-cell template C with
19 equilibria. The cell complex C is drawn as the boundary sphere S2 = ∂cO, in the style of
fig. 1.1. (a) The original 3-cell template C. (b)–(d) The 3-cell templates γC, γ ∈ {κ, ρ, κρ}.
Annotations refer to the resulting template with hemisphere decomposition given by (1.21).
See also the summary in table 3.1, at the end of this section. All entries of table 3.1 can
be recovered from the figure, in principle, because corresponding cells are easily identified by
their shape and connectivity. Note how the Klein 4-group 〈κ, ρ〉 acts transitively on the four
elements wι±.

To describe the effect of κ = −id on the Hamiltonian paths hι and on the Sturm1

permutations σ algebraically, we abuse notation slightly and let κ also denote the2

involution permutation3

(3.8) κ(j) := N + 1− j

on j ∈ {1, . . . , N}. Then κ = −id reverses the boundary orders of the equilibria4

Eκ = −E , at x = ι = 0, 1, respectively. Therefore5

(3.9) hκι = κhικ ,

and σ = h−10 ◦ h1 leads to the conjugation6

(3.10) σκ = κσκ .

16



Moreover (hκ0 , h
κ
1) remains an SZS-pair, albeit for the complex Cκ = −C of reversed1

orientation.2

In summary, we can visualize the geometric effect of the orientation reversing reflec-3

tion κ = −id in fig. 1.1 as, first, a rotation of the 2-sphere S2 by 180 degrees. The4

rotation axis is defined by the intersections of the two meridians EW and WE with5

the equator of S2. Subsequently, we perform a reflection of each hemisphere through6

a ±90 degree meridian which bisects each hemisphere and interchanges the 0 degree7

Greenwich meridian WE with the date line EW at 180 degrees. The effect of κ on the8

3-meander template is a simple rotation by 180 degrees. The combinatorial effect is9

the conjugation (3.10) of the Sturm permutation σ by the involution κ of (3.8).10

We consider the effect of the x-reversal (ρu)(x) = u(1− x) next, in slightly condensed11

form. See fig. 3.1(c): Again ρ reverses the orientation of C. Because ρ only interchanges12

1-hemispheres Σ1
±(v), however, only the orientation of 2- and 3-cells cv is reversed.13

The poles and bipolar edge orientations of the 1-skeleton C1 remain unaffected. The14

hemispheres W, E preserve their labels, as sets, but each is reflected along its ±90◦15

meridian, thus reversing all face orientations. Consequently the Greenwich meridian16

and the date line Σ1
±(O), are interchanged. Therefore (3.5) becomes17

(3.11)

WE ←→ EW

NE ←→ NW

SE ←→ SW .

Similarly, (3.6) and (3.7) get replaced by

Nρ = ρN , Sρ = ρS ;(3.12)

wρ,ι± = ρw1−ι
± .(3.13)

The ι-swap of the O-neighbors wι± and the reversal of the planar, but not bipolar,
orientation of each face cv in C imply that (ρh0, ρh1) become a ZSZ pair, instead of an
SZS pair, in ρ C. Therefore (3.9), (3.10) now read

hρι = ρh1−ι ;(3.14)

σρ = (ρh1)
−1 ◦ (ρh0) = σ−1 ,(3.15)

using σ = h−10 ◦ h1. In the PDE setting, property (3.14) also follows directly, by18

definition of the boundary orders hfι = hf
ρ

1−ι.19

In summary, we can visualize the geometric effect of the orientation reversing x-reversal20

ρ in fig. 1.1 as just a reflection of each hemisphere through a ±90 degree meridian.21

This just swaps the meridian WE with EW and converts (h0, h1) to a ZSZ pair.22

Combinatorially, the Sturm permutation σ gets replaced by its inverse σ−1.23

The third nontrivial element of the Klein 4-group generated by κ, ρ is the involution24

κρ = ρκ of course. See fig. 3.1(d). Combinatorially, this replaces σ by the conjugate25

inverse26

(3.16) σρκ = (σκ)−1 = (σ−1)κ = κσ−1κ .
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γ κ ρ κρ, double dual

δ in Σjδ −δ for j = 0, 1, 2 −δ for j = 1 −δ for j = 0, 2

bipolarity reverse keep reverse
face orientation keep reverse reverse

3-cell orientation reverse reverse keep

poles N,S N↔ S keep N↔ S
meridians WE,EW WE↔ EW WE↔ EW keep
hemispheres W,E W↔ E keep W↔ E

faces NE,NW,SE,SW NE↔ SE,
NW↔ SW

NE↔ NW,
SE↔ SW

NE↔ SW,
NW↔ SE

wι± wι∓ w1−ι
± w1−ι

∓
hι κhικ ρh1−ι κρh1−ικ
σ κσκ σ−1 κσ−1κ

Table 3.1: The effects of trivial equivalences γ ∈ 〈κ, ρ〉 on hemisphere decompositions,
orientations, 3-cell complexes, Hamiltonian paths, and Sturm permutations. For the double
dual see (5.3).

Geometrically, the third involution (ρκu)(x) = −u(1− x) acts on hemispheres by1

(3.17) Σκρ,j
± (κρv) =

{
κρΣj

∓(v) , for j = 0, 2 ;

κρΣj
±(v) , for j = 1 .

In particular, κρ reverses the bipolar orientation of all edges and the orientation of2

all faces, but not the orientation of the 3-cell cO. This swaps poles, hemispheres, and3

overlap faces as4

(3.18)

N ←→ S ;

W ←→ E ;

NE ←→ SW ;

NW ←→ SE ;

but preserves the two meridians WE and EW as sets. This can be visualized, in5

fig. 1.1, as a 180 degree rotation of the Sturm 3-ball through an axis defined by the6

intersections of the two meridians with the equator.7

We summarize the results in table 3.1. Note that the Klein 4-group 〈κ, ρ〉 of trivial8

equivalences maps 3-cell templates to 3-cell templates and 3-meanders to 3-meanders.9

Of course this claim can be checked against definitions 1.1, 1.3, with the above remarks.10

On the equivalent level of 3-ball Sturm attractors Af , however, this is trivial via the11

linear flow-equivalences (3.1), (3.2) on the global attractors under κ, ρ.12

4 Face and eye lifts13

The characterization of 3-ball Sturm Thom-Smale dynamic complexes Cf as 3-cell tem-14

plates C = clos cO, in definition 1.1, can be described as the proper welding of two15
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Figure 4.1: (a) Schematics of an EastWest complex C∗. Poles are N, S. Arrows indicate
the bipolar orientation. Green: pole-to-pole boundary paths. The paths are contained in the
boundaries ∂cwι of the boundary faces cwι with barycenters wι, respectively, for ι = 0, 1.
(b) The meander M resulting from the SZ-pair (h0, h1) in C. Note the full N- and S-polar
serpents.

regular, bipolar topological disk complexes, C− and C+, along their shared meridian1

boundary. The welding succeeds to form the 2-sphere S2 = ∂cO of C if, and only if,2

two conditions hold. First, the constituents C− and C+ must be Western and Eastern3

disks, respectively, in the sense of definition 2.2 and lemma 2.3. Second, the rather del-4

icate overlap condition of definition 1.1(iv) must be satisfied. In this section we discuss5

EastWest complexes C∗ which can serve, universally, as Western or Eastern disks alike.6

The overlap condition is then automatically satisfied, whatever their complementing7

Eastern or Western disk may be. Effectively this will allow us to lift any Eastern or8

Western disk C0 to a 3-cell template, by the faces of any EastWest complex C∗. This9

single face lift will account for the majority of cases in the examples of sections 6 and10

7.11

Definition 4.1. Let C∗ be a regular, bipolar topological disk complex. We call C∗12

EastWest disk if C∗ is, both, Western and Eastern in the sense of definition 2.2.13

See fig. 3.1 for four examples; the EastWest complex is the closed hemisphere with two14

faces, in those cases. See also fig. 4.1 for the general case.15

Lemma 4.2. For any regular bipolar topological disk complex C∗ the following three16

properties are equivalent:17

(i) C∗ is an EastWest disk;18

(ii) all polar serpents of the SZ- or ZS-pair (h0, h1) of C∗ are full polar serpents;19

(iii) each pole-to-pole boundary path in C∗ is contained in the boundary of some single20

face.21
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Figure 4.2: Three EastWest complexes C∗ as Western, left disks in 3-cell templates. See
fig. 1.1 for general notation. (a) A single-face (m,n)-gon C∗, with barycenter w0

− = w1
−. (b)

A double face lift with two faces. Each face takes care of one meridian. (c) An eye lift where
C∗ possesses one interior closed face, the eye, which is detached from the two meridians.

Proof. By definition 2.2, C∗ is Western/Eastern if and only if the S- and N-polar1

serpents are full. This proves that (i) and (ii) are equivalent.2

To show that (i) implies (iii) we only have to show that interior edges in an EastWest3

complex C∗ do not possess vertices v on the boundary, other than the poles N, S.4

This is obvious because any such edge has to be oriented away from v, since C∗ is5

Eastern, and also towards v, since C∗ is also Western.6

To show that, conversely, (iii) implies (i) we only have to remark that all interior edges7

with boundary vertices v are polar, and hence are exempt of any Western or Eastern8

orientation requirements. This proves the lemma. ./9

Definition 4.3. Let C+ be an Eastern disk and C∗ an EastWest disk such that the ∂C∗10

coincides with the mirror image of ∂C+, in the chosen planar embedding. We call the11

3-cell template C defined by12

(4.1) clos W := C∗ , clos E := C+

the West lift of the Eastern disk C+ by the EastWest disk C∗.13

The East lift C of a Western disk C− by a boundary compatible EastWest disk C∗ is14

defined, analogously, by15

(4.2) clos W := C− , clos E := C∗ .

16

Note that the lift construction is compatible with the trivial equivalence group 〈κ, ρ〉 of17

section 3. The Eastern/Western property of C± gets swapped by κ but is invariant under18

ρ, by table 3.1. Hence the EastWest property of C∗ is invariant under κ, ρ. Therefore19
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Figure 4.3: The 3-meander template of a West lift of an Eastern disk clos E = C+ by a
(Western) EastWest disk clos W = C∗. Note the full N-polar serpents, inherited from the
Eastern disk E. The S-polar serpents are not full, in general, but are overlapped completely by
their full N-polar counterparts. This leads to a subtle simplification of the general 3-meander
template, fig. 1.2.

trivially equivalent Western or Eastern Sturm disks lift to trivially equivalent Sturm1

3-balls by trivially equivalent EastWest disks.2

The lift by an EastWest disk C∗ is easily described, in terms of the resulting 3-cell3

template C and figs. 1.1 and 4.2.4

A West lift results in meridian faces NW and NE which stretch all the way to the5

South pole S, by definition of clos W = C∗. In other words,6

(4.3) µ′ = 2m− 1 , ν = 1 .

In terms of the resulting 3-meander template, fig. 1.2, the non-overlap parts vµ
′+1
− . . . v2m−1−7

and vν−1+ . . . v1+ of S-polar serpents hι disappear. This leads to the subtle difference be-8

tween fig. 1.2 and fig. 4.3.9

For the East lift of a Western disk C− by an (Eastern) EastWest disk C∗ we analogously10

obtain11

(4.4) µ = 1 , ν ′ = 2n− 1 .
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Figure 4.4: The 3-meander template resulting from the lift of a general (Western) EastWest
disk C′∗ by a general (Eastern) EastWest disk C∗, welded at the shared (m+ n)-gon meridian
boundary. Interchanging the Eastern and Western roles of C∗ and C′∗ interchanges m and n.

Since the East lift is related to the West lift by the trivial equivalence κu = −u, we can1

obtain the resulting 3-meander template of fig. 1.2 or fig. 4.3 by a 180 degree rotation2

of the shooting curve.3

We mention the three most elementary examples of EastWest complexes C∗ and their4

associated face lifts; see fig. 4.2. We describe all lifts as West lifts, i.e. with C∗ in5

the Western role. The Eastern role can easily be obtained by the trivial equivalence ρ6

which preserves bipolar orientation; see fig. 3.1 and table 3.1.7

A single-face disk C∗ is always an (m,n)-gon and always EastWest; see fig. 4.2(a). We8

call the lift by C∗ simply a single-face lift. The most frequent case, below, will involve9

meridians which consist of a single edge, each. We call this the minimal face lift. The10

resulting (1 + 1)-gon is the planar Chafee-Infante attractor A2
CI.11

More generally, the m-dimensional Chafee-Infante global attractor AmCI arises from12

PDE (1.1) for cubic nonlinearities f(u) = λu(1 − u2). Consider O:= 0 and observe13

i(O) = m ≥ 1 for (m − 1)2 < λ/π2 < m2. The 2m remaining equilibria vj± are14

characterized by z(vj± − O) = j±, all hyperbolic. The Thom-Smale dynamic complex15

of AmCI = clos W u(O) consists of the single m-cell W u(O) and the m-cell boundary16

∂W u(O). The hemisphere decomposition is simply the remaining Thom-Smale dy-17

namic decomposition18

(4.5) Σj
±(O) = W u(vj±) ,

22



Figure 4.5: Two examples of 3-meander templates involving (m+ n)-gons. (a) The single
face lift of a Western (n,m)-gon by an Eastern (m,n)-gon, called pitchfork lift. Note the
modification of the planar (m,n)-gon meander of fig. 2.2(b) by a pitchfork bifurcation of the
face center O. (b) The lift of a Western n-striped disk by an Eastern m-striped disk. Note the
resulting suspension of the planar (m,n)-gon meander of fig. 2.2(b) by the new polar arches
Nv1− and v1+S.

0 ≤ j < m = i(O), in the Chafee-Infante case. See also [ChIn74, He81, He85]. The1

Chafee-Infante attractor AmCI is the m-dimensional Sturm attractor with the smallest2

possible number N = 2m + 1 of equilibria. Equivalently, among all Sturm attractors3

with N = 2m + 1 equilibria, it possesses the largest possible dimension. Interestingly4

the dynamics on each closed hemisphere clos Σj
± is itself C0 orbit equivalent to the5

Chafee-Infante dynamics on AjCI. The Chafee-Infante 3-ball A3
CI, for example, arises6

as a face lift of C∗ = A2
CI by itself.7

A double-face lift involves any EastWest disk C∗ with two faces. The two distinct faces8

cw0 and cw1 are then separated by a third pole-to-pole path in the 1-skeleton C1∗ , interior9

to C∗, in addition to the two boundary paths. See fig. 4.2(b). If the three paths consist10

of a single edge, each, we speak of a minimal double-face lift.11

An eye lift involves any EastWest disks C∗ with three faces: the two meridian faces12

cw0 , cw1 , and a third face cv which we call the eye. See fig. 4.2(c) for the general13

configuration. Note that the closure cv will be interior to C∗, detached from poles and14

meridians, in general. The remaining special cases arise when15

(4.6) ∂cv ∩ ∂C∗

consists of one or both poles. The minimal eye lift arises, when C∗ is striped vertically16

into three Chafee-Infante disks A2
CI by a total of four pole-to-pole edges, two interior17

plus two meridian boundaries.18

We conclude this section with a brief look at lifts of EastWest disks C∗ by boundary19

compatible EastWest disks C ′∗. Then (4.3), (4.4) imply20

(4.7) µ = 1 , µ′ = 2m− 1 , ν = 1 , ν ′ = 2n− 1
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Figure 4.6: Two mirror-symmetric 3-ball attractors A+ (left) and A− (right). The attrac-
tors are not trivially equivalent, but result from lifts of the same EastWest disks C∗, C′∗ in
swapped Eastern and Western roles.

because we may interpret the lift as, both, an East lift or a West lift. In particular1

all polar serpents are full and their non-overlap regions disappear. See fig. 4.4 for the2

resulting 3-meander template.3

For example, let C∗ be a single-face (m,n)-disk as in fig. 2.2(a), and choose C ′∗ to be
the mirrored (n,m)-disk. The lift

clos W = C− := C ′∗ , clos E = C+ := C∗

provides the 3-cell template C of fig. 1.1(b). Note however that4

(4.8) w0
± = w1

± ,

and all other interior vertices are missing, because the hemispheres are single faced. See5

fig. 4.5(a) for the resulting 3-meander. In fact the meander arises from the (m,n)-gon6

of fig. 2.2(b) by a supercritical pitchfork bifurcation of the face center O.7

The (m,n)-striped Sturm 3-ball is another example which involves the (m,n)-gon,8

though not at first sight. Let C∗ denote the m-striped EastWest disk which consists9

of m Chafee-Infante disks, separated by m − 1 single interior pole-to-pole edges. The10

minimal double-face and eye disk above, correspond to the cases m = 2 and m = 3,11

respectively. For C ′∗ we choose the n-striped EastWest disk. Then we obtain the 3-12

meander of fig. 4.5(b). This 3-meander coincides with the 2-meander of the (m,n)-gon13

of fig. 2.2(b), except for the newly added overarching polar arcs Nv1− and v1+S. In14

[FiRo10] we have called the addition of such arcs to a Sturm meander a suspension.15

Indeed the resulting 3-ball attractor, in our case, is the one-dimensionally unstable16

suspension of the (m,n)-gon by a double cone construction with the resulting new17

poles N, S as attracting cone vertices.18
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As a final caveat we recall an example from [FiRo16] which we redraw in fig. 4.6. We1

have chosen a 3-face EastWest disk C∗ of eye type, with the eye attached to the pole2

S. For C ′∗ we chose the EastWest Chafee-Infante disk A2
CI. The two lifts only differ by3

the swapped roles of C∗ and C ′∗ as Western and Eastern disks. Note that the resulting4

3-cell templates are not trivially equivalent. Indeed, table 3.1 asserts that any trivial5

hemisphere swap W ↔ E is accompanied by a corresponding pole swap N ↔ S, due6

to a reversal of bipolar orientations. It is interesting to compare this example with our7

previous remark on the appropriate lifting of trivially equivalent Western or Eastern8

disks by EastWest disks.9

5 Duality10

For planar Sturm attractors, duality was introduced in [FiRo08], [FiRo10, section 2.4]11

to assist in the enumeration of all cases with up to 11 equilibria. In the present12

section we explore duality on the boundary 2-sphere S2 = ∂cO of 3-cell templates13

C = Cf for Sturm 3-ball attractors Af . The properties are quite different, in the two14

settings. In the plane the duals turned out to be bipolar, and thus provided a duality15

between planar attractors which, basically, corresponded to time reversal (!) inside the16

attractor plane. For 3-balls, duals turn out bipolar, interior to each hemisphere W17

and E, separately. Across the welding meridians, however, all polarity disappears and18

di-paths keep circling forever.19

In the planar case we have defined the 1-skeleton C∗,1 of the oriented dual C∗ of C as20

follows. Vertices of C∗,1 are the i = 2 barycenters w of faces cw ∈ C. Edges e∗ of C∗,1 run21

between barycenters w of faces cw ∈ C which are adjacent along an edge e = cv ∈ C122

with i = 1 barycenter saddle v. The orientation of e∗ is chosen such that e∗ crosses e23

from left to right at the intersection v. In other words24

(5.1) det(e∗, e) = +1

for the direction vectors e and e∗ at v. This required two artificial pole vertices v = N∗25

and v = S∗ of C∗ to be introduced, outside C, to terminate all edges e∗ crossing the26

boundary of C. By this construction, the planar complex C∗ became regular, bipolar27

and contractible, i.e. a planar Sturm complex, for any planar Sturm complex C. See28

[FiRo08, FiRo10] for further details.29

For 3-cell templates C, i.e. for 3-ball Sturm attractors, we use the same construction30

on the 2-sphere complex S2 = ∂cO = C2. As in fig. 1.1 we use the standard planar31

orientation of S2, when viewed from outside. Again we require e∗ to cross e, left to32

right, in this orientation. This defines the dual 2-sphere complex C∗,2 of S2. See fig. 5.1.33

Because we are on the sphere, this time, there is no need to add any extra poles.34

However, the dual complex C∗,2 fails to be bipolar. The poles N, S of C2, in fact, become35

faces N∗:= c∗N, S∗:= c∗S of the dual C∗,2 with polar circles ∂N∗, ∂S∗ as boundaries.36

Note how ∂N∗ is oriented clockwise, and ∂S∗ anti-clockwise, in our chosen orientation37

of S2 and C∗,1.38
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Figure 5.1: Dual C∗ of 3-cell templates C. Face sources ◦ of C become vertices of the dual, C∗.
Edges e of C (solid) are crossed by dual edges e∗ (dashed) from left to right. The orientation
of S2 ⊆ R3 is taken to be standard planar, when viewed from outside. The resulting sources
• of faces in C∗ are the sink vertices of C. (a) The dual 1-skeleton C∗,1 for the 3-cell template
C of fig. 1.1(a). (b) Schematics of C∗,1 on the annulus bounded by the dual polar circles
which surround the pole N clockwise, and S anticlockwise. Note bipolarity inside each dual
hemisphere, W∗ = C2,∗− , E∗ = C2,∗+ , with North poles w0

±, South poles w1
± and dual meridians

(orange). The duals to overlap edges form single edge bridges directed from ∂S∗ to ∂N∗ in
opposite hemispheres.

By definition the polar circle ∂c∗N contains a di-path segment from w0
− to w1

− in W.1

Likewise, ∂c∗S contains a disjoint di-path segment from w0
+ to w1

+ in the Eastern hemi-2

sphere E.3

The edges v and faces w in E2±(O), i.e. inside each open hemisphere W = Σ2
−(O), E =4

Σ2
+(O), form a bipolar 1-skeleton C∗,1− , C∗,1+ , respectively. Indeed, any dual circle of C∗,1−5

in W would have to surround a source or sink of the bipolar orientation C1 in W, as a6

face of C∗,2, depending on the orientation of the dual cycle. The only exceptions are the7

two faces of wι±, where the local poles of their boundaries both lie on the meridians, and8

one of their pole-to-pole boundaries, being contained in a meridian, has been deleted9

entirely.10

Let W∗ = C+,2− and E∗ = C∗,2+ denote the resulting dual complexes if we include all11

the i = 0 sinks of C in W, E, respectively, as faces. As planar bipolar, regular, and12

contractible cell complexes they must appear in our previous lists of planar Sturm13

attractors with the appropriate number of equilibria. We call W∗ and E∗ the (dual)14

Western and Eastern core, respectively.15
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Saddles iv = 1 of WE meridian edges e = cv generate dual edges e∗ which connect1

the Eastern core E∗ = C2,∗+ to the Western core W∗ = C2,∗− , directly. For example, any2

overlap edge e in WE guarantees a directed edge e∗ from w1
+ in the South polar circle3

∂S∗ to w0
− in the North polar circle ∂N∗. Similarly, the EW overlap guarantees at4

least one directed dual edge from w1
− to w0

+. We call such edges polar bridges. Other5

directed edges across meridians may or may not exist.6

With these remarks we have proved the only-if part of the following characterization7

of duals C2,∗ of the 2-sphere complexes C2 of 3-cell templates C. Note that objects like8

the polar circles or w0
±, w

1
± may coincide, totally or in parts. This leads to interesting9

special cases which we discuss afterwards.10

Lemma 5.1. A two-dimensional cell-complex C2,∗ is the dual of the 2-sphere bound-11

ary complex C2 = ∂cO of a 3-cell template C = clos cO if, and only if, the following12

conditions all hold.13

(i) C2,∗ is a regular 2-sphere complex which decomposes into the disjoint union of14

(a) two polar faces N∗ and S∗;15

(b) Western and Eastern (dual) cores W∗ = C2,∗− and E∗ = C2,∗+ which are planar16

Sturm complexes with North poles w0
± and South poles w1

±, respectively;17

(c) two meridian duals EW∗ and WE∗ of edges and faces.18

(ii) The polar circle ∂N∗ is right oriented, clockwise around N∗, and the polar circle19

∂S∗ is left oriented, anti-clockwise around S∗. They define disjoint di-path polar20

segments w0
−w

1
− = W∗ ∩ ∂N∗ from w0

− to w1
− on ∂N∗, and w0

+w
1
+ = E∗ ∩ ∂S∗21

from w0
+ to w1

+ on ∂S∗, but may intersect otherwise.22

(iii) The pre-duals e = −e∗∗ to meridian edges e∗ in EW∗ and WE∗ define two23

disjoint di-paths EW and WE, respectively, from the barycenter pole N of N∗24

to S of S∗.25

(iv) There exists at least one single-edge polar bridge e∗ = w1
+w

0
− ∈ WE∗ from the26

South pole w1
+ of the Eastern core E∗ = C2,∗+ to the North pole w0

− of the Western27

core W∗ = C2,∗− , and another single-edge polar bridge e∗ = w1
−w

0
+ ∈ EW∗ from28

the South pole w1
− of W∗ = C2,∗− back to the North pole w0

+ of E∗ = C2,∗+ .29

See fig. 5.1(b) for an illustration of properties (i)–(iv) of the lemma.30

Proof. For a proof of the only-if part see the remarks preceding the lemma.31

To prove the if-part, we only have to show that the predual C of C∗ defines a 3-cell32

template C according to definition 1.1. Strictly speaking we insert the 3-cell cO here33

such that C2 = ∂cO becomes the 2-sphere boundary; see property (i) of C2,∗. This34

proves definition 1.1(i).35

To prove the meridian decomposition of definition 1.1(ii) by C1 we first note how the36

predual vertices N and S, i.e. the polar face barycenters of N∗ and S∗, respectively,37
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become a bipolar source and sink vertex, by property (ii) and the edge orientations1

(5.1).2

The disjoint meridian di-paths EW and WE are oriented from N to S by property3

(iii), as is appropriate. We define the barycenters of W and E as the barycenters of4

the remaining core complexes W∗ = C2,∗− and E∗ = C2,∗+ , respectively, according to5

the decomposition (i)(a)–(c). The Sturm property of the dual cores, and in particular6

their bipolarity, implies the absence of cycles and poles within W, E, separately.7

Acyclicity on clos W, clos E, as well as bipolarity on their union C2, will follow once8

we prove the orientation of edges towards and from the meridian boundaries, according9

to definition 1.1(iii).10

To prove the edge orientation towards, and away from, the boundary in W, and E,11

as required by definition 1.1(iii), we only address E, E∗ = C2,∗+ . The arguments for12

W, W∗ = C2,∗− are analogous. Consider the part of ∂E∗ which is not part of the polar13

circle ∂N∗. In fig. 5.1(a), this is the lower part of ∂E∗ (orange). The saddle barycenters14

of edges e∗ in that boundary are precisely the barycenters of the (transverse) edges e15

in E with one endpoint on ∂ErN. We claim that such e must be oriented away from16

∂E. This is obvious because e∗ must cross the oriented edge e left to right.17

We note that the above argument remains valid, even if the two di-paths from North18

pole w0
− to w1

− in ∂E∗ overlap in parts, or coincide. Still, all e are then captured19

by the edges e∗ of ∂E∗ which do not belong to the polar circle ∂N∗. This proves20

definition 1.1(iii). It also completes the proof of definition 1.1(ii).21

It remains to prove the overlap condition of definition 1.1(iv), say, for the C2-faces22

(5.2) NE = cw0
−
, SW = cw1

+
.

Here w0
− is the North pole of W∗ = C2,∗− and is located on the polar circle ∂N∗.23

Likewise w1
+ is the South pole of E∗ = C2,∗+ and is located on the polar circle of ∂S∗. By24

property (iv) of C2,∗ there exists a polar bridge e∗ ∈WE∗ from w1
+ to w0

−. By definition25

of duality, this means that the faces (5.2) of w1
+ and w0

− are edge adjacent to the predual26

e ∈ WE of e∗ ∈ WE∗. This proves the overlap condition of definition 1.1(iv). The27

proof of the meridian edge overlap NW, SE is analogous, indeed, and the lemma is28

proved. ./29

For later use we collect a few easy consequences of the previous lemma.30

Corollary 5.2. Let C2,∗ be the dual of the 2-sphere boundary complex C2 = ∂cO of a31

3-cell template C = clos cO. Then the following six properties hold.32

(i) Polar circles ∂N∗, ∂S∗ share a (dual) edge e∗ if, and only if, the pole distance δ33

between their barycenters N, S is 1.34

(ii) The poles of the Western core W∗ coincide, w0
− = w1

−, if, and only if, W∗ =35

{w0
−} = {w1

−} is a singleton. The analogous statement holds for the Eastern core36

E∗ and wι+.37
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(iii) The edge distance between polar circles is at most 1, and is realized by at least1

two disjoint single-edge polar bridges w1
−w

0
+ ∈ WE∗, from ∂N∗ to ∂S∗, and2

w1
+w

0
− ∈ EW∗, from ∂S∗ to ∂N∗, i.e. by at least one polar bridge in each3

direction.4

(iv) The disjoint polar segments w0
−w

1
− and w0

+w
1
+ complement the bridges w1

−w
0
+,5

w1
+w

0
− to at least one directed (dual) cycle6

(5.3) w0
−w

1
−w

0
+w

1
+w

0
− .

(v) The polar segment w0
−w

1
− ⊆ ∂N∗ is preceded and followed, on ∂N∗, by the unique7

intersections of the meridian duals WE∗ and EW∗ with ∂N∗, respectively. Anal-8

ogously, the polar segment w0
+w

1
+ ⊆ ∂S∗ is preceded and followed by the unique9

edges EW∗ ∩ ∂S∗ and WE∗ ∩ ∂S∗, respectively.10

(vi) Let | · | denote the edge length of paths and cycles. Then the length of a polar11

segment relates to the length of its polar circle by12

(5.4) |w0
−w

1
−| ≤ |∂N∗| − 2 , |w0

+w
1
+| ≤ |∂S∗| − 2 .

Proof. Claim (i) follows by definition because, equivalently, the predual edge e con-13

nects the poles N, S. Claim (ii) follows, because the core W∗ is bipolar.14

Claim (iii) follows from lemma 5.1(iv) because the polar circles are connected by at15

least two single-edge bridges e∗± = w1
±w

0
∓ from w1

± to w0
∓, dual to edges on the two16

disjoint meridian paths from N to S. Claim (iv) follows from (iii).17

Claim (v) follows from lemma 5.1(iii). Indeed the maximal segment w0
−w

1
− = ∂W∗ ∩18

∂N∗ from core pole w0
− to w1

− on the polar circle ∂N∗ must be preceded and followed19

by an edge dual to the meridian WE and EW, respectively. Since these meridians20

are disjoint, so are their duals. Since this argument excludes at least two edges of ∂N∗21

from the segment, it also proves claim (5.4) of (vi).22

This proves the corollary. ./23

We conclude this section with a few examples which relate the lift constructions of24

section 4 to duality. First, we observe how duality allows us to, universally and min-25

imally, convert any planar Sturm complex A2 to an EastWest disk. We just replace26

the attractors A2 by its planar dual A2,∗ and then surround A2,∗ by the edges of two27

exterior saddles, as in fig. 5.2.28

The new exterior poles N and S coincide with v and v of the planar duality construction29

in [FiRo08, FiRo10]. The extra edges of A and B close the dual A2,∗ to become a Sturm30

EastWest disk.31

The special case of a trivial one-point attractor A2 leads to the minimal single-face32

EastWest disk. The special case of the trivial line σ = id ∈ SN , with odd N = 2m− 1,33

leads to the minimal m-striped EastWest disk. Note how A2 is one-dimensional. The34

planar Chafee-Infante attractor A2
CI leads to a double-face EastWest disk where the35
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Figure 5.2: Minimal construction of an EastWest disk by the dual of any planar Sturm
attractor A2. Note how the poles wι± become faces adjacent to the extra edges of A, B
which span the respective meridian boundaries. Without these edges we obtain the standard
construction of the planar dual Sturm attractor A2,∗; see [FiRo08, FiRo10].

interior pole-to-pole path, only, consists of two edges. The general eye disk arises,1

in turn, if we take this planar dual A2,∗
CI as the original attractor A2, and repeat the2

EastWest construction.3

6 The 31 Sturm 3-balls with at most 13 equilibria4

In this section we enumerate the Thom-Smale complexes of all 31 Sturm 3-balls, alias5

3-cell templates C, with at most N = 13 equilibria, up to the trivial equivalences of6

section 3. Our enumeration is based on the decomposition of their boundary 2-sphere7

S2 = ∂cO into closed Eastern and Western Sturm disks with N̄E and N̄W equilibria.8

We could invoke the results of [FiRo10] on all planar Sturm attractors with at most 119

equilibria, select Eastern and Western Sturm disks, and weld shared boundaries. To be10

more self-contained, and to prepare for section 7, we proceed via the duals of section 5,11

instead. Brute force would yield 383 Sturm global attractors with 13 equilibria, up to12

trivial equivalences. See [Fi94]. We could simply extract all 3-ball cases, and dump13

them here. And what would we have understood?14

Let N∗E and N∗W count the equilibria of the nonempty dual cores E∗ = C2,∗+ and W∗ =15

C2,∗− of E and W, respectively. From lemma 5.1(i)(b) we recall that E∗ and W∗ are16

planar Sturm complexes. We build up all Sturm 3-balls with N ≤ 13 from these dual17

cores. Notationally, we think of E and W as the originals here, and of E∗ and W∗ as18

their duals.19

Let M ≥ 0 denote the total number of non-polar sinks on the two meridians, which20

separate M + 2 meridian edges. Then the decomposition property of lemma 5.1(i)21

30



implies1

(6.1) 2 +M + (M + 2) +N∗E +N∗W + 1 = N ≤ 13 .

Here the first summand 2 accounts for the two poles and the last summand 1 for the2

i = 3 center O of the Sturm 3-ball. Core and closed hemisphere counts are related by3

(6.2)
2 + 2(M + 1) +N∗E = N̄∗E ;

2 + 2(M + 1) +N∗W = N̄∗W .

Since M ≥ 0 and N∗E, N
∗
W ≥ 1 we immediately obtain4

(6.3) 2 ≤ N∗E +N∗W ≤ 8

from (6.1), and hence N ≥ 7. Since the total equilibrium count N is odd, this leaves5

us with6

(6.4) N ∈ {7, 9, 11, 13} .
Since E∗ W∗ are (planar) Sturm attractors, the equilibrium counts N∗E and N∗W are7

also odd. The trivial equivalence κ allows us to interchange W and E, if necessary. In8

particular we may assume9

(6.5) 1 ≤ N∗W ≤ N∗E ≤ 7 , odd ,

without loss of generality. This leaves us with the cases

N∗W = 1 , N∗E ∈ {1, 3, 5, 7} , and(6.6)

N∗W = 3 , N∗E ∈ {3, 5} .(6.7)

In subsection 6.1 we therefore list all planar Sturm attractors, alias cores E∗, with up to10

7 equilibria. In 6.2 we discuss the (m,n)-gon suspensions, and in 6.3 the simple stripe11

patterns introduced in section 4. The two non-equivalent Sturm 3-balls of fig. 4.6 are12

discussed in subsection 6.4. In 6.5 we list the remaining cases arising from EastWest13

disks clos W, clos E. Purely Eastern, non-EastWest, disks are listed in section 6.6.14

We summarize all results in the final subsection 6.7; see figs. 6.3, 6.4 and tables 6.5,15

6.6.16

6.1 The eight planar Sturm attractors with up to 7 equilibria17

Let E∗ be a planar Sturm attractor with N∗ ∈ {1, 3, 5, 7} equilibria. Following [FiRo10,18

section 3] we choose the notation19

(6.8) N∗. nkn(n− 1)kn−1 . . . 1k1 − ` ;

where nkn indicates a count kn of n-gon faces in the 1-skeleton of E∗. Edges which are20

not faces are assigned n = 1. The postfix ` simply enumerates multiple configurations21

in somewhat arbitrary order. We omit exponents 1. The results for odd N∗ ≤ 7 are22

listed in fig. 6.1. To emphasize that E∗ is a dual core to an Eastern hemisphere E we23

denote i = 0 sinks of E∗ by circles, “◦”, to indicate sources of E, and i = 2 sources of24

E∗ by dots, “•”, to indicate sinks of E.25
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Figure 6.1: The eight Eastern dual cores E∗, up to trivial equivalences, written as planar
Sturm attractors with N∗ ≤ 7 equilibria. See (6.8) for the classification scheme. Circles
“◦” indicate vertices of E∗ and Morse index i = 2 face barycenters of E. Dots “•” are face
barycenters of E∗ and Morse stable i = 0 vertices of E. The bipolar orientation of E∗ runs
from w0 (red) to w1 (blue), in each case.

6.2 Pitchforked (m,n)-gons1

Let N∗E = N∗W = 1 be single faces, each. Then the closed hemisphere disks clos E and2

clos W are (m,n)-gons and (n,m)-gons, respectively, for compatibility. See fig. 2.23

and figs. 4.4, 4.5(a). In particular (6.1) implies4

(6.9) M = m+ n− 2 ; m+ n = (N − 3)/2 .

The trivial equivalence ρ, in table 3.1, preserves each hemisphere but interchanges the5

boundaries by reflection through the ±90 degree meridian line. This swaps m and n,6

so that we may assume7

(6.10) 1 ≤ m ≤ n

without loss of generality. With the notation (2(m + n) + 1).(m + n), for (m,n)-gons8

and (n,m)-gons alike, we use the notation9

(6.11) (2(m+ n) + 1) .(m+ n)| (2(m+ n) + 1) .(m+ n)

for the resulting Sturm 3-ball. We thus arrive at the case list of table 6.1.10

N 7 9 11 11 13 13

(m,n) (1, 1) (1, 2) (1, 3) (2, 2) (1, 4) (2, 3)
case 5.2|5.2 7.3|7.3 9.4− 1|9.4− 1 9.4− 2|9.4− 2 11.5− 1|11.5− 1 11.5− 2|11.5− 2

Table 6.1: List of all six pitchforked (m,n)-gon 3-ball Sturm attractors with N ≤ 13 equi-
libria, up to trivial equivalences. The second entry “-” duplicates the first entry, in each case.
This covers all cases with trivial Sturm cores N∗E = N∗W = 1.

See also tables 6.5, 6.6, cases 1, 3, 9, 10, 30, 31, and fig. 6.3 for the six resulting 3-cell11

complexes.12
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6.3 Striped suspensions of (m,n)-gons1

Let both dual cores E∗ = (2m − 1).1m−1, W∗ = (2n − 1).1n−1 be one-dimensional,2

m,n ≥ 1, and assume absence M = 0 of non-polar meridian sinks. Then clos E =3

(2m + 3).2m and clos W = (2n + 3).2n are planar with m − 1 and n − 1 pole-to-pole4

non-meridian edges, in addition to the two meridian edges, and with m and n faces,5

respectively. This is the (m,n)-striped Sturm 3-ball of fig. 4.5(b), alias the unstably6

suspended (m,n)-gon. In particular (6.1) implies7

(6.12) m+ n = (N − 3)/2 ,

as in (6.9). The trivial equivalence κ lets us swap W and E so that8

(6.13)
2n− 1 = N∗W ≤ N∗E = 2m− 1 , i.e.

n ≤ m

holds, without loss of generality. Analogously to section 6.2 and table 6.1 this provides9

the case list of table 6.2. Again see fig. 6.3 and tables 6.5, 6.6 for the resulting cases 1,10

2, 4, 6, 11, 16, five of them new.11

N 7 9 11 11 13 13

(m,n) (1, 1) (2, 1) (3, 1) (2, 2) (4, 1) (3, 2)
case 5.2|5.2 5.2|7.22 5.2|9.23 7.22|7.22 5.2|11.24 7.22|9.23

Table 6.2: List of all six suspended (m,n)-gons, alias (m,n)-striped 3-ball Sturm attractors,
with N ≤ 13 equilibria, up to trivial equivalences. Note the duplicated Chafee-Infante 3-ball
A3

CI = (5.2|5.2) with N = 7 which also appears in table 6.1, for m = n = 1. This covers all
cases with one-dimensional Sturm cores dimE∗ = dimW∗ = 1 and absent meridian sinks,
M = 0.

6.4 The triangle core12

Consider the triangle core E∗ = 7.3; see fig. 6.1. Then NE∗ = 7, and (6.3), (6.1) imply13

NW∗ = 1, M = 0. Three edges e of E cross the three edges of the dual triangle14

E∗. By the bipolar orientation of E∗, from w0 to w1, two of these edges e must be15

directed to S, and the third edge must enter from N. This results in the closed Eastern16

hemisphere, and hence the left 3-ball attractor A+, of fig. 4.6. Swapping W, E by17

a 180 degree rotation of A− in fig. 4.1, right, by trivial equivalence κρ, and reversing18

bipolar orientation, we obtain the inequivalent case where the core triangle E∗ is flipped19

upside-down. Derived from A± we call these two cases20

(6.14) (5.2|11.322±) ,

respectively. See fig. 6.3 and table 6.6, cases 13 and 14.21
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6.5 Multi-striped Sturm 3-balls1

All examples, so far, have been based on welding two compatible EastWest disks at2

their shared meridians. We complete this list, in the present subsection. The remaining3

cases, where at least one of the hemispheres is not of EastWest type, will be addressed4

in 6.6.5

Both hemispheres are EastWest disks if, and only if, only poles can be vertices of6

interior edges e ∈ E ∪W on the meridian boundary. In other words, edges of E, W7

can neither emanate from, nor terminate at, a sink vertex in EW∪WE. Equivalently,8

each boundary of the duals E∗, W∗ coincides with a polar circle segment of barycenters9

in E, W, respectively.10

The core list of fig. 6.1 identifies the dual triangle 7.3 as the only possibility where11

an edge di-path of E, W can branch at an interior sink. This case has been treated12

in subsection 6.4, already. All other interior sinks have degree two. By the EastWest13

property, the same is true for the meridians. We call Sturm disks with this degree14

two property multi-striped. Indeed all edge di-paths must then emanate from N and15

terminate at S, because bipolarity excludes cycles.16

It is therefore easy to enumerate all cases. We simply place N0 ≥ 1 additional sinks17

inside any edges of any simply striped complex 6.3 and use trivial equivalences to18

reduce the number of cases. The simply striped reference complex only has19

(6.15) N − 2N0 ≥ 7

cells, of course. Also note that at most one interior edge path may accomodate any20

additional sinks, and their number may only be one or two; see cases 5.2, 7.21, 7.22
21

of fig. 6.1. The restriction N∗W ∈ {1, 3} of (6.6), (6.7) does not accomodate interior22

sinks in W. Therefore it is sufficient to study clos W with clos W only inheriting the23

M shared meridian sinks. The case N∗W = 3 of two faces in W simply amounts to one24

less interior sink available for E.25

The results are summarized in table 6.3, ordered by the total number N of equilibria26

and the total number M of meridian sinks. The Chafee-Infante ball N = 7 has been27

treated in subsections 6.2, 6.3 already. Consider N = 9 next, with N0 = 1. Then the28

reference complex (6.15) is the Chafee-Infante ball with one additional sink, necessarily29

on a meridian: M = N0 = 1. But any Chafee-Infante reference only leads to the30

pitchforked (m,n)-gon cases with31

(6.16) m+ n = M + 2 = N0 + 2 = (N − 3)/2 ;

see (6.9) and table 6.1. In particular the case N = 9 can be omitted as a duplicate.32

Consider N = 11 next, first with N0 = 2. The reference complex (6.15) then has33

N − 2N0 = 7 cells, and is omitted as a Chafee-Infante pitchforked (m,n)-gon, again.34

Therefore N0 = 1 and we have the unique N−2N0 = 9 simply striped reference complex35

(5.2|7.22) of table 6.2, alias the triangle suspension. Invoking trivial equivalence ρ to36

interchange meridians, if necessary, we may assume the extra sink N0 = 1 to either37
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M\N 11 13 13 13

0 (5.2|9.32) (5.2|11.322) (5.2|11.42) (7.22|9.32)
1 (7.3|9.32− 1) (7.3|11.322 − 1) (7.3|11.43− 1) (9.32− 1|9.32− 1)
2 – (9.4|11.32 − 1) (9.4|11.42− 1) –

Table 6.3: List of all 10 multi-striped 3-ball Sturm attractors with N ≤ 13 equilibria, up to
trivial equivalences. Rows are ordered by the reference (m,n)-gon suspensions. Chafee-Infante
duplicates with the pitchforked (m,n)-gons of 6.1 are omitted. This covers all remaining cases
of EastWest pairs of closed hemispheres.

appear on the meridian WE, with M = 1, or interior to E, with M = 0. This proves1

the N = 11 column of table 6.3. See also cases 7 and 5 in table 6.5 and fig. 6.3.2

For the remaining three columns, N = 13. The non-Chafee-Infante options are N0 =3

1 and N0 = 2. Consider N0 = 2 first. The simply striped reference complex has4

N − 2N0 = 9 equilibria and is the known triangle suspension. For M = N0 = 2, and5

up to trivial equivalence by ρ, we may either place the two extra sinks N0 on the same6

meridian WE, or else on one meridian each. This proves the M = 2 row of table 6.3.7

See also cases 27 and 25 in table 6.6 and fig. 6.3.8

Next consider N = 13, N0 = 2, M = 1. Then we must place one extra sink on a9

meridian, say on WE by ρ, and the other extra sink on the only interior polar edge of10

the triangle suspension. This yields case (7.3|11.43−1). For N0 = 2, M = 0 both extra11

sinks N0 must go to the interior edge: (5.2|11.42). This completes the third column of12

table 6.3, and the case N0 = 2. See also cases 21 and 15 in table 6.6 and fig. 6.3.13

It remains to consider N = 13, N0 = 1 with N − 2N0 = 11 reference equilibria. This14

provides the two simply striped reference cases (5.2|9.23) and (7.22|7.22) of pitchforked15

quadrangles, in table 6.2. In table 6.5 and fig. 6.3 these were the simply striped cases16

4 and 6. Placing the one extra sink N0 on a meridian, M = N0 = 1, or on any one17

of the interior edges, M = 0, we obtain the remaining four cases of table 6.3, up to18

trivial equivalences. See also cases 18, 23 and 12, 17 in the summarizing fig. 6.3 and19

tables 6.5, 6.6.20

6.6 Non-EastWest disks21

Non-EastWest disks require meridian sinks as targets. Therefore M ≥ 1. Interior22

branchings of edge di-paths have been dealt with in section 6.4 and can now be ex-23

cluded. Consider any di-path in E. By the boundary orientation of edges in 3-cell24

template hemispheres, definition 1.1(iii), such a di-path must emanate from N or a25

meridian i = 0 vertex, and has to terminate at S. In W, similarly, any di-path has26

to emanate from N and must terminate at a meridian i = 0 vertex or at S. We may27

therefore push any such di-path to emanate and terminate at the respective poles. This28

provides a multiply striped 3-ball, with the exact same number of equilibria of the re-29

spective Morse numbers. Conversely, we obtain all Non-EastWest disk Sturm 3-balls,30

by nudging at least one interior pole-to-pole edge di-path of the multiply striped 3-ball31
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to start or terminate at an already existing i = 0 meridian vertex, instead. This leave1

us with the rows M = 1 and M = 2 of table 6.3 as a reference for path nudging.2

Consider N = 11, for example, with M = 1 reference (7.3|9.32−1), case 7, of tables 6.3,3

6.5 and fig. 6.3. Nudging the unique interior edge e ∈ E to emanate from the unique4

extra M = 1 sink on the meridian WE, instead of N, produces the unique case 8,5

(6.17) (7.3|9.32− 2)

of a Sturm 3-ball with N = 11 equilibria, where the Eastern disk clos E is not an6

EastWest disk. See tables 6.4, 6.5 and fig. 6.3.7

Consider the two reference cases 25, (9.4|11.32 − 1) and 27, (9.4|11.42− 1) with N =8

13, M = 2 next. In case 25, (9.4|11.32 − 1), each meridian contains one extra sink.9

The unique interior edge e ∈ E may emanate from the unique extra sink in WE or,10

equivalently under trivial equivalence ρ, from EW. This provides case 28,11

(6.18) (9.4|11.42− 2) .

Similarly, nudgings of case 27, (9.4|11.42− 1) lead to cases 26 and 29,12

(6.19) (9.4|11.32 − 2) and (9.4|11.42− 3) .

M\N 11 13 13 13

1 ref (7.3|9.32− 1) (7.3|11.322 − 1) (7.3|11.43− 1) (9.32− 1|9.32− 1)
1 attr (7.3|9.32− 2) (7.3|11.322 − 2)

(7.3|11.322 − 3)
(7.3|11.43− 2) (9.32− 1|9.32− 2)

2 ref – (9.4|11.32 − 1) (9.4|11.42− 1) –
2 attr – (9.4|11.42− 2) (9.4|11.32 − 2)

(9.4|11.42− 3)
–

Table 6.4: List of all eight non-EastWest 3-ball Sturm attractors with N ≤ 13 equilibria, up
to trivial equivalences. Rows M ref with M ≥ 1 meridian sinks refer to the multi-striped 3-ball
Sturm attractors of table 6.3, prior to nudging. Rows M attr enumerate the resulting 3-ball
Sturm attractors, after nudging. This completes the listings of all 3-ball Sturm attractors with
up to 13 equilibria.

By similar arguments for N = 13, M = 1, the two reference cases 18, (7.3|11.322 − 1)13

and 21, (7.3|11.43− 1) lead to cases 19, 20 and 22,14

(6.20) (7.3|11.322 − 2) , (7.3|11.322 − 3) and (7.3|11.43− 2) ,

respectively. The remaining reference 23, (9.32− 1|9.32− 1) of table 6.3 only leads to15

the single case 24,16

(6.21) (9.32− 1|9.32− 2)

with the same nudged Eastern disk as in case 8, (6.17). Nudging the Western disk,17

only, is trivially equivalent under κ. Note that nudging of both hemispheres would18

violate the overlap condition of definition 1.1(iv). This completes the listing of all19

eight non-EastWest cases 8, 19, 20, 22, 24, 26, 28, 29, as summarized in tables 6.4–6.620

and fig. 6.3.21
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Figure 6.2: The twelve regular 2-sphere complexes, with at most 12 cells. The 2-sphere
is represented as one-point compactification of the plane, i.e. the 1-skeleta are drawn as
Schlegel graphs. In other words, we consider the exterior as another face in the 1-point
compactification of the plane. Left: c0 ≤ c2, i.e. at least as many faces as zero-cell vertices.
Right: c0 ≥ c2, by standard duality. Note the two self-dual cases 7.22 and 11.322. The cases
13.3222− 1 and −2 differ by degrees 433 and 442 at vertices, respectively. See fig. 6.3 for the
associated Sturmian Thom-Smale complexes.

6.7 Summary1

The above hemisphere decompositions of 3-ball Sturm attractors define regular cell2

complexes of S2, with additional structure. It turns out that poles and meridians al-3

ready define the bipolar orientation, for N ≤ 13 equilibria. We therefore list the regular4

cell complexes, first, and then indicate the possible choices of poles and meridians, in5

each case. We conclude with a list of all resulting Sturm permutations, their trivial6

isotropies and other elementary properties.7

See fig. 6.2 for a list of all twelve regular S2-complexes with at most N − 1 = 128

cells. (We omitted the 3-cell of O.) See (6.8) for our notation of cases by face counts.9

The list is easily derived as follows. Let ci count the cells of dimension i. By Euler10

characteristic, c0 − c1 + c2 = 2. The total count is c0 + c1 + c2 = N − 1. Therefore11

(6.22) c0 + c2 = (N + 1)/2 , c1 = (N − 3)/2 .

By standard duality we may assume12

(6.23) c0 ≤ c2
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to obtain the left side of fig. 6.2. Since N ≤ 13, we only have to discuss the cases1

c0 = 2 and c0 = 3.2

Consider c0 = 2 first. Then any of the c1 = (N − 3)/2 ≥ 2 edges must connect these3

two vertices directly, and each face is a 2-gon. This provides the cases N.2c1 of fig. 6.2,4

N ∈ {7, 9, 11, 13}.5

Consider c0 = 3 next, and let 2 ≤ d1 ≤ d2 ≤ d3 denote the degrees at the three vertices.6

Then (6.22), (6.23) imply7

(6.24) N = 2(c0 + c2)− 1 ≥ 4c0 − 1 = 11 ,

i.e. N ∈ {11, 13}. Consider N = 11 first. Then8

(6.25) d1 + d2 + d3 = 2c1 = N − 3 = 8

implies d3d2d1 = 422 or d3d2d1 = 332. The four edges emanating from vertex 39

must terminate at vertices 1 and 2, in pairs. The resulting complexes are not regular.10

Therefore d3d2d1 = 332. Removing vertex 1, d1 = 2, leads to a case with N = 9 and11

vertex degree 3. This reduces to case 9.23 and provides case 11.32.12

It only remains to consider c0 = 3, N = 13. Then (6.25) with N − 3 = 10 implies13

(6.26) d3d2d1 ∈ {532, 442, 433} .

The cases 532 and 442 reduce to N = 11, d3d2 ∈ {53, 44}, by removal of vertex 1,14

d1 = 2. The absence of loops in regular cell complexes eliminates the case d3d2 = 53.15

The case d3d2 = 44 occurs, as case 11.24, and leads to 13.3222−2. In case 433 of (6.26),16

the absence of loops implies that the four edges of vertex 3 must terminate at vertices17

1, 2 in pairs. The remaining edge must run between vertices 1 and 2. This provides18

case 13.3222 − 1 and completes the list of fig. 6.2.19

Based on the list of twelve regular S2 cell complexes we could, in principle, determine20

all 3-cell templates, according to definition 1.1 and the characterization of their duals21

in lemma 5.1. We will follow such an approach for the Platonic solids, in section 7.22

Here we just summarize the results of subsections 6.1–6.6 and assign the 31 known23

3-cell templates to the 12 regular S2 complexes; see fig. 6.3.24

The bipolar orientations result, in each case, from the meridian and pole locations,25

together with the assignments of hemisphere labels E, W. The Sturm permutations26

σ which generate each 3-cell template then follow from the SZS-pairs (h0, h1). See27

tables 6.5, 6.6 for the full list, and fig. 6.4 for the resulting 3-meander templates.28

By our derivation, any 3-ball Sturm global attractor with at most 13 equilibria appears29

in fig. 6.3 and tables 6.5, 6.6. We order cases lexicographically, according to the notation30

(6.6) for the closed hemisphere disks of W|E, and refer to the subsection where each31

case was defined and constructed. Not surprisingly, each regular S2-complex with at32

most 12 cells appears. In fact, any regular S2-complex is realizable a priori in the class33

of 3-ball Sturm attractors; see [FiRo14].34
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From the group 〈κ, ρ〉 of trivial equivalences in table 3.1, “trivial” isotropy subgroups1

arise, occasionally, which leave the Sturm permutations and 3-cell templates invariant.2

These subgroups are manifest as symmetries, in fig. 6.3, or algebraically in the tables.3

Absence of non-identity isotropy is marked by “–” in tables 6.5, 6.6. It is interesting4

to compare the triangle core cases 13 and 14, i.e. 5.2|11.322±, from the isotropy5

perspective. See subsection 6.4. Because each case is ρ-isotropic, only, we obtain the6

only trivially equivalent case via the rotation κρ (and orientation reversal). This maps7

case 14 to the left case of the inequivalent examples in fig. 4.5. The mirror symmetric,8

but inequivalent, right case is case 13, of course. Inequivalence occurs because, simply9

due to the isotropy ρ, a single case cannot cover all four reflected possibilities by its10

group orbit of only two elements.11

The column “pitch” indicates pitchfokable 3-balls, in the sense of [FuRo91]. These12

attractors can be generated, from the trivial N = 1 attractor, by an increasing sequence13

of pitchfork bifurcations. Here increasing means that each pitchfork in the sequence14

replaces one equilibrium by three new ones. We do not allow the sequence to contain15

pitchforks which collapse three equilibria into a single one.16

The first non-pitchforkable Sturm attractor has been constructed in [Ro91]. It is the17

only self-dual planar Sturm attractor with (at most) 11 equilibria, other than the pitch-18

forkable planar Chafee-Infante attractor 5.2; see [FiRo10, section 3.6]. We were not19

aware, so far, that the only other non-pitchforkable Sturm attractor with (at most) 1120

equilibria is the 3-ball given by case 8 in fig. 6.3 and table 6.5. All six non-pitchforkable21

3-ball Sturm attractors with 13 equilibria arise from case 8 by a single pitchfork bifur-22

cation.23

# case sec Sturm permutation σ iso pitch remarks

1 5.2|5.2 6.2 1 6 3 4 5 2 7 κ, ρ X Chafee-Infante

2 5.2|7.22 6.3 1 8 3 4 7 6 5 2 9 ρ X 2,1-gon, susp
3 7.3|7.3 6.2 1 6 7 8 3 4 5 2 9 κρ X 1,2-gon, pitch

4 5.2|9.23 6.3 1 10 3 4 9 8 7 6 5 2 11 ρ X 3,1-gon, susp
5 5.2|9.32 6.5 1 10 3 4 9 6 7 8 5 2 11 ρ X 2,1 multi-striped
6 7.22|7.22 6.3 1 10 5 4 3 6 9 8 7 2 11 κ, ρ X 2,2-gon, susp
7 7.3|9.32− 1 6.5 1 8 9 10 3 4 7 6 5 2 11 – X 2,1 multi-striped
8 7.3|9.32− 2 6.6 1 6 7 10 3 4 9 8 5 2 11 – – from 7, non-pitch
9 9.4− 1|9.4− 1 6.2 1 6 7 8 9 10 3 4 5 2 11 κρ X 1,3-gon, pitch
10 9.4− 2|9.4− 2 6.2 1 8 9 10 5 6 7 2 3 4 11 κ, ρ X 2,2-gon, pitch

Table 6.5: The 10 Sturm permutations σ of 3-ball Sturm attractors with at most 11 equilib-
ria, up to trivial equivalences. The cases 1–10 are ordered by the W|E hemisphere notation
(6.6). See section numbers for a detailed derivation, as indicated by “remarks”. The col-
umn “iso” lists the generators of trivial equivalences which leave σ invariant, i.e. the trivial
isotropy of σ and the attractor. For example ρ indicates that σ = σ−1 is an involution. The
column “pitch” indicates that only example 8 is non-pitchforkable in the sense of [FuRo91].

The isotropy element ρ characterizes Sturm involutions σ = σ−1; see table 3.1. We24

encounter 13 such cases in 3-ball Sturm attractors with at most 13 equilibria. In25
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Figure 6.3: The 31 3-cell templates of 3-ball Sturm attractors with at most 13 equilibria, up
to trivial equivalences. See tables 6.5, 6.6 for case numbers 1–31, hemisphere notation, and
Sturm permutations. Cases are arranged in rows, on right, according to the twelve regular
Thom-Smale S2-complexes of fig. 6.2, listed left. The two self-dual S2-complexes are marked
by ∗. On the left, S2 is the compactified plane. On the right, with meridians in green, the
right and left EW meridian have to be identified. All omitted bipolar orientations result from
the poles N, top, versus, S, bottom, and the hemisphere assignments W, left, versus E, right.
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Figure 6.4: The 31 3-meander templates of 3-ball Sturm attractors with at most 13 equi-
libria, up to trivial equivalences. See tables 6.5, 6.6, and fig. 6.3 for case numbers 1–31
(encircled).
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# case sec Sturm permutation σ iso pitch remarks

11 5.2|11.24 6.3 1 12 3 4 11 10 9 8 7 6 5 2 13 ρ X 4,1-gon, susp
12 5.2|11.322 6.5 1 12 3 4 11 8 9 10 7 6 5 2 13 – X 3,1 multi-striped
13 5.2|11.322+ 6.4 1 12 3 4 11 6 7 10 9 8 5 2 13 ρ X triangle core
14 5.2|11.322− 6.4 1 12 3 4 11 8 7 6 9 10 5 2 13 ρ X triangle core
15 5.2|11.42 6.5 1 12 3 4 11 6 7 8 9 10 5 2 13 ρ X 2,1 multi-striped

16 7.22|9.23 6.3 1 12 5 4 3 6 11 10 9 8 7 2 13 ρ X 3,2-gon, susp
17 7.22|9.32 6.5 1 12 5 4 3 6 11 8 9 10 7 2 13 ρ X 2,2 multi-striped
18 7.3|11.322 − 1 6.5 1 10 11 12 3 4 9 8 7 6 5 2 13 – X 3,1 multi-striped
19 7.3|11.322 − 2 6.6 1 8 9 12 3 4 11 10 7 6 5 2 13 – – from 18
20 7.3|11.322 − 3 6.6 1 6 7 12 3 4 11 10 9 8 5 2 13 – – from 18
21 7.3|11.43− 1 6.5 1 10 11 12 3 4 9 6 7 8 5 2 13 – X 2,1 multi-striped
22 7.3|11.43− 2 6.6 1 6 7 12 3 4 11 8 9 10 5 2 13 – X from 21

23 9.32− 1|9.32− 1 6.5 1 10 11 12 5 4 3 6 9 8 7 2 13 κρ X 2,2 multi-striped
24 9.32− 1|9.32− 2 6.6 1 8 9 12 5 4 3 6 11 10 7 2 13 – – from 23
25 9.4|11.32 − 1 6.5 1 10 11 12 5 6 9 8 7 2 3 4 13 ρ X 2,1 multi-striped
26 9.4|11.32 − 2 6.6 1 6 7 10 11 12 3 4 9 8 5 2 13 – – from 27
27 9.4|11.42− 1 6.5 1 8 9 10 11 12 3 4 7 6 5 2 13 – X 2,1 multi-striped
28 9.4|11.42− 2 6.6 1 8 9 12 5 6 11 10 7 2 3 4 13 – – from 27
29 9.4|11.42− 3 6.6 1 6 7 8 9 12 3 4 11 10 5 2 13 – – from 27

30 11.5− 1|11.5− 1 6.2 1 6 7 8 9 10 11 12 3 4 5 2 13 κρ X 1,4-gon, pitch
31 11.5− 2|11.5− 2 6.2 1 8 9 10 11 12 5 6 7 2 3 4 13 κρ X 2,3-gon, pitch

Table 6.6: The 21 Sturm permutations σ of 3-ball Sturm attractors with 13 equilibria. For
ordering and notation see table 6.5. The non-pitchforkable cases 19, 20, 24, 26, 28, 29 all
reduce to case 8 of table 6.5 by a single pitchfork step.

[Fietal12] we have characterized the Sturm permutations of Hamiltonian (pendulum)1

type nonlinearities f = f(u) which only depend on u. A necessary, but not sufficient,2

condition was σ = σ−1 to consist of 2-cycles, only. Alas, none of the Sturm 3-balls with3

up to 13 equilibria is realizable by f = f(u) – except the well-known Chafee-Infante4

attractor, case 1, [ChIn74]. This may be one reason why, to our knowledge, none of5

the cases 4–31 has appeared in the literature so far. See [Fi94] for cases 2 and 3.6

7 The Sturm Platonic solids7

In this section we present the Thom-Smale complexes of Sturm 3-cell templates and 3-8

meander templates for the five Sturm Platonic solids. We outline their basic properties9

and graphical representations in subsection 7.1. In 7.2 we present the two tetrahedra.10

All five octahedra are obtained in 7.3 and all seven cubes in 7.4. These lists are11

complete, up to the trivial equivalences of section 3. We conclude with some remarks12

and examples on dodecahedra and icosahedra, in 7.5. We did not find any Platonic13

solid, in this investigation, which would be realizable by a Hamiltonian (pendulum)14

type nonlinearity f = f(u) which only depends on u.15
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Figure 7.1: The five Platonic solids cO : tetrahedron (T), octahedron (O), cube or hexahe-
dron (H), dodecahedron (D), and icosahedron (I). In each case we depict the planar Schlegel
graph of the 1-skeleton C1 for the regular cell complex C2 of the boundary sphere S2 = ∂cO.
Again, we consider the exterior as another face in the 1-point compactification of the plane.

7.1 The five Platonic solids1

The five Platonic solids arise as the convex 3-dimensional polyhedra with regular n-2

gons as boundaries and identical degree d at each vertex. In other words, they are3

the convex hulls of non-planar orbits under discrete subgroups of the orthogonal group4

SO(3), via the standard action on R3. We study these examples because it is far from5

obvious how to accommodate bipolarity and the hemisphere structure of Sturm 3-cell6

templates in these highly symmetric objects, and how to obtain them as Thom-Smale7

complexes.8

Let ci count the cells of dimension i = 0, 1, 2 of the 2-sphere boundary S2 = ∂cO of9

their single 3-cell cO. We then obtain table 7.1 and fig. 7.1 as specific lists, from the10

convexity condition d(1− 2/n) < 2 and the Euler characteristic c0 − c1 + c2 = 2. The11

duals are defined by standard graph duality on S2. We also indicate the edge diameter12

ϑ, on S2, as an upper bound for the edge distance δ of the Sturm poles.13

Platon n d c0 c1 c2 ϑ dual

T 3 3 4 6 4 1 T∗

O 3 4 6 12 8 2 H∗

I 3 5 12 30 20 3 D∗

H 4 3 8 12 6 3 O∗

D 5 3 20 30 12 5 I∗

Table 7.1: The five convex Platonic solids, characterized by regular n-gon faces and vertex
degree d. The columns ci count i-cells and ϑ indicates the diameter, i.e. the maximal edge
distance, on S2, of vertices. Standard S2 duality is indicated in the last column.
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Figure 7.2: The unique Sturm tetrahedron T.1 with a single exterior Western face, left. The
bipolar orientation on S2 = ∂T is uniquely determined by the pole location and the hemisphere
decomposition. Right: the Sturm meander M determined from the SZS-pair (h0, h1) on the
left.

7.2 The two Sturm tetrahedra1

The self-dual tetrahedron T = T∗, alias the 3-simplex, consists of c2 = 4 faces of n = 3-2

gons with c0 = 4 (sink) vertices, of degree d = 3, and c1 = 6 (saddle) edges. Without3

loss of generality, we have to discuss the pole distance4

(7.1) δ = ϑ = 1 , with 1 ≤ η ≤ c2/2 = 2

face vertices of the Western dual cores W∗. Indeed, the poles have distance δ = 1, as5

any two vertices do, and we may choose W∗ as the smaller dual hemisphere.6

See fig. 7.2 for the unique single-face lift η = 1. The Western face W is the compactified7

exterior of the Schlegel diagram, and the meridian circle is the boundary. The trivial8

equivalence ρ fixes the orientation of the diagram. The bipolar orientation is determined9

uniquely; see in particular definition 1.1(iii) for the hemisphere E. This determines the10

SZS-pair (h0, h1), and the Sturm meander permutation σ = h−10 ◦ h1, as illustrated.11

The case of η = 2 Western faces, i.e. of η = 2 sinks in the dual core W∗, leads to the12

one-dimensional attractor W∗ with a single edge. Indeed dual n = 2-gons cannot be13

accommodated in T∗ = T. See sections 5, 6.1 and figs. 5.1, 6.1. To derive the unique14

Sturm permutation σ, up to trivial equivalence, we start from the single edge w0
−w

1
−15

which defines W∗ ⊆ T∗. The dual pole face N∗ must be edge adjacent to the right of16

the oriented edge w0
−w

1
−, i.e. exterior to the Schlegel triangle in fig. 7.3. This defines17

the polar circle ∂N∗ to be that boundary triangle, with left rotating orientation. The18

dual edge W∗ is surrounded by the meridian circle. This only leaves one other edge19

w0
+w

1
+ for E∗. The orientation is unique, up to trivial equivalence κ. We choose the20

orientation of fig. 7.3(a) and obtain the face S∗ to the left of w0
+w

1
+, with left oriented21

polar circle ∂S∗. The two polar circles overlap along the bridge from w1
+ to w1

−. This22
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Figure 7.3: The unique Sturm tetrahedron T.2 with two Western faces, (b). The bipolar
orientation on S2 = ∂T is uniquely determined by the pole location and the hemisphere de-
composition. Left, (a): the dual tetrahedron T∗ with the one-dimensional dual core attractors
W∗, E∗ (both shaded gray), dual poles wι±, polar circles ∂N∗, ∂S∗ (blue) and the predual
meridian circle (green). All orientations follow from lemma 5.1. Right, (c): the Sturm me-
anderM and Sturm permutation σ = h−10 ◦h1 resulting from the (omitted) SZS-pair (h0, h1)
in the 3-cell template (b). Note the 1, 2, 4 nested lower, and 7 nested upper arches.

settles all orientations (a) in the 1-skeleton C1,∗, and hence the orientations (b) in C1.1

The omitted SZS-pair (h0, h1) then defines the Sturm permutation and meander of (c).2

In summary, we obtain the two tetrahedral Sturm permutations of table 7.2 classified3

by their number η = 1, 2 of Western faces. Note the isotropy generator κρ, for η = 2.4

None of the examples is pitchforkable, due to absence of inversion isotropy ρ.5

# δ η Sturm permutation σ iso pitch

T.1 1 1 1 14 5 6 13 10 9 2 3 8 11 12 7 4 15 – –
T.2 1 2 1 8 9 12 5 4 13 14 3 6 11 10 7 2 15 κρ –

Table 7.2: The two Sturm tetrahedra T. Pole distance δ = 1. The number η of Western faces
is 1 or 2, with unique resulting Sturm permutations in either case, up to trivial equivalences.

7.3 The five Sturm octahedra6

The octahedron O, with dual hexahedral cube O∗ = H, consists of c2 = 8 faces of7

n = 3-gons with c0 = 6 vertices of vertex degree d = 4, with c1 = 12 edges, and with8

diameter ϑ = 2 on S2. We have to discuss pole distances δ and Western duals W∗
9

with η faces such that10

(7.2) 1 ≤ δ ≤ ϑ = 2 and 1 ≤ η ≤ c2/2 = 4 ,

in principle, and without loss of generality. See table 7.3 for a list of results.11
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Figure 7.4: The impossibility of pole distance δ = 2 in the octahedron O with cube dual
O∗ = H. Note the orientations of the disjoint polar circles ∂N∗, ∂S∗, and the pairs of directed
polar bridges e∗ = w1

±w
0
∓, dual to meridian edges e. The remaining meridian edges are polar.

The meridian circle separates the (impossible) dual tri-star core W∗ of A, w0
−, w

1
−, B from

the tri-star core E∗ (both shaded gray). Polar bridges between w1
± and w0

∓ are indicated in
orange.

Figure 7.5: The impossibility of dimW∗ = 2 in the octahedron with cube dual O∗ = H.
Note how the exterior square W∗ (gray) forces the meridian circle, with edge adjacent poles
wι− on the polar circle ∂N∗ ∩ ∂W∗. These force w1−ι

+ ∈ ∂N∗ to be adjacent on the inner
square ∂S∗. The resulting position of S in the central square is not on the meridian circle,
and hence is impossible.
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Figure 7.6: An orientation conflict arising from the (gray) Western core W∗ with η = 3
vertices. Note how the location of the E∗-poles wι+ forces the face S∗ to possess an inconsistent
orientation of its polar circle, ∂S∗ from A = w0

+ to w1
+.

In [FiRo16] we have observed that pole distance δ = 2 cannot occur in the octahedron;1

see also [FiRo14]. For illustration we give another proof here, based on the dual cube2

H = O∗. For δ = 2, the poles N, S are antipodes. Hence the dual polar circles3

∂N∗, ∂S∗ in H are disjoint; see fig. 7.4. The remaining four non-polar edges of the4

dual H must connect the dual poles w1
± to w0

∓ as polar bridges, in pairs. The dual cores5

W∗, E∗ cannot both be singletons, since c∗2 = c0 = 6. Therefore the bridges occupy two6

of the four non-polar edges. As in (5.4), w1
± cannot be followed by w0

± on either polar7

circle, after a single edge. Therefore the two polar bridges must be diagonally opposite.8

This determines the meridians and the hemisphere attractors W∗, E∗, as in fig. 7.4.9

However, W∗ then consists of a tri-star with edge spikes to w0
−, w

1
−, and B emanating10

from the same dual vertex A. Similarly, E∗ is also a tri-star. This contradicts bipolarity11

of W∗, E∗. Therefore we can only encounter pole distance δ = 1 in the octahedron O.12

We show next that W∗, with η ≤ 4 vertices, must be one-dimensional. Otherwise,13

W∗ ⊆ O∗ = H is a single closed 4-gon face of the cube H. In fig. 7.5 we draw W∗ as14

the exterior face. The polar circle ∂N∗ must be centered around N on the meridian.15

Since ∂N∗ contains the poles wι− of W∗, the path from w0
− to w1

− in the square boundary16

must therefore consist of a single edge. See fig. 7.5 again for the resulting orientation.17

The poles wι+ of E∗ must lie on the remaining centered 4-gon candidate E∗ which is18

separated from W∗ by the meridian circle. The polar bridges locate w1−ι
− opposite wι+,19

across the meridians, by lemma 5.1. This forces S to be the barycenter of the inner20

square S∗ ⊆ E∗. Since S must also lie on the meridian circle, this is a contradiction.21

This proves dim W∗ = 1 is a path of edges in the polar circle ∂N∗. In particular η ≤ 322

with edge distance η − 1 ≤ 2 from w0
− to w1

− on ∂N∗; see again (5.4).23

Now let ∂N∗ be the outer square again, with exterior face N∗. Suppose η = 3. Then24

the poles wι− of W∗ are diagonally opposite on the outer square; see fig. 7.6 for W∗
25

and the surrounding meridian circle. Since E∗ is spiked at A, but bipolar, one of its26

poles w1−ι
+ must coincide with A, and the other must be on the inner 4-gon, diagonally27

opposite to wι− across the meridian. In either case this leads to a conflict for the28

orientations of ∂S∗ and ∂N∗ along their shared edge.29
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Figure 7.7: A viable dual core W∗ (gray) with η = 2 vertices, (a). The locations A, B are
not viable for S because ∂S∗ cannot accommodate w0

+ and w1
+ at edge distance 1 across the

meridian from w1
− and w0

−, respectively. We draw the only viable location for S. The bipolar
orientation of (gray) E∗, from w0

+ to w1
+ determines all other edge orientations uniquely. See

(b) for the resulting bipolar octahedron complex O.2. See table 7.2 for the Sturm permutation
σ.

Consider the case of η = 2 sink vertices on the single edge dual attractor W∗, next.1

The meridian surrounding W∗ offers three locations for S. See fig. 7.7. The top and2

bottom choices A, B cannot accommodate both poles wι+ of E∗ on the polar circle3

∂S∗. Indeed, at least one of wι+ ∈ E∗ would not be connected to its counterpart w1−ι
−4

by a single-edge polar bridge. The remaining choice is worked out in fig. 7.7(a)–(c),5

from the dual O∗ to the octahedron O. Since the bipolar orientations are determined6

uniquely, we obtain the unique permutation for the Sturm octahedron O.2 with η = 27

faces in the Western hemisphere. See case 5 in table 7.3.8

It only remains to discuss the case η = 1 where the Western hemisphere is a single face9

and O is the single face lift of an Eastern planar octahedron. See fig. 7.8 for the four10

possible orientations which arise. Indeed non-polar edges in E have to emanate from11

meridian sink D ∈ EW, by definition 1.1(iii). This leaves the central triangle ABC12

up for bipolar orientation. The vertex C 6= S cannot be chosen as a local minimum,13

among {A, B, C}, by bipolarity of O. Consider B as a local minimum on ABC. This14

leaves us with the cases AB and CB, depending on the choice of A or C for a local15

maximum on ABC. With A as local minimum, we obtain the remaining cases BA, CA16

with local maxima B, C, respectively.17

See table 7.3 for the resulting four cases 1–4 of bipolar face lifted octahedra, and fig. 7.918
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Figure 7.8: The four possible bipolar orientations of the Sturm octahedron with single face
Western hemisphere. The orientations only differ on the acyclic central triangle ABC. The
four possibilities on the right arise by the selection of a maximal and a minimal vertex among
A, B, C. Bipolarity prevents C to be a minimum. The case AB, for example, chooses A as
maximal and B as minimal.

Figure 7.9: The four 3-meander templates of single-face lift octahedra, η = 1. Note the
three identical locations of the four core poles wι±, and the different location configurations of
the central triangle vertices A, B, C. See fig. 7.8 for bipolar orientations, and table 7.3 for
Sturm permutations and case labels.
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# δ η Sturm permutation σ iso pitch

1 O.AB 1 1 1 26 5 6 25 14 15 24 23 20 19 16 13
12 11 2 3 10 17 18 9 8 21 22 7 4 27

– –

2 O.BA 1 1 1 26 5 6 25 22 21 18 17 2 3 16 15 8
9 14 19 20 13 12 23 24 11 10 7 4 27

– –

3 O.CA 1 1 1 26 5 6 25 22 21 12 11 2 3 10 13 20
19 14 9 8 15 18 23 24 17 16 7 4 27

– –

4 O.CB 1 1 1 26 5 6 25 18 17 12 11 2 3 10 13 16
19 24 23 20 15 14 9 8 21 22 7 4 27

– –

5 O.2 1 2 1 16 17 26 7 6 5 8 25 22 21 18 15 14
13 2 3 12 19 20 11 10 23 24 9 4 27

ρ –

Table 7.3: The five Sturm octahedra O. Pole distance δ = 1. The number η of Western
faces is 1 or 2. The four cases of single face lifts, η = 1, arise from the local orientations of
triangle ABC in fig. 7.8. The involutive case η = 2 of two Western faces is the only case
with isotropy. Still, it is neither pitchforkable nor realizable by a pendulum type nonlinearity
f = f(u). It defines a unique Sturm permutation, up to trivial equivalence.

for their meanders. The permutations σ = h−10 ◦h1 are defined via the SZS-pair (h0, h1)1

of each orientation. Case 5 is the unique case with η = 2 Western faces; see (7.2). Note2

the pole distance δ = 1 in all cases, because the octahedron with antipodal poles cannot3

be realized in the Sturm class. The only isotropy which arises is ρ, i.e. σ−1 = σ, in4

case 5. See table 3.1. None of the cases 1–5 is pitchforkable or realizable by a pendulum5

f = f(u).6

For lack of scientific understanding it is also possible to arrive at table 7.3 by brute7

force. There are 70,944 Hamiltonian path candidates for hι, between antipode vertices,8

and 62,552 between neighbors. Sifting through pairs for Sturm permutations, the above9

five cases can be obtained. Alas, what would we have understood?10

7.4 The seven Sturm cubes11

The hexahedral cube H, with dual octahedron H∗ = O, consists of c2 = 6 faces with12

c0 = 8 vertices of vertex degree d = 4, with c1 = 12 edges, and with diameter ϑ = 3.13

Therefore we have to discuss pole distances δ and Western duals W∗ with η faces such14

that15

(7.3) 1 ≤ δ ≤ ϑ = 3 and 1 ≤ η ≤ c2/2 = 3 ,

in principle. See table 7.4 for a list of results.16

Again we consider the case of maximal pole distance first: δ = 3, with diagonally17

opposite poles N, S. In the dual octahedron O = H∗, this means that the polar18

circles ∂N∗, ∂S∗ are disjoint. See fig. 7.10, where the polar circle ∂N∗ is the outer19

bounding 3-gon, and ∂S∗ is the disjoint central 3-gon. Note how both polar circles are20

left oriented. We place wι− on ∂N∗ as indicated, without loss of generality. By polar21

bridge adjacency of wι− ∈ ∂N∗ to w1−ι
+ ∈ ∂S∗, we are restricted to the dotted and solid22
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Figure 7.10: The unique cube H.3.3 with pole distance δ = 3. Note the resulting η = 3-gon
Western and Eastern cores W∗, E∗ (both gray). (a) Disjoint polar circle triangles ∂N∗, ∂S∗,
with poles ⊗ = wι− of W∗ in ∂N∗. The bridge options for poles � = wι+ of E∗ in ∂S∗, across
the meridians, are dotted or solid. Only the solid option is compatible with the proper left
orientation of ∂S∗. (b) The resulting cube 3-cell template H with uniquely determined bipolar
orientation. (c) The cube meander M generated by the SZS-pair (h0, h1) of the cube 3-cell
template (b). Note the nested 32, 3, 1 upper arches, and 1, 3, 32 lower arches of M, from
left to right. The meander exhibits full isotropy under all trivial equivalences 〈κ, ρ〉. Still, it is
neither pitchforkable nor realizable by a pendulum type nonlinearity f = f(u). See table 7.4,
case 7, for the Sturm permutation σ.

options for w1−ι
+ , in fig. 7.10(a). The requirement w1−ι

+ ∈ ∂S∗ eliminates the dotted1

option, and selects the solid option, uniquely. The meridian edge separations required2

by lemma 5.1 define the complete meridian circle, which surrounds and separates W∗
3

and E∗. Note how the Western core W∗ is a Sturm 3-gon, η = 3, as is the Eastern4

core E∗. This determines the orientations of H∗ = O and of the 3-cell template for5

O uniquely, as in fig. 7.10(b). The unique meander M in (c) follows, as usual, from6

the SZS-pair (h0, h1) of (b) via the Sturm permutation σ = h−10 ◦ h1. See case 7 in7

table 7.4.8

Conversely, suppose the Western core W∗ ⊆ O = H∗ is 2-dimensional. Since W∗
9

contains at most η = 3 vertices, and the octahedron O consists of triangles, this implies10

W∗ itself is a Sturm 3-gon with poles wι−. In fig. 7.11 we choose W∗ to be the exterior11

face. We recall that the polar face N∗ is located to the right of the oriented edge12

e∗ = w0
−w

1
− ∈W∗. Swapping our placements of wι− = ⊗ would force the barycenter N13

of N∗ to be exterior, off the meridian circle. The polar bridge options for w1−ι
+ ∈ ∂S∗14

are dotted in fig. 7.11. The resulting options for barycenters S on the meridian are15
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Figure 7.11: Dual octahedron with a 3-gon Western core W∗ (exterior, gray) and sur-
rounding meridian. The orientation of the dual edge e∗ = w0

−w
1
− follows because N∗, with

barycenter N on the meridian, cannot coincide with the exterior face of W∗. The left orien-
tation of the Southern polar circle ∂S∗ contradicts the orientation w0

+w
1
+, for S = S1 or S2

and all (dotted) candidates w1−ι
+ paired with wι−. Therefore S = S3 is the antipode of N, as

in fig. 7.10.

Figure 7.12: The unique cube H.2.2 with η = 2 Western faces. Note the unique edge
e∗ = w0

−w
1
− in the Western core W∗ and the double 3-gon Eastern core E∗ (both gray). (a)

Exterior polar circle ∂N∗ and meridian circle in the octahedral dual O = H∗. Only South
poles S = S2 and S4 are viable options, trivially equivalent under ρ. Lemma 5.1 forces the
location w0

+ = A, and hence w1
+ = B. All remaining orientations of dual edges follow. (b)

The resulting cube 3-cell template H with uniquely determined bipolar orientation. (c) The
cube meander M generated by the SZS-pair (h0, h1) of (b), without remaining isotropy. For
the Sturm permutation σ see table 7.4, case 6.
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Figure 7.13: The three possible bipolar orientations, each, of the Sturm cube with single
face Western hemisphere, exterior. The orientations only differ on the acyclic central square
ABCD, respectively, for the case (a) of adjacent poles, δ = 1, and for the case (b) of diago-
nally opposite poles, δ = 2, on the Western face. Note how acyclicity of ABCD makes D a
local minimum in (c). The cases A, B, C refer to the location of the local maximum.

indicated in the faces S∗1, S∗2, S∗3. The required left orientation of the polar circle ∂S∗1

is not compatible with the orientation of the edge w0
+w

1
+, unless S∗ = S∗3. But then the2

polar circles ∂N∗, ∂S∗ are disjoint. In other words, we are back with the case δ = 3 of3

diagonally opposite poles which we already discussed. In conclusion, the cases δ = 34

and dim W∗ = 2 are equivalent.5

It remains to study pole distances δ = 1 or δ = 2 with one-dimensional cores dim W∗ =6

1. In particular W∗ is contained in the 3-gon polar circle ∂N∗. By (5.4), W∗ contains7

at most one edge e+ = w0
−w

1
−, i.e. η = 2. Otherwise w0

− = w1
−, and η = 1 defines a8

single face lift.9

We consider the case η = 2 first. In fig. 7.12(a), we choose N∗ to be the exterior face10

with wι− on the polar boundary circle ∂N∗. The meridian circle around W∗ = w0
−w

1
−11

offers five barycenter locations S1, . . . ,S5 for the South pole S. The resulting polar12

bridges wι−w
1−ι
+ , which cross the meridian, eliminate choice S3. Indeed w0

+ = w1
+, in13

that case, would force η = 5 because the Eastern core E∗ = wι+ becomes a singleton.14

For the pole adjacent choice S = S1 the polar bridges force w1
+ = C, w0

+ = A. This15

contradicts the required left orientation of the polar circle ∂S∗1. By trivial equivalence,16

this also eliminates S = S5. It is therefore sufficient to study S = S2 with w0
+ =17

A, w1
+ = B. Bipolarity of the Eastern core E∗ fixes the remaining orientations of18

O = H∗, and hence of H; see fig. 7.12(b). The SZS-pair (h0, h1) of (b) defines the19

meanderM in (c), with σ = h−10 ◦h1. See table 7.4, case 6, for the Sturm permutation20

σ.21

All remaining cases are single-face lifts, by η = 1. We argue for the cube H, directly,22

with W as the exterior face and the exterior boundary as meridian circle. We consider23

the two cases of pole distances δ = 1 and δ = 2, separately; see fig. 7.13(a) and24
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Figure 7.14: The five 3-meander templates of single face lift cubes, η = 1. Note the three
identical locations of the four core poles wι±, for each pole distance δ = 1, 2, and the different
configurations of the central square A, B, C, D. See fig. 7.13 for bipolar orientations, and
table 7.4 for Sturm permutations and case labels.

(b). In either case the boundary meridian orientation follows from the location of the1

poles N, S, with the top edge as the only difference. The three edges emanating into2

E from meridian i = 0 sinks other than S are all oriented inward, towards A, B, C,3

respectively. The fourth edge DS must be oriented towards the South pole S, of course.4

Note how AD has to be oriented towards D. Indeed, the opposite orientation DA,5

and the absence of any other poles besides N, S, would force the cyclic orientations6

AB, BC, and CD, successively. Cyclicity of ABCD contradicts bi-polarity.7

Likewise, CD has to be oriented towards D. This identifies D as a local minimum on8
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the boundary ABCD of the central square. We distinguish cases1

(7.4) A, B, C

according to the three remaining choices of a local maximum on the boundary ABCD2

of the central square. See fig. 7.13(c). The only trivial equivalence arises for pole3

distance δ = 2: under ρ, cases A and C are then interchangeable.4

This determines the bi-polar orientation in all five remaining cases of single-face lifted5

cube 3-ball complex templates. See fig. 7.14 for the five resulting Sturm meanders.6

In table 7.4 we summarize the seven inequivalent 3-meander templates for cubes H. In7

cases 1–5, the Western hemisphere is a single face, η = 1. The minimal pole distance8

δ = 1 only occurs for η = 1; see cases 1–3. The three cases differ by the choice of9

the locally maximal i = 0 sink vertex A, B, C on the central 4-gon of the Eastern10

hemisphere; see fig. 7.13. Diagonally opposite poles across a face of the cube, δ = 2,11

may arise for single face and for double face Western hemispheres, i.e. for η = 1 and12

for η = 2. The two cases 4, 5 are characterized by δ = 2, η = 1, and differ by the13

locally maximal vertex A, B of the central 4-gon, in the bipolar orientation. Case14

6 is characterized uniquely by its double face Western hemisphere, η = 2. It is the15

third case of face diagonally opposite poles, δ = 2. The final case 7, treated first in16

this subsection, is equivalently characterized by the requirement of space diagonally17

opposite poles, δ = 3, or a face count η = 3 in each hemisphere. In each hemisphere,18

the three faces share one vertex. In other words, each dual core is a Sturm 3-gon.19

# δ η Sturm permutation σ fig. iso pitch

1 H.1.A 1 1 1 26 7 8 25 20 19 2 3 16 15 4 5 10 11
14 17 18 21 22 13 12 23 24 9 6 27

7.14 – –

2 H.1.B 1 1 1 26 7 8 25 20 19 2 3 12 13 18 21 22
17 14 11 4 5 10 15 16 23 24 9 6 27

7.14 – –

3 H.1.C 1 1 1 26 7 8 25 14 15 22 21 16 13 2 3 12
17 18 11 4 5 10 19 20 23 24 9 6 27

7.14 – –

4 H.2.A 2 1 1 18 19 26 5 6 25 20 17 14 13 2 3 8
9 12 15 16 21 22 11 10 23 24 7 4 27

7.14 – –

5 H.2.B 2 1 1 18 19 26 5 6 25 20 17 10 11 16 21
22 15 12 9 2 3 8 13 14 23 24 7 4 27

7.14 ρ –

6 H.2.2 2 2 1 12 13 18 19 24 7 6 25 26 5 8 23 20
17 14 11 2 3 10 15 16 21 22 9 4 27

7.12 – –

7 H.3.3 3 3 1 18 19 24 13 6 7 12 25 26 11 8 5 14
23 20 17 2 3 16 21 22 15 4 9 10 27

7.10 κ, ρ, κρ –

Table 7.4: The seven Sturm hexahedral cubes H. All pole distances δ are realized. The full
diameter case δ = 3 is maximally symmetric; see fig. 7.10. However, it is neither pitchforkable
nor realizable by a pendulum type nonlinearity f = f(u). The nonuniqueness of the single-
face lifts η = 1 with pole distances δ = 1 and δ = 2, respectively, arises from the choice of
the local maximum vertex in the central 4-gon ABCD of H; see fig. 7.13 (c). The unique
double-face lift η = 2 is the third possibility of pole distance δ = 2.
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Figure 7.15: The dodecahedral dual I∗ = D of the icosahedron complex I. (a) Exterior polar
face dual N∗ with oriented boundary ∂N∗. Representative barycenters Sδ of candidate face
duals S∗δ denote South poles S at distances δ = 1, 2, 3 from the North pole N. Note the single
bridge BE between the polar circle ∂N∗ and ∂S∗2, as well as the absence of bridges between
∂N∗ and ∂S∗3. (b) Viable placement of the four pole wι± of the dual cores W∗, E∗ in case
S = S1. Only the locations A, . . . , F allow for single edge bridges w1

±w
0
∓. The bridges must

lie in the solid parts of the two pentagonal polar faces. The orientations of the polar circles
∂N∗, ∂S∗1 are indicated, and result in the green meridian circle.

7.5 Sturm icosahedra and dodecahedra1

We do not aim for complete case lists, in this section. Instead, we explore the possible2

pole distances δ and Western, i.e. smaller hemisphere, face counts η for solid Sturm3

icosahedra I and dodecahedra D. See theorems 7.1 and 7.2. A priori,4

(7.5)
1 ≤ δ ≤ ϑ = 3 and 1 ≤ η ≤ c2/2 = 10 for I ,
1 ≤ δ ≤ ϑ = 5 and 1 ≤ η ≤ c2/2 = 6 for D .

For the Sturm icosahedron Thom-Smale complex, however, poles N, S must always5

be neighbors: δ = 1. The maximal Western face count is η = 2. See figs. 7.17, 7.196

and case 1 in table 7.6 for an example. For the Sturm dodecahedron, the maximal7

pole distance is δ = 2. It arises if, and only if, the Western face count is η = 2. See8

figs. 7.18, 7.20 and case 2 in table 7.6 for an example.9

Theorem 7.1. Consider any Sturm icosahedron I.10

Then the poles N, S are (edge) neighbors, and the (smaller) Western hemisphere face11

count η is at most 2.12

For η = 2, the poles are located at the endpoints of the unique shared, non-meridian13

edge of the two Western triangle faces.14
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Figure 7.16: The icosahedral dual I = D∗ and the dodecahedral complex D. (a) Exterior
polar face dual N∗ with oriented boundary ∂N∗. Representative candidate face duals S∗δ
denote South poles S at distances δ = 1, . . . , 5 from the North pole N. Bridges between ∂S∗5
and ∂N∗ are absent. Bridges are unique between ∂S∗4 and ∂N∗. (b) Placement of the 4-cycle
BCDEB of wι± in (a), for the case S = S2 of pole distance δ = 2. See also table 7.5. (c)
The resulting meridian segments (green, solid) in I = D∗ for the configuration (b) of wι±.
For the closure of the meridian circle (green, dashed) see text. (d) The resulting hemisphere
decomposition with pole distance δ = 2 and η = 2 Western faces w0

− = B, w1
− = C, in the

original dodecahedron 3-cell template D. Only mandatory parts of the bipolar orientation are
indicated.

Proof. We proceed by decreasing pole distance δ ≤ ϑ = 3, via the dual dodecahedron1

D = I∗. See table 7.1 and figs. 7.1, 7.15.2

By corollary 5.2(ii), the polar pentagon circles in D must be joined by at least two3

polar bridges. In fig. 7.15(a), the polar circle ∂N∗ is the boundary of the exterior face4

N∗. Up to trivial equivalences, the three barycenter options S ∈ {S1,S2,S3} arise.5

Note the pole distance is δ, for S = Sδ.6
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If S = S3, then there is no polar bridge. Therefore δ ≤ 2. If S = S2 there is a unique1

polar bridge, instead of the required two bridges. This proves δ = 1, i.e. S = S1, and2

the poles N, S are edge adjacent in the icosahedron I.3

We show η ≤ 2 for the Western face count under adjacent poles. See fig. 7.15(b) for4

the polar circles ∂N∗, ∂S∗. The solid parts show all candidate edges e∗ ∈ D = I∗ which5

are potential polar bridges between end points on different polar circles. Note that all6

(solid) bridge candidates are contained in the union of the polar circles themselves,7

here.8

Suppose η > 1. Then the four pole vertices wι± of the dual cores W∗, E∗ are all9

disjoint. They must be placed on the solid part of fig. 7.15(b), i.e.10

(7.6) wι− ∈ {A,B,C,D} , wι+ ∈ {E,B,C, F} ,

to afford the oriented polar bridges of corollary 5.2(ii), from w1
± to w0

∓. We proceed by11

location of w1
−.12

Suppose w1
− = D. Then there is no oriented bridge w1

−w
0
+. Suppose w1

− = B. Then13

the only possible bridge from w1
− ∈ ∂N∗ to w0

+ ∈ ∂S∗ is BC. Hence w0
+ = C. With14

B, C already occupied, however, there does not remain any bridge from w1
+ ∈ {E,F}15

to w0
− ∈ {A,D}. We illustrate the case w1

− = C in fig. 7.15(b). The remaining case16

w1
− = A leads to the symmetric case w0

+ = B, w1
+ = C, w0

+ = D, and just provides a17

trivially equivalent Sturm realization.18

The polar bridges e∗ are duals to meridian edges. Likewise, the pentagon edges pre-19

ceding w0
± and following w1

±, on their respective polar circles are duals to meridian20

edges. In D = I∗, these four meridian edges define the meridian circle which encloses21

the Western hemisphere with η = 2 faces given by wι−. This proves that η > 1 implies22

η = 2. The interior Western edge from N to S follows because the shared edge BC of23

the polar circles is not dual to a meridian edge. This proves the theorem. ./24

Theorem 7.2. Consider any Sturm dodecahedron D.25

Then the maximal pole distance δ and the maximal (smaller) hemisphere face count η26

satisfy27

(7.7) 1 ≤ η ≤ δ ≤ 2 .

For η = δ = 2, the poles N, S are located asymmetrically at edge distance δ = 2 via28

the unique shared edge of the two Western pentagon faces. Their edge distance along29

the meridian circle of circumference eight is three.30

Proof. Similarly to the proof of theorem 7.1, we proceed by decreasing pole distance31

δ ≤ ϑ = 5, this time via the dual icosahedron I = D∗. See table 7.1 and figs. 7.1, 7.16.32

The candidates for the South pole S at distance 1 ≤ δ ≤ 5 from the exterior North33

pole barycenter N are Sδ, in fig. 7.16(a), up to trivial equivalences. Evidently the polar34

circles ∂S∗5 and ∂S∗4 do not possess two edge disjoint polar bridges to the boundary polar35

circle ∂N∗. Therefore δ ≤ 3.36
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Suppose δ = 3, S = S3. Then the edges CD and EC are the only polar bridges.1

Since C is their only intersection with the polar circle ∂N∗, corollary 5.2(iii) implies2

w0
− = C = w1

−. Hence the face count η of W is η = 1. In particular, the meridian3

circle surrounds C = W∗, as the only dual vertex, by corollary 5.2(ii). In particular,4

the meridians cannot intersect the opposite polar circle ∂S∗ = ∂S∗3. This contradicts5

corollary 5.2(v), for wι+ ∈ ∂S∗3.6

Consider δ = 2, S = S2 next, as indicated in fig. 7.16(a). By their polar bridges, all7

core poles wι± must be placed at one of the five locations8

(7.8) wι± ∈ {A,B,C,D,E}

of fig. 7.16(b), and any bridges must appear in the same reduced diagram.9

Suppose η = 1 first, i.e. the Western core W∗ = {wι−} is a singleton. Then10

(7.9) w0
− = w1

− = C , w0
+ = D , w1

+ = E

is immediate from corollary 5.2. The two poles N, S, are located non-adjacently on11

the boundary of the single Western pentagon face.12

In case δ = 2, η = 2, the four core poles wι± are all distinct. Because all dual faces13

are 3-gons of boundary length n = 3, corollary 5.2(vi) implies that the segment w0
±w

1
±14

consists of a single edge on the appropriate polar circle; see (5.4). Together with the15

bridges w1
±w

0
∓, this defines an oriented 4-cycle16

(7.10) w0
−w

1
−w

0
+w

1
+w

0
−

of four mutually disjoint edges in the reduced diagram of fig. 7.16(b). See corol-17

lary 5.2(iv). Only the orientation of the nonpolar edge BE can still be chosen freely. In18

table 7.5 we list all available options, left to right, starting from w0
− ∈ {A,B,C} 3 w1

−.19

Note wι+ ∈ {C,D,E}.20

w0
− w1

− w0
+ w1

+ w0
−

A B C D E
E C A

B C D E B
C

C A – – –

Table 7.5: Realization of the 4-cycle in fig. 7.16(b). The edges w0
−w

1
− have to follow the

oriented polar circle ∂N∗, and w0
+w

1
+ follow ∂S∗2. The polar bridges w1

±w
0
∓ encounter two

options for w0
∓, when w1

± ∈ {B, E}. There is no bridge from w1
− = A to ∂S∗2. The two

resulting cycles are ABECA and BCDEB, trivially equivalent under ρ.

Evidently, the only 4-cycles (7.10) are21

(7.11) w0
−w

1
−w

0
+w

1
+w

0
− = ABECA or BCDEB .
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Figure 7.17: A sample Sturm icosahedron Thom-Smale complex I with pole distance δ = 1
and with η = 2 Western faces ⊗. Note the required orientation arrows from pole N, from the
meridians into the Eastern hemisphere, and towards pole S. The SZS-pair (h0, h1) results
from the bipolar orientation: h0 (red), h1 (blue), h0 +h1 (purple). See fig. 7.19 and table 7.6
for the Sturm meander M of the Sturm permutation σ = h−10 ◦ h1.
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Figure 7.18: A sample Sturm dodecahedron Thom-Smale complex D with maximal pole
distance δ = 2 and with η = 2 Western faces. The SZS pair (h0, h1) results from the bipolar
orientation; see also fig. 7.16(d). See fig. 7.20 and table 7.6 for the Sturm meander M of the
Sturm permutation σ = h−10 ◦ h1.
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Figure 7.19: The Sturm meander M for the icosahedron I of fig. 7.17. The marked sources
A, . . . , F correspond to figs. 7.15(b) and to the icosahedral Thom-Smale complex I. Note the
extreme positions of the poles wι± of the dual cores W∗, E∗.

Figure 7.20: The Sturm meander M for the dodecahedron D of fig. 7.18. The marked
sources A, . . . , F correspond to figs. 7.16 and 7.18. For further comments on wι±; see fig. 7.19.
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The two cycles are trivially equivalent under ρ. The cycle BCDEB is indicated in1

fig. 7.16(b),(c). For the Western face count η = 2, i.e. for single-edge dual cores W∗,2

the meridian circle in fig. 7.16(c) then follows from corollary 5.2(iii),(v): it encloses the3

dual core W∗ = w0
−w

1
−.4

Converting the meridian circle around W∗ back to the original dodecahedron D, we5

easily identify the Western interior W as two pentagon faces with barycenters B = w0
−6

and C = w1
−, and a single shared edge dual to BC. The meridian therefore is of7

circumference length eight. The relative location of the pentagons with barycenters8

A,B,C,D is easily derived from fig. 7.16(c); see fig. 7.16(d). The locations of the poles9

N and S on the meridian then follows just as easily.10

We discuss the case δ = 1 of edge adjacent poles next, i.e. S = S1 in fig. 7.16(a). We11

claim η = 1. Suppose, indirectly, η ≥ 2. Then wι± define a directed 4-cycle, with12

(7.12) wι± ∈ {A,B,C, F} .

All edges must therefore be contained in the union of polar circles ∂N∗, ∂S∗, fol-13

lowing the given orientation. Alas, there does not exist any directed 4-cycle in this14

configuration. Therefore η = 1, as claimed.15

To complete the proof of theorem 7.2, it remains to show, for δ = 2, that η > 1 actually16

implies the Western face count η = 2. This is slightly subtle. We first show FC /∈W∗,17

indirectly, to close the dashed meridian gap dual to FC in fig. 7.16(c). Indeed suppose18

FC ∈W∗. By bipolarity of W∗, we can follow a di-path in W∗, upwards against its19

orientation all the way to the only other pole B = w0
−. The downward edge w0

−w
1
−20

from B to C closes the path to a nonoriented cycle γ in W∗ which does not intersect21

the dual meridian cycle. But the meridian circle contains edges on either side of γ: the22

duals to CD and AC, for example. This contradicts the Jordan curve theorem on S2,23

and proves FC /∈W∗ is dual to a meridian edge.24

An analogous argument closes the meridian circle through the two edges from B = w0
−25

which had not been accounted for, so far. This proves26

(7.13) W∗ = w0
−w

1
−

and hence W consists of only η = 2 faces with barycenters w0
− = B and w1

− = C. This27

proves the theorem. ./28

We conclude this section with one example, each, for largest 2-face Western hemispheres29

and maximal pole distance, δ = 1 in the icosahedron, and δ = 2 in the dodecahedron.30

See figs. 7.17 and 7.19 respectively. The basic configuration of poles and meridians with31

overlap, satisfying the requirements of definition 1.1 of 3-cell templates, follows from32

theorems 7.1 and 7.2. Orientations of nonpolar edges on the meridian, and away from33

the meridian in the Eastern hemisphere, follow the requirements of that definition.34

We have picked the remaining orientations of the Eastern 1-skeleton, from the many35

bipolar possibilities, somewhat arbitrarily. The SZS-pairs (h0, h1) then define the Sturm36

permutations σ, as in table 7.6, and the Sturm 3-meander templates of figs. 7.19, 7.20.37
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Case δ η Sturm permutation σ iso pitch

1 I 1 2 1 20 21 62 7 6 5 8 61 58 57 40 39 22 19 18 23
38 41 56 55 46 45 42 37 36 35 24 17 16 15 2 3
14 25 34 33 26 13 12 27 32 43 44 31 30 47 54
53 48 29 28 11 10 49 52 59 60 51 50 9 4 63

– –

2 D 2 2 1 26 27 38 39 52 53 60 9 8 61 62 7 10 59 54 51
40 37 28 25 2 3 14 15 24 29 30 31 36 41 42 43
50 55 56 49 44 35 32 23 16 17 22 33 34 45 46
21 18 13 4 5 12 19 20 47 48 57 58 11 6 63

– –

Table 7.6: Two examples of Sturm permutations which lead to one of many icosahedral and
dodecahedral 3-cell templates and Sturmian Thom-Smale complexes I and D, respectively.
The number η = 2 of faces in the Western hemisphere and the pole distances δ = 1, 2 are
maximal, in each case.

8 Conclusion and outlook1

We have concluded our trilogy on 3-ball PDE Sturm global attractors Af . We have2

shown how their dynamic signed hemisphere complexes Cf , the 3-cell templates C,3

the 3-meander templates M, their ODE shooting meanders Mf , and their associated4

permutations σ and σf , are all equivalent descriptions of one and the same geometric5

object: not just the ODE critical points, alias equilibria, but a signed version of the6

Thom-Smale complex defined by their heteroclinic orbits. In particular, the defini-7

tion of unique SZS-pairs (h0, h1) in abstract 3-cell templates C allowed us to design8

Sturm global attractors such that their signed Thom-Smale dynamic complex Cf co-9

incides with C. The construction resulted from a nonlinearity f such that its Sturm10

permutation σf satisfies11

(8.1) σf = σ := h−10 ◦ h1 .

One remarkable feature of this construction, perhaps, are the rather low pole distances12

δ and face counts η of the (smaller) Western hemispheres which we encounter in our13

examples. The absence of antipodal poles, δ = 2, in Sturm octahedral complexes was14

a first indication. Similarly, max δ = 1 with max η = 2 for the 20-faced icosahedron15

of diameter ϑ = 3, and max δ = 2 with max η = 2 for the 12-faced dodecahedron of16

diameter ϑ = 5 are surprising. Trivial isotropies κ and ρκ are impossible, automatically,17

because they swap hemispheres and therefore require equal hemisphere face counts.18

One reason for this asymmetric imbalance became apparent in corollary 5.2. For face19

counts η > 1, the four poles wι± of the dual cores W∗ and E∗ are tightly bound into a20

short 4-cycle which consists of segments of the polar circles ∂N∗, ∂S∗, and two disjoint21

single-edge polar bridges between them. To avoid this difficulty, we chose δ = η = 1 in22

[FiRo14] to obtain some Sturmian signed hemisphere decomposition for any prescribed23

regular 2-sphere complex C2 = S2.24

Beyond the closure Cf = cO of a single 3-cell, we may aim to describe all 3-dimensional25

Sturm Thom-Smale dynamic complex of maximal cell dimension three. Even in the26
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Figure 8.1: (a) The Snoopy bun 3-ball Sturm attractor with N = 13 equilibria. See fig. 6.3
and table 6.6, cases 13, 14, 19, 24 for inequivalent realizations. (b) The Snoopy burger with
an additional 3-cell bun cO, and hemisphere H packed on top. This regular cell complex of
dimension 3, with two adjacent 3-balls sharing 3 faces, is NOT a Sturm dynamic complex.

presence of a single 3-cell this allows for one-dimensional “spikes” or two-dimensional1

“balconies”. Specific examples already arise for N = 9 equilibria and have been de-2

scribed in [Fi94].3

A more interesting example involves N = 15 equilibria and arises from the “Snoopy4

bun” cell complex of fig. 6.3, example 19. See fig. 8.1(a), where we have swapped the5

hemispheres E, W and taken the single face hemisphere E as the exterior. We call6

clos W the Snoopy disk on top of the bun cO. Examples 13, 14 and 24 of fig. 6.3 are7

other hemisphere decompositions of the same Snoopy bun cell complex with 13 equi-8

libria.9

Let us add two more equilibria, to reach N = 15. We simply glue a second 3-cell cO′ , to10

the other side of the equatorial 3-face Western disk, on top, and close off with a second11

2-disk H. Here clos H shares the green meridian circle ∂H = ∂W = ∂E with, both,12

the lower hemisphere 2-disk clos E and the equatorial mid-plane Snoopy disk clos W.13

We call the resulting signed hemisphere complex of two 3-cells a “Snoopy burger”. See14

fig. 8.1(b).15

We claim that the snoopy burger is NOT a Sturm dynamic complex. Indeed, the16

faces of the Snoopy disk W are reached from O and O′, heteroclinically, from opposite17

incoming sides, tangent to the third eigenfunction ±ϕ2. Therefore the same equatorial18

3-face disk W must play the role of opposite hemispheres in the 3-balls clos cO and19

clos cO′ , respectively. Only two of the three i = 0 sink equilibria A, B, C on the20

(green) shared boundary can be poles. Any interior edge terminating at the third21

equilibrium thus has to be oriented, both, towards the meridian boundary for clos cO,22

and away from that same meridian boundary for clos cO′ . This conflict prevents any23

Sturm realization of the Snoopy burger.24
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So, how about dimensions four and higher. Already the Snoopy example, say, embed-1

ded into the 3-sphere boundary of a 4-cell warns us to proceed with care. In principle,2

at least, the general recipe of [FiRo17] for the construction of SZS-pairs (h0, h1) ex-3

tends to arbitrary signed hemisphere complexes. A viable and complete geometric4

description, however, as we have presented for 3-balls here, is not available at this5

date.6

We therefore conclude with three examples, beyond the Chafee-Infante paradigm AmCI7

of arbitrary dimension m. The double spiral meander Mm
CI of AmCI with N = 2m + 18

equilibria is easily described. It consists of m nested upper arches, above the horizontal9

h1-axis, joining horizontally labeled equilibria j and 2m+1−j for j = 1, . . . ,m. Another10

m nested lower arches, joining equilibria j + 1 and 2m+ 2− j, complete the meander.11

Without proof we state how to obtain an m-simplex Sm with N = 2m+1− 1 equilibria.12

Note the 1-edge interval S1 = A1
CI, the filled 3-gon S2, and the solid tetrahedron13

S3 = T of fig. 7.3(c). Above the horizontal axis, we keep a single nested sequence of14

1
2
(N − 1) = 2m − 1 upper arches. Below the axis, we put nests of 1, 2, . . . , 2m−1 arches15

next to each other, starting with the lower arch 2 3. This defines a meander Mm
S for16

the m-simplex. Of course, the pole distance is δ = ϑ = 1. The count η of (m− 1)-cells17

in the smaller hemisphere Σm−1
± is maximally possible, i.e. η = (m+ 1)/2. Alas, there18

should be many more Sturm realizations of the m-simplex Sm.19

A similar construction provides Sturm hypercubes Hm = A1
CI× . . .×A1

CI of any dimen-20

sion m. Analogously to fig. 7.10 we place nests of 1, 3, 32, . . . , 3m−1 lower arches, left to21

right, below the axis, starting from the second equilibrium. Above, we start at the first22

of the 3m equilibria and reverse the nest sizes. This places nests of 3m−1, . . . , 32, 3, 123

upper arches, left to right, above the horizontal axis. The pole distance δ = ϑ = m24

and the count η = m of (m− 1)-cells in each hemisphere are both maximally possible.25

Again there may be other Sturm realizations, e.g. with lower δ, η.26

Form-dimensional octahedra Om, i.e. the hypercube duals, also known as the (solid)m-27

orthoplex or the convex hull of the 2m ±unit vectors in Rm, we did not find such a series28

of Sturm realizations beyond m = 3. One reason may be the strong asymmetry induced29

by small pole distances δ and counts η of (m− 1)-cells on the smaller hemisphere. We30

are only aware of two ad-hoc 4-dimensional Sturm examples of O4, with 3n = 8131

equilibria, 2m = 16 tetrahedral 3-cells, and minimal δ = η = 1. We conclude with their32

Sturm permutations, in table 8.1.33
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