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Abstract. We consider a parabolic problem with discontinuous hysteresis on

the boundary, arising in modelling various thermal control processes. By re-

ducing the problem to an infinite dynamical system, sufficient conditions for
the existence and uniqueness of a periodic solution are found. Global stability

of the periodic solution is proved.

1. Introduction. Hysteresis operators naturally arise in mathematical description
of many physical processes [17, 29, 5]. Models involving ordinary differential equa-
tions with hysteresis were considered by many authors and are nowadays relatively
well investigated (see e.g., [2, 17, 27, 7, 28, 3, 22]). Partial differential equations
with hysteresis have also been actively studied during the last decades (see [29, 5]
and references therein), but many questions remain open, especially those related
to the periodicity and large-time behavior of solutions.

In this paper, we deal with parabolic problems containing a discontinuous hys-
teresis operator in the boundary condition. Such problems describe various pro-
cesses of thermal control, where the temperature regulation in a domain is performed
via heating (or cooling) elements on the boundary of the domain. The regime of the
heating elements on the boundary is based on the registration of thermal sensors
inside the domain and obeys the hysteresis law.

Let v(x, t) denotes the temperature at the point x of a bounded domain Q ⊂ Rn
at the moment t. We define the mean temperature v̂(t) by the formula

v̂(t) =

∫
Q

m(x)v(x, t) dx,

where m ∈ L2(Q) (see Condition 2.1 for another technical assumption on m(x)).
We assume that the function v(x, t) satisfies the heat equation

vt(x, t) = ∆v(x, t) (x ∈ Q, t > 0) (1.1)

and a boundary condition which involves a hysteresis operator H depending on the
mean temperature v̂.
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The hysteresisH(v̂)(t) is defined as follows (cf. [17, 29] and the accurate definition
and Fig. 2.1 in Sec. 2). One fixes two temperature thresholds α and β (α < β).
If v̂(t) ≤ α, then H(v̂)(t) = 1 (the heating is switched on); if v̂(t) ≥ β, then
H(v̂)(t) = −1 (the cooling is switched on); if the mean temperature v̂(t) is between
α and β, then H(v̂)(t) takes the same value as “just before.” We say that the
hysteresis operator switches when it jumps from 1 to −1 or from −1 to 1. The
corresponding time moment is called the switching moment. Note that the hysteresis
phenomenon takes place along with the nonlocal effect caused by the fact that the
mean temperature v̂(t) is the integral of the temperature v(x, t) over Q.

To be definite, let us assume that one regulates the heat flux through the bound-
ary ∂Q. Then the boundary condition is of the form

∂v

∂ν
= K(x)u(t) (x ∈ ∂Q, t > 0), (1.2)

where ν is the outward normal to ∂Q at the point x, K ∈ C∞(∂Q) is a given real-
valued function (distribution of the heating elements on the boundary), and u(t)
satisfies the ordinary differential equation

au′(t) + u(t) = H(v̂)(t) (1.3)

with a ≥ 0. Thus, if a = 0 the heat flux through the boundary changes by jump,
whereas if a > 0, it changes continuously.

A similar mathematical model was originally proposed in [10, 11]. Generaliza-
tions to various phase-transition problems with hysteresis were studied in [6, 8, 15,
18, 5]. Some related issues of optimal control were considered in [4]. The most
important questions here concern the existence and uniqueness of solutions, the
existence of periodic solutions, and large-time behavior of solutions. The latter two
questions are especially difficult.

In the case of a one-dimensional domain Q (a finite interval, n = 1), the periodic-
ity was studied in [9, 26, 12]. Thermocontrol problems in multidimensional domains
(n ≥ 2) turn out to be much more complicated. Although one can relatively easily
prove the existence (and sometimes uniqueness) of solutions, the issue of finding
periodic solutions is still an open question. The main obstacle is the possible failure
of the transversality at a switching moment (cf. [3], where the same phenomenon oc-
curs for ordinary differential equations). This means that if the mean temperature
v̂(t) has the zero derivative at a switching moment, then the continuous dependence
of the solutions on the initial data may fail (see Fig. 3.2). As a result, most methods
based on fixed-point theorems do not apply to the corresponding Poincaré maps.

One possible way to overcome the nontransversality is to consider a continu-
ous model of the hysteresis operator. This was done in [13], where a thermocontrol
problem with the Preisach hysteresis operator in the boundary condition was consid-
ered and the existence of periodic solutions and global attractors were established.
Note that the periodicity and the large-time behavior of solutions were also studied
in [31, 16] in the situation where a continuous hysteresis operator enters a parabolic
equation itself (see also [30] and references therein).

The first results about periodic solutions of thermocontrol problems in multi-
dimensional domains with discontinuous hysteresis were obtained in [14]. It was
proved that if a solution with periodic mean temperature exists, then there exists a
(possibly another) solution periodic at each point, with the same mean temperature.
In the case of the Neumann boundary condition and the uniform distribution of the
thermal sensors (m(x) ≡ const), a solution with periodic mean temperature was
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found; thus, the existence of a periodic solution was proved. But it was unclear
how to find solutions with periodic mean temperature in the general situation of
the Dirichlet or Robin boundary conditions or when m(x) 6≡ const.

In the present work, we develop a new approach to the study of periodicity and
large-time behavior of solutions of thermocontrol problems with discontinuous hys-
teresis on the boundary. Our approach is based on regarding the problem as an
infinite-dimensional dynamical system. By using the Fourier method, we reduce
the boundary-value problem for the heat equation to infinitely many ordinary dif-
ferential equations, whose solutions are coupled with each other via the hysteresis
operator. To be definite, we consider only the Neumann boundary condition. We
also restrict ourself by studying the case a = 0, which means that the ordinary
differential equation (1.3) is absent and the boundary condition (1.2) reduces to

∂v

∂ν
= K(x)H(v̂)(t) (x ∈ ∂Q, t > 0).

However, the method developed can also be applied to the study of other types of
boundary conditions and to the case a > 0 where the heat equation (1.1) is coupled
with the ordinary differential equation (1.3). We note that the case m(x) ≡ const
(see [14]) appears to be a particular case in which our infinite-dimensional dynamical
system reduces to finite-dimensional, namely to one ordinary differential equation
if a = 0 and to two if a > 0.

Analysis of the dynamical system allows us to find sufficient conditions of exis-
tence and uniqueness of a periodic solution of the thermocontrol problem. Moreover,
we prove that it is a global attractor which attracts any solution exponentially fast.
One of the sufficient conditions requires that the difference between the temperature
thresholds β−α is not too small. Another sufficient condition requires instead that
the weight function m(x) is close to a constant in a certain sense.

The paper is organized as follows. In Sec. 2, we formulate the thermocontrol
problem, define the hysteresis operator, introduce mild and strong solutions, and
prove their existence and uniqueness. In this section, we also reduce the problem
to the infinite-dimensional dynamical system and establish its basic properties.

In Sec. 3, we find a sufficient condition (in terms of the difference between the
temperature thresholds β − α) for the existence of a periodic solution. To do so,
we introduce the Poincaré map P as follows. For any function ϕ = v(·, 0) from the
hyperspace ∫

Q

m(x)ϕ(x) dx = v̂(0) = α,

we show that there is the first switching moment t1 > 0 such that v̂(t1) = β and the
second switching moment t2 > t1 such that v̂(t2) = α again. We set P(ϕ) = v(·, t2)
(Fig. 3.1). We find a bounded convex region Bα,0 which is mapped by P into itself.
Then we show that the above-mentioned condition on the difference β − α (or on
m(x)) guarantees the transversality of the mean temperature v̂(t) at the switching
moment t1. This allows us to prove that the Poincaré map P is a compact continuous
(and even continuously Fréchet-differentiable) operator on Bα,0, and the periodic
solution exists by the Schauder fixed point theorem.

In Sec. 4, we consider a suitable projection Π of the Poincaré map P. Under
assumptions that are slightly stronger than those in Sec. 3, we show that Π is a
contraction mapping. This fact, combined with the contraction mapping principle,
allows us to prove that the periodic solution is unique, stable, and a global attractor.
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In Sec. 5, we show that the above results are also true for any α and β, but
provided that the weight function m(x) is close to a constant in a certain sense.

2. Setting of the problem. Existence and uniqueness of solution.

2.1. Setting of a thermocontrol problem. Let Q ⊂ Rn (n ≥ 1) be a bounded
domain with boundary ∂Q of class C∞, QT = Q × (0, T ), T > 0. Let v(x, t)
denote the temperature at the point x ∈ Q at the moment t ≥ 0 satisfying the heat
equation

vt(x, t) = ∆v(x, t) ((x, t) ∈ QT ) (2.1)

with the initial condition

v(x, 0) = ϕ(x) (x ∈ Q) (2.2)

and the boundary condition

∂v

∂ν
= K(x)H(v̂)(t) (x ∈ ∂Q, t ∈ (0, T )). (2.3)

Here ν is the outward normal to ∂Q×(0, T ) at the point (x, t) and K ∈ C∞(∂Q) is a
real-valued function1. For any function v(x, t), we denote by v̂ = v̂(t) the averaged
function (the “mean” temperature) given by

v̂(t) =

∫
Q

m(x)v(x, t) dx,

where m ∈ L2(Q) is a real-valued weight function determined by characteristics of
the thermal sensors; H is a hysteresis operator, which we now define.

We denote by BV (0, T ) the Banach space of real-valued functions having finite
total variation on the segment [0, T ] and by Cr[0, T ) the linear space of functions
which are continuous on the right in [0, T ). We fix the numbers α < β and introduce
the hysteresis operator (cf. [17, 29])

H : C[0, T ]→ BV (0, T ) ∩ Cr[0, T )

by the following rule. For any g ∈ C[0, T ], the function z = H(g) : [0, T ]→ {−1, 1}
is defined as follows. Let Xt = {t′ ∈ (0, t] : g(t′) = α or β}; then

z(0) =

{
1 if g(0) < β,

−1 if g(0) ≥ β

and for t ∈ (0, T ]

z(t) =


z(0) if Xt = ∅,
1 if Xt 6= ∅ and g(maxXt) = α,

−1 if Xt 6= ∅ and g(maxXt) = β

(see Fig. 2.1). We stress that, by this definition, H(g)(0) = 1 if g(0) ∈ (α, β). A
point τ such that H(g)(τ) 6= H(g)(τ − 0) is called a switching moment of H(g).

We assume throughout that the following condition holds.

1All the results of this paper are also true for K(x) from the Sobolev space H1/2(∂Q) defined
in Sec 2.2.
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Figure 2.1. The hysteresis operator H

Condition 2.1. The coefficient K(x) in the boundary condition (2.3) and the
weight function m(x) satisfy∫

∂Q

K(x) dΓ > 0,

∫
Q

m(x) dx > 0. (2.4)

The goal of this section is to establish the existence and uniqueness of solutions
of problem (2.1)–(2.3) (Sec. 2.3) and to discuss a proper framework for the study
of the large-time behavior of solutions (Sec. 2.4).

2.2. Reduction to infinite dynamical system and auxiliary results. First,
we formulate some auxiliary (well-known) results for the parabolic initial boundary-
value problem

vt(x, t) = ∆v(x, t) ((x, t) ∈ QT ), (2.5)

v(x, 0) = ϕ(x) (x ∈ Q), (2.6)

∂v

∂ν
= K(x) (x ∈ ∂Q, t ∈ (0, T )). (2.7)

Let L2 = L2(Q). Denote by Hk = Hk(Q) (k ∈ N) the Sobolev space with the
norm

‖ψ‖Hk =

∑
|α|≤k

∫
Q

|Dαψ(x)|2 dx

1/2

.

Let Hk−1/2 = Hk−1/2(∂Q) (k ∈ N) be the space of traces on ∂Q of the functions
from Hk.

For any Banach space B, denote by C([a, b];B) (a < b) the space of B-valued
functions continuous on the segment [a, b] with the norm

‖u‖C([a,b];B) = max
t∈[a,b]

‖u(t)‖B

and by L2((a, b);B) the space of L2-integrable B-valued functions with the norm

‖u‖L2((a,b);B) =

(∫ b

a

‖u(t)‖2B dt

)1/2

.

We introduce the anisotropic Sobolev space

H2,1(Q× (a, b)) = {v ∈ L2((a, b);H2) : vt ∈ L2((a, b);L2)}
with the norm

‖v‖H2,1(Q×(a,b)) =

(∫ b

a

‖v(·, t)‖2H2 dt+

∫ b

a

‖vt(·, t)‖2L2
dt

)1/2

.
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Taking into account the results of the interpolation theory (see, e.g., [20, Chap. 1,
Secs. 1–3, 9], we make the following remarks.

Remark 2.1. The continuous embedding H2,1(Q × (a, b)) ⊂ C([a, b], H1) takes
place. In particular, for any v ∈ H2,1(Q×(a, b)) and τ ∈ [a, b], the trace v|t=τ ∈ H1

is well defined and is a bounded operator from H2,1(Q× (a, b)) to H1.

Remark 2.2. Consider two functions v1 ∈ H2,1(Q×(a, b)) and v2 ∈ H2,1(Q×(b, c)),
where a < b < c. Let v(·, t) = v1(·, t) for t ∈ (a, b) and v(·, t) = v2(·, t) for t ∈ (b, c).
Then v ∈ H2,1(Q× (a, c)) if and only if v1|t=b = v2|t=b.

Let us introduce the notion of a mild solution. To do so, we reduce problem (2.5)–
(2.7) to a problem with the homogeneous boundary condition. Let vK ∈ H2 be the
solution of the boundary-value problem

∆vK(x) = f (x ∈ Q),
∂vK
∂ν

∣∣∣
∂Q

= K(x) (x ∈ ∂Q), (2.8)

where f =
1

mesQ

∫
∂Q

K(x) dΓ, such that∫
Q

vK(x) dx = 0.

(Note that f is a positive constant.) It is well known that such a solution exists, is
unique, and satisfies the estimate

‖vK‖H2 ≤ c‖K‖H1/2 , (2.9)

where c > 0 does not depend on K(x).
Then the function

w(x, t) = v(x, t)− vK(x)

must satisfy the relations

wt(x, t) = ∆w(x, t) + f ((x, t) ∈ QT ), (2.10)

w(x, 0) = ϕ(x)− vK(x) (x ∈ Q), (2.11)

∂w

∂ν
= 0 (x ∈ ∂Q, t ∈ (0, T )). (2.12)

We introduce the unbounded linear operator P : D(P ) ⊂ L2 → L2 given by

Pψ = ∆ψ, D(P ) =

{
ψ ∈ H2 :

∂ψ(x)

∂ν

∣∣∣
∂Q

= 0

}
. (2.13)

It is well known that the operator P is a generator of an analytic semigroup St :
L2 → L2, t ≥ 0.

Definition 2.1. A function v ∈ C([0, T ];L2) is called a mild solution of prob-
lem (2.5)–(2.7) in QT with the initial data ϕ ∈ L2 if v(x, t) = w(x, t) + vK(x),
where w ∈ C([0, T ];L2) is a mild solution of problem (2.10)–(2.12), i.e.,

w(·, t) = St(ϕ− vK) + ft.

It follows from this definition that the mild solution of problem (2.5)–(2.7) is
given by

v(·, t) = St(ϕ− vK) + ft+ vK . (2.14)

Definition 2.2. A function v(x, t) is called a (strong) solution of problem (2.5)–
(2.7) in QT if v ∈ H2,1(QT ) and v satisfies Eq. (2.5) a.e. in QT and conditions (2.6),
(2.7) in the sense of traces.
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In what follows, we omit the term “strong” whenever it leads to no confusion.
In the case of the heat equation, one can give a convenient representation of mild

and strong solutions in terms of the Fourier series.
Let {λj}∞j=0 and {ej(x)}∞j=0 denote the sequence of eigenvalues and the corre-

sponding system of real-valued eigenfunctions (infinitely differentiable in Q and
orthonormal in L2) of the spectral problem

−∆ej(x) = λjej(x) (x ∈ Q),
∂ej
∂ν

∣∣∣
∂Q

= 0. (2.15)

It is well known that 0 = λ0 < λ1 ≤ λ2 ≤ . . . ≤ λj ≤ . . . , e0(x) ≡ (mesQ)−1/2 >
0, and the system of eigenfunctions {ej}∞j=0 forms an orthonormal basis for L2.

Furthermore, the functions ej/
√
λj + 1 form an orthonormal basis for H1.

Remark 2.3. In what follows, we will use the well-known asymptotics for the
eigenvalues λj = Lj2/n + o(j2/n) as j →∞ (L > 0 and n is the dimension of Q).

Any function ψ ∈ L2 can be expanded into the Fourier series with respect to
ej(x), which converges in L2:

ψ(x) =

∞∑
j=0

ψjej(x), ‖ψ‖2L2
=

∞∑
j=0

|ψj |2, (2.16)

where ψj =
∫
Q
ψ(x)ej(x) dx. If ψ ∈ H1, then the first series in (2.16) converges to

ψ in H1 and

‖ψ‖2H1 =

∞∑
j=0

(1 + λj)|ψj |2.

If ψ ∈ H2 and
∂ψ

∂ν

∣∣∣
∂Q

= 0, then the first series in (2.16) converges to ψ in H2 and

‖ψ‖2H2 ≈
∞∑
j=0

(1 + λ2
j )|ψj |2,

where “≈” means the equivalence of the norms. The above number series is con-

vergent if and only if ψ ∈ H2 and
∂ψ

∂ν

∣∣∣
∂Q

= 0.

Furthermore, the semigroup St (t ≥ 0) and its derivative S′t (t > 0) are given by

Stψ =

∞∑
j=0

e−λjtψjej(x) (t ≥ 0), S′tψ = −
∞∑
j=0

λje
−λjtψjej(x) (t > 0),

(2.17)
where ψj =

∫
Q
ψ(x)ej(x) dx.

Denote for j=0,1,2,. . .

mj =

∫
Q

m(x)ej(x) dx, Kj =

∫
∂Q

K(x)ej(x) dx,

vKj =

∫
Q

vK(x)ej(x) dx, fj =

∫
Q

fej(x) dx, ϕj =

∫
Q

ϕ(x)ej(x) dx.

(2.18)
Note that vK0 = 0 and fj = 0 for j = 1, 2, . . . (by the definition of vK and f).

The following lemma establishes the connection between Kj , vKj , fj , and λj .
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Lemma 2.1. Let λj be the eigenvalues of problem (2.15). Then

1. the constants in (2.18) satisfy the relations

K0 = f0, Kj = λjvKj (j = 1, 2, . . . ), (2.19)

2. the following inequality holds:

∞∑
j=1

(
|Kj |2

λ2
j

+
|Kj |2

λj

)
≤ c2‖K‖2H1/2 ,

where c > 0 is the constant from (2.9).

Proof. 1. By using the definition of vK(x), ej(x), fj , vKj and the formula of inte-
gration by parts, we obtain

fj =

∫
Q

∆vK(x)ej(x) dx =

∫
∂Q

∂vK
∂ν

ej(x) dΓ−
∫
Q

∇vK(x)∇ej(x) dx

=

∫
∂Q

K(x)ej(x) dΓ +

∫
Q

vK(x)∆ej(x) = Kj − λjvKj ,

which yields (2.19) because λ0 = vK0 = 0 and fj = 0 for j = 1, 2, . . . .
2. Using (2.19), we have

∞∑
j=1

(
|Kj |2

λ2
j

+
|Kj |2

λj

)
=

∞∑
j=1

(1 + λj)|vKj |2 = ‖vK‖2H1 ≤ ‖vK‖2H2 ,

and part 2 of the lemma follows from (2.9).

The following two lemmas summarize the results about problem (2.5)–(2.7) which
we need further.

Lemma 2.2. Let ϕ ∈ L2. Then the following assertions hold.

1. The mild solution v(x, t) of problem (2.5)–(2.7) belongs to C∞((0, T ];H2) and
satisfies the inequality

‖v(·, T )‖H2 ≤ c1 (‖ϕ‖L2 + ‖K‖H1/2) , (2.20)

where c1 = c1(T ) > 0 does not depend on ϕ and is bounded on any segment
[T1, T2] (0 < T1 < T2).

2. The mild solution v(x, t) can be represented as the series

v(x, t) =

∞∑
j=0

vj(t)ej(x), t ≥ 0, (2.21)

where vj(t) =
∫
Q
v(x, t)ej(x) dx and vj(t) satisfy the Cauchy problem

v̇j(t) = −λjvj(t) +Kj , vj(0) = ϕj ( ˙ = d/dt, j = 0, 1, 2 . . . ), (2.22)

and the estimates

|vj(t)| ≤ max

(
|ϕj |,

|Kj |
λj

)
(t > 0, j = 1, 2, . . . ) (2.23)

hold. The series in (2.21) converges in L2 for t = 0 and in H1 for t > 0.
3. The mean temperature v̂(t) is represented by the absolutely convergent series

v̂(t) =

∞∑
j=0

mjvj(t), t ≥ 0. (2.24)
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Figure 2.2. The plane spanned by e0 = (1, 0, 0, . . . ) and m =

(m0,m1,m2, . . . );
dv̂(t)

dt
= 0 at the points A,B,C

4. The function v̂(t) is continuously differentiable for t > 0. For any R > 0,

there is a number t∗ = t∗(R) > 0 such that if

(
∞∑
j=1

|ϕj |2
)1/2

≤ R, then

m0K0

2
≤ dv̂(t)

dt
≤ 3m0K0

2
∀t ≥ t∗. (2.25)

Before we prove the lemma, let us give a geometrical interpretation of the dy-
namics of v(·, t) in L2 (or in H1, see Lemma 2.3 below). We choose the orthonormal
basis in L2 (and orthogonal in H1) consisting of the eigenfunctions e0, e1, e2, . . . .
Then, in the coordinate form, we have

e0 = (1, 0, 0, 0, . . . ), e1 = (0, 1, 0, 0, . . . ), e2 = (0, 0, 1, 0, . . . ), . . .

and (cf. (2.21))

ϕ = (ϕ0, ϕ1, ϕ2, . . . ), v(·, t) = (v0(t), v1(t), v2(t), . . . ).

Consider the plane going through the origin and spanned by the vector e0 =
(1, 0, 0, . . . ) and the vector m = (m0,m1,m2, . . . ) (if they are parallel, i.e., m1 =
m2 = · · · = 0, then we consider an arbitrary plane containing e0). We note that
the angle between the vectors m and e0 is acute (their scalar product is equal to

m0 > 0). Clearly, the orthogonal projection of the hyperspace ϕ̂ =
∞∑
j=0

mjϕj = α

(or β) on this plane is a line (see Fig. 2.2).
It follows from (2.24) that the trajectory of v(·, t) is orthogonal to the vector m

at the points where
dv̂(t)

dt
= 0. These are the points A, B, and C in Fig. 2.2.

Due to (2.22), v0(t) “goes” from the left to the right with the constant speed
K0 > 0, while vj(t) exponentially converge to Kj/λj (see Fig. 2.3).

Proof of Lemma 2.2. 1. The inclusion v ∈ C∞((0, T ];H2) and estimate (2.20) fol-
low from the general theory of analytic semigroups (see, e.g., [24, Chap. 4])

2. Formally, relations (2.22) can be obtained by multiplying (2.5) by ej(x),

integrating by parts over Q, and substituting v(x, t) =
∞∑
j=0

vj(t)ej(x). To give a
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Figure 2.3. The plane spanned by ei and ej , i 6= j, i, j ≥ 1

rigorous proof, we note that the representations (2.14) and (2.17) imply

v(x, t) =

∞∑
j=0

e−λjt(ϕj − vKj)ej(x) +

∫ t

0

∞∑
j=0

e−λjσfjej(x) dσ +

∞∑
j=0

vKjej(x)

=

∞∑
j=0

vj(t)ej(x),

where

vj(t) = e−λjt(ϕj − vKj) +

∫ t

0

e−λjσfj dσ + vKj .

One can easily verify that these functions satisfy the relations

v̇j(t) = −λjvj + (fj + λjvKj), vj(0) = ϕj .

To complete the proof of part 2, it remains to apply part 1 of Lemma 2.1.
3. Representation (2.24) follows from (2.21) and the definition of mj .
4. Using (2.24) and (2.22), we have for t ≥ 0

v̂(t) =

∞∑
j=0

mjvj(t) = m0(ϕ0 +K0t) +

∞∑
j=1

mj

((
ϕj −

Kj

λj

)
e−λjt +

Kj

λj

)
. (2.26)

Formally differentiating, we obtain

dv̂(t)

dt
= m0K0 +

∞∑
j=1

mj(Kj − λjϕj)e−λjt. (2.27)

Note that m0K0 > 0 due to Condition 2.1. Thus, it suffices to show that the series
in (2.27) is uniformly absolutely convergent for t ≥ δ for any δ > 0 and

∞∑
j=1

∣∣mj(Kj − λjϕj)e−λjt
∣∣ ≤ m0K0

2
for t ≥ t∗. (2.28)
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Taking into account Lemma 2.1, we have for t > 0
∞∑
j=1

∣∣mj(Kj − λjϕj)e−λjt
∣∣

≤


 ∞∑
j=1

|Kj |2

λ2
j

1/2

+

 ∞∑
j=1

|ϕj |2
1/2


 ∞∑
j=1

|mj |2λ2
je
−2λjt

1/2

≤ (c‖K‖H1/2 +R)

 ∞∑
j=1

|mj |2λ2
je
−2λjt

1/2

.

(2.29)

On the other hand,

λ2
je
−2λjt ≤ t−2e−λ1t · (λjt)2e−λjt ≤ 4(et)−2e−λ1t. (2.30)

It follows from (2.29) and (2.30) that

∞∑
j=1

∣∣mj(Kj − λjϕj)e−λjt
∣∣ ≤ k1t

−1e−λ1t/2,

where k1 = k1(R) > 0 does not depend on t. Therefore, v̂(t) is continuously
differentiable for t > 0 and one can find the desired t∗ = t∗(R).

Lemma 2.3. Let ϕ ∈ H1. Then the following assertions hold.

1. There exists a unique solution v ∈ H2,1(QT ) of problem (2.5)–(2.7). It satis-
fies the inequality

‖v‖H2,1(QT ) ≤ c1(‖ϕ‖H1 + ‖K‖H1/2), (2.31)

where c1 = c1(T ) > 0 does not depend on ϕ and is bounded on any segment
[T1, T2] (0 < T1 < T2).

2. For any 0 ≤ s < t ≤ T

|v̂(s)− v̂(t)| ≤ c1‖m‖L2
(‖ϕ‖H1 + ‖K‖H1/2)(t− s)1/2. (2.32)

Proof. 1. Theorem 5.3 in [21] implies that there is a unique solution w ∈ H2,1(QT )
of problem (2.10)–(2.12) and, hence, a unique solution v ∈ H2,1(QT ) of prob-
lem (2.5)–(2.7) and inequality (2.31) holds.

2. Applying the Schwartz inequality and using (2.31), we obtain for any 0 ≤ s <
t ≤ T

|v̂(t)− v̂(s)| =
∣∣∣∣∫
Q

m(x) dx

∫ t

s

vt(x, t) dt

∣∣∣∣ ≤ ‖m‖L2
‖vt‖L2(Q×(s,t))(t− s)1/2

≤ c1‖m‖L2
(‖ϕ‖H1 + ‖K‖H1/2)(t− s)1/2.

2.3. Solvability of the thermocontrol problem. We define mild and strong
solutions of problem (2.1)–(2.3) as follows.

First, we define a mild solution, assuming that ϕ̂ < β (if ϕ̂ ≥ β, the modifications
are obvious).

Definition 2.3. A function v ∈ C([0, T ];L2) is called a mild solution of prob-
lem (2.1)–(2.3) in QT with the initial data ϕ ∈ L2 (ϕ̂ < β) if
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1. H(v̂) has finitely many switching moments t1 < t2 < . . . < tJ on (0, T ) (or no
switchings),

2. v(x, t) = v(1)(x, t) for t ∈ (0, t1), where v(1)(x, t) is a mild solution of prob-
lem (2.5)–(2.7) in Qt1 with the initial data ϕ ∈ L2,

3. v(x, t) = v(i)(x, t−ti−1) for t ∈ (ti−1, ti), i = 2, . . . , J+1, where tJ+1 = T and
v(i)(x, t) is a mild solution of problem (2.5)–(2.7) in Qti−ti−1

with the initial

data v(i−1)(x, ti−1 − ti−2) (t0 = 0) and with K(x) replaced by (−1)i−1K(x).

Definition 2.4. A function v(x, t) is called a (strong) solution of problem (2.1)–
(2.3) in QT with the initial data ϕ ∈ H1 if v ∈ H2,1(QT ) and v satisfies Eq. (2.1)
a.e. in QT and conditions (2.2), (2.3) in the sense of traces.

Remark 2.4. Theorem 2.2 below implies that, for any (strong) solution v, the
function H(v̂) has finitely many switching moments. Thus, if one replaces the word
“mild” by “strong” and the space C([0, T ];L2) by H2,1(QT ) in Definition 2.3, then
one obtains a definition of a strong solution equivalent to Definition 2.4.

Now we study the existence and uniqueness of mild solutions of the thermocontrol
problem. To construct a mild (or strong, see Remark 2.4) solution, one should
consecutively solve problem (2.5)–(2.7) (with K(x) or −K(x)). It may however
happen that the differences ti − ti−1 between the consecutive switching moments
tend to zero as i → ∞ and one never obtains a solution on a given time interval
[0, T ].

The next theorem ensures the local existence of mild solutions of the thermocon-
trol problem.

Theorem 2.1. Let ϕ ∈ L2 and ‖ϕ‖L2
≤ R (R > 0 is arbitrary). Then the following

assertions hold.

1. There exists 0 < T ∗ ≤ ∞ such that, for any T < T ∗, there is a unique mild
solution v ∈ C([0, T ];L2) of problem (2.1)–(2.3) in QT .

2. If the set of the switching moments on the interval [0, T ] (T < T ∗) is not
empty, then the consecutive switching moments t1 < t2 < . . . of H(v̂) satisfy

ti − ti−1 ≤ t∗ +
2(β − α)

m0K0
, i = 1, 2, . . . , (2.33)

where t0 = 0 and t∗ = t∗(R) is defined in part 4 of Lemma 2.2. The number
t∗ depends on R but does not depend on ϕ, T, α, β.

Proof. 1. Without loss of generality, we assume that

ϕ̂ =

∫
Q

m(x)ϕ(x) dx = α.

By Lemma 2.2, there is a unique mild solution v(1) of problem (2.5)–(2.7) in QT
with the initial data ϕ.

Since v̂(1)(t) is continuous on [0, T ], either v̂(1)(t) < β for t < T or there is the

first switching moment of H(v̂(1)), i.e., a number t1 ∈ (0, T ) such that v̂(1)(t) < β

for t < t1 and v̂(1)(t1) = β.
In the first case, we obtain a unique mild solution of problem (2.1)–(2.3) in QT

by setting v = v(1).
Consider the second case. Let us estimate t1 − t0, where t0 = 0. Due to part 4

of Lemma 2.2, v̂(t) is continuously differentiable for t > 0 and dv̂(t)/dt ≥ m0K0/2
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for t ≥ t∗. Therefore,

t1 − t0 ≤ t∗ +
2(β − α)

m0K0
, (2.34)

where t0 = 0.
2. Now we consider problem (2.1)–(2.3) with H(v̂)(t) replaced by −1 and the

initial value v(1)(x, t1), i.e.,

v
(2)
t (x, t) = ∆v(2)(x, t) ((x, t) ∈ QT ), (2.35)

v(2)(x, 0) = v(1)(x, t1) (x ∈ Q), (2.36)

∂v(2)

∂ν
= −K(x) (x ∈ ∂Q, t ∈ (0, T )). (2.37)

Similarly to part 1 of the proof, we see that problem (2.35)–(2.37) has a unique
mild solution v(2) in QT .

As in part 1, v̂(2)(t) is continuous on [0, T ] and either v̂(2)(t) > α for t < T − t1
or there is a first switching moment of H(v̂(2)), i.e., a number τ2 ∈ (0, T − t1) such

that v̂(2)(t) > α for t < τ2 and v̂(2)(τ2) = α. We set t2 = t1 + τ2.
In the first case, we obtain a unique mild solution of problem (2.1)–(2.3) in QT

by setting v(x, t) = v(1)(x, t) for (x, t) ∈ Q× (0, t1) and v(x, t) = v(2)(x, t− t1) for
(x, t) ∈ Q× (t1, T ).

Consider the second case. Similarly to (2.34), we obtain

t2 − t1 ≤ t∗ +
2(β − α)

m0K0
. (2.38)

One can continue the above procedure and obtain a series of switching moments
t1, t2, . . . satisfying (2.33).

Setting

T ∗ =

∞∑
i=1

(ti − ti−1),

we complete the proof.

The next theorem shows that if the initial data ϕ belongs to H1, then the strong
solution of the thermocontrol problem exists globally.

Theorem 2.2. Let ϕ ∈ H1 and ‖ϕ‖H1 ≤ R (R > 0 is arbitrary). Then the
following holds for any T > 0.

1. There exists a unique solution v ∈ H2,1(QT ) of problem (2.1)–(2.3) in QT and

‖v‖H2,1(QT ) ≤ c2(‖ϕ‖H1 + ‖K‖H1/2), (2.39)

where c2 > 0 depends on T but does not depend on ϕ and R.
2. The interval (0, T ] contains no more than finitely many switching moments

t1 < t2 < . . . < tJ of H(v) and

ti − ti−1 ≥ τ∗, i =

{
1, 2, . . . , J if ϕ̂ ≤ α or ϕ̂ ≥ β,
2, 3, . . . , J if α < ϕ̂ < β,

(2.40)

where t0 = 0 and

τ∗ = const
(β − α)2

‖m‖2L2

(2.41)

with const > 0 depending on R rather than on m, α, β, ϕ, and T .
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Proof. 1. Without loss of generality, we assume that

ϕ̂ =

∫
Q

m(x)ϕ(x) dx = α

and modify problem (2.1)–(2.3) by replacing H(v̂)(t) by 1 in it, i.e., consider prob-
lem (2.5)–(2.7).

By Lemma 2.3, there is a unique solution v(1) ∈ H2,1(QT ) of problem (2.5)–(2.7)
and

‖v(1)‖H2,1(QT ) ≤ k1(‖ϕ‖H1 + ‖K‖H1/2), (2.42)

where k1 > 0 depends on T but does not depend on R and ϕ.

As in the proof of Theorem 2.1, either v̂(1)(t) < β for t < T or there is a first

switching moment of H(v̂(1)), i.e., a number t1 ∈ (0, T ) such that v̂(1)(t) < β for

t < t1 and v̂(1)(t1) = β.
In the first case, we obtain a solution by setting v = v(1).
Consider the second case. Inequalities (2.32) and (2.33) imply that

t1 − t0 ≥
(

β − α
k′1‖m‖L2

(‖ϕ‖H1 + ‖K‖H1/2)

)2

, (2.43)

where t0 = 0 and k′1 = c1(T1) > 0

(
T1 = t∗ +

2(β − α)

m0K0

)
depends on R but does

not depend on T and ϕ.
2. Now we consider problem (2.1)–(2.3) with H(v̂)(t) replaced by −1 and the

initial value v(1)(x, t1), i.e.,

v
(2)
t (x, t) = ∆v(1)(x, t) ((x, t) ∈ QT ), (2.44)

v(2)(x, 0) = v(1)(x, t1) (x ∈ Q), (2.45)

∂v(2)

∂ν
= −K(x) (x ∈ ∂Q, t ∈ (0, T )). (2.46)

Similarly to part 1 of the proof, we see that problem (2.44)–(2.46) has a unique
solution v(2) ∈ H2,1(QT ) and

‖v(2)‖H2,1(QT ) ≤ k1(‖v(1)(·, t1)‖H1 + ‖K‖H1/2) ≤ k2(‖ϕ‖H1 + ‖K‖H1/2), (2.47)

where k2, k3, . . . > 0 depend on T but do not depend on R and ϕ.

As in part 1, v̂(2)(t) is continuous on [0, T ] and either v̂(2)(t) > α for t < T − t1
or there is a first switching moment of H(v̂(2)), i.e., a number τ2 ∈ (0, T − t1) such

that v̂(2)(t) > α for t < τ2 and v̂(2)(τ2) = α. We set t2 = t1 + τ2.
In the first case, we obtain a solution by setting v(x, t) = v(1)(x, t) for (x, t) ∈

Q× (0, t1) and v(x, t) = v(2)(x, t− t1) for (x, t) ∈ Q× (t1, T ).
Consider the second case. Similarly to (2.43) we obtain

t2 − t1 = τ2 ≥
(

β − α
k′1‖m‖L2

(‖v(1)(·, t1)‖H1 + ‖K‖H1/2)

)2

. (2.48)

3. One can continue the above procedure and obtain a series of switching mo-
ments t1, t2, . . . (t1, τ2, τ3, . . . , respectively) and a series of the corresponding solu-
tions v(i)(·, t) on the intervals (0, τi) satisfying

‖v(i)‖H2,1(QT ) ≤ ki(‖ϕ‖H1 + ‖K‖H1/2), (2.49)
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ti − ti−1 = τi ≥
(

β − α
k′1‖m‖L2(‖v(i−1)(·, τi−1)‖H1 + ‖K‖H1/2)

)2

. (2.50)

To complete the proof, we have to show that the differences between the con-
secutive switching moments t1, t2, . . . are separated from zero, i.e. the norms
‖v(i)(·, τi)‖H1 are bounded uniformly with respect to ϕ and i.

Indeed, let v
(i)
j (t) be the Fourier coefficient of v(i)(·, t). Using (2.23), we have for

t ∈ [0, τi]

|v(i)
j (t)| ≤ max

(
|v(i)
j (0)|, |Kj |

λj

)
= max

(
|v(i−1)
j (τi−1)|, |Kj |

λj

)
≤ · · · ≤ max

(
|ϕj |,

|Kj |
λj

)
.

Together with Lemma 2.1, this yields

∞∑
j=1

(1 + λj)
∣∣∣v(i)
j (t)

∣∣∣2 ≤ R2 + c2‖K‖2H1/2 , (2.51)

where c > 0 does not depend on T and ϕ.

To estimate v
(i)
0 (τi), we note that τi is a switching moment, which means that

v̂(i)(τi) = α or β. Therefore, using (2.24), we see that

∞∑
j=0

mjv
(i)
j (τi) = α or β.

Hence,

|v(i)
0 (τi)|2 ≤ m−2

0

max(|α|, |β|) +

∞∑
j=1

|mj | ·
∣∣∣v(i)
j (τi)

∣∣∣
2

≤ 2m−2
0

max(α2, β2) + ‖m‖2L2

∞∑
j=1

∣∣∣v(i)
j (τi)

∣∣∣2
 ,

(2.52)

where m0 > 0 due to Condition 2.1.
Combining inequalities (2.51) and (2.52), we obtain

‖v(i)(·, ti)‖2H1 =

∞∑
j=0

(1 + λj)
∣∣∣v(i)
j (t)

∣∣∣2 ≤ k′′ (R2 + c2‖K‖2H1/2

)
+ 2m−2

0 max(α2, β2),

where k′′ > 0 does not depend on T , R and ϕ.

Definition 2.5. We say that v(x, t) (t ≥ 0) is a solution of problem (2.1)–(2.3)
in Q∞ if it is a solution in QT for all T > 0.

Theorem 2.2 implies the following result.

Corollary 2.1. For any ϕ ∈ H1, there is a unique solution of problem (2.1)–(2.3)
in Q∞.
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2.4. Attracting set. In this subsection, we make some remarks on the large-time
behavior of solutions of problem (2.1)–(2.3) and specify an attracting set, in which
periodic solutions may lie.

We begin with the following remark.

Remark 2.5. Relations (2.22) imply the following.

1. If Kj 6= 0 (j 6= 0), then there is a time moment θj = θj(ϕj) ≥ 0 such that

|vj(t)| <
|Kj |
λj

for t ≥ θj .

2. If Kj = 0 (j 6= 0), then vj(t)→ 0 exponentially as t→∞.

The above properties give rise to the consideration of the set

B0 =

{
ψ ∈ H1 : |ψj | ≤

|Kj |
λj

, j = 1, 2, . . .

}
(2.53)

Note that B0 is a closed set in H1 positively invariant for the solutions of prob-
lem (2.1)–(2.3) in Q∞. Denote by dist(ϕ,B0) the distance in H1 between the
element ϕ ∈ H1 and the set B0. It is easy to see that

dist2(ϕ,B0) =

∞∑
j=1

(1 + λj)dist2(ϕj , Sj), (2.54)

where Sj = [−|Kj |/λj , |Kj |/λj ] is the jth side of the “box” B0. If Kj = 0, we set
Sj = {0}.

The following theorem shows that the set B0 is a so-called B-attracting set, i.e.,
it uniformly attracts elements from bounded sets.

Theorem 2.3. Let R > 0, ‖ϕ‖H1 ≤ R, and v(x, t) be a solution of problem (2.1)–
(2.3) in Q∞. Then dist(v(·, t), B0) monotonically decreases and tends to zero as
t→∞, uniformly with respect to ϕ, ‖ϕ‖H1 ≤ R.

Proof. 1. Since dist(vj(t), Sj) monotonically decreases (and vanishes within finite
time if Sj 6= {0}), it follows from (2.54) that dist(v(·, t), B0) monotonically de-
creases.

2. Without loss of generality, we assume that ϕ̂ = α. Denote by ti the switching
moments of H(v̂). Consider the set of indices

D(i) =

{
j ∈ N : |vj(ti)| >

|Kj |
λj

}
.

Then, due to (2.54),

dist2(v(·, ti), B0) =
∑
j∈D(i)

(1 + λj)dist2(vj(ti), Si) ≤
∑
j∈D(i)

(1 + λj)|vj(ti)|2. (2.55)

Let us estimate vj(ti) for j ∈ D(i). Note that ti ≥ τ∗(i − 1) by (2.40), where
τ∗ > 0 does not depend on ϕ. Thus, if Kj = 0, then

|vj(ti)| = |ϕj |e−λjti ≤ |ϕj |e−λ1τ
∗(i−1). (2.56)

Consider the case Kj 6= 0.
Let vj(ti) > Kj/λj > 0 (the other cases are similar). Then

ϕj > vj(t1) > vj(t2) > · · · > vj(ti) > Kj/λj .



PARABOLIC PROBLEMS WITH HYSTERESIS 1057

Consider even i. Using part 2 of Lemma 2.2 and (2.40), we have

vj(ti) = e−λj(ti−ti−1)

(
vj(ti−1) +

Kj

λj

)
− Kj

λj
≤ e−λ1τ

∗
(
vj(ti−2) +

Kj

λj

)
− Kj

λj
.

Therefore, by induction,

vj(ti) +
Kj

λj
≤ e−λ1τ

∗i/2

(
ϕj +

Kj

λj

)
.

Thus,

0 < vj(ti) ≤ e−λ1τ
∗i/2

(
ϕj +

Kj

λj

)
. (2.57)

Combining (2.56) and (2.57) with estimate (2.55) and using Lemma 2.1 yields

dist2(v(·, ti), B0) ≤ e−2λ1τ
∗(i−1)

∑
j∈D(i),Kj=0

(1 + λj)|ϕj |2

+ 2e−λ1τ
∗i

∑
j∈D(i),Kj 6=0

(1 + λj)

(
|ϕj |2 +

∣∣∣∣Kj

λj

∣∣∣∣2
)
≤ k1e

−λ1τ
∗i,

where k1 = k1(R) > 0.
Therefore, dist(v(·, ti), B0)→ 0 as i→∞ uniformly with respect to ϕ, ‖ϕ‖H1 ≤

R. Taking into account the monotonicity of dist(v(·, t), B0) for all t ≥ 0, we complete
the proof.

3. Existence of periodic solution.

3.1. Preliminary considerations. In this section, we establish the existence of
periodic solutions of the thermocontrol problem.

Definition 3.1. A function v(x, t) is called a T -periodic solution of problem (2.1),
(2.3) if there is a function ϕ ∈ H1 such that

1. v is a solution of problem (2.1)–(2.3) in Q∞ with the initial data ϕ,
2. v(·, t) and H(v̂)(t) are T -periodic in t for t ≥ 0.

Due to the uniqueness part in Theorem 2.2, one can give the following equivalent
definition of a periodic solution.

Definition 3.2. A function v(x, t) is called a T -periodic solution of problem (2.1),
(2.3) if there is a function ϕ ∈ H1 such that the following holds:

1. v is a solution of problem (2.1)–(2.3) in QT with the initial data ϕ,
2. v(x, T ) = v(x, 0) (= ϕ(x)) and H(v̂)(T ) = H(v̂)(0).

Remark 3.1. Throughout the paper, we are dealing with periodic solutions of a
special form only. Namely, if a T -periodic solution v(x, t) satisfies v̂(θ) = v̂(θ+T ) =
α for some θ, then there is exactly one switching moment θ1 on the interval (θ, θ+T )
and v̂(θ1) = β.

Remark 3.2. Similarly, one can define a mild T -periodic solution of problem (2.1),
(2.3). However, Lemma 2.2 implies that ϕ = v(·, T ) ∈ H2. Therefore, by Theo-
rem 2.2, any mild periodic solution is a strong periodic solution.



1058 PAVEL GUREVICH

Figure 3.1. The operators Pα and P = PβPα on the planes
(e0,m) and (ei, ej), i 6= j

We consider nonlinear operators (see Fig. 3.1)

Pα : {ϕ ∈ H1 : ϕ̂ < β} → {ϕ ∈ H1 : ϕ̂ = β},
Pβ : {ϕ ∈ H1 : ϕ̂ > α} → {ϕ ∈ H1 : ϕ̂ = α}.

The operator Pα is defined as follows. Let ϕ ∈ H1 and ϕ̂ < β. Due to Lemma 2.3,
for any t1 > 0, there is a unique solution vα(x, t) of the problem

vt(x, t) = ∆v(x, t) ((x, t) ∈ Qt1), (3.1)

v(x, 0) = ϕ(x) (x ∈ Q), (3.2)

∂v

∂ν
= K(x) (x ∈ ∂Q, t ∈ (0, t1)). (3.3)

By Lemma 2.2 (part 4), there exists t1 > 0 such that v̂α(t) < β for t ∈ (0, t1) and

v̂α(t1) = β. We set Pα(ϕ) = v(·, t1).
The operator Pβ is defined in a similar way. Let ϕ ∈ H1 and ϕ̂ > α. Due to

Lemma 2.3, for any τ2 > 0, there is a unique solution vβ(x, t) of the problem

vt(x, t) = ∆v(x, t) ((x, t) ∈ Qτ2), (3.4)

v(x, 0) = ϕ(x) (x ∈ Q), (3.5)

∂v

∂ν
= −K(x) (x ∈ ∂Q, t ∈ (0, τ2)). (3.6)

By Lemma 2.2 (part 4), there exists τ2 > 0 such that v̂β(t) > α for t ∈ (0, τ2) and

v̂β(τ2) = α. We set Pβ(ϕ) = v(·, τ2).
Since the set B0 given by (2.53) is attracting in H1, it is natural to seek for

periodic solutions in this set. To prove that the periodic solution is attracting itself,
we will also need to study the behavior of trajectories in a neighborhood of B0. Let
Bε be the closed ε-neighborhood of B0 in the H1-topology:

Bε =
⋃
ϕ∈B0

{ψ ∈ H1 : ‖ψ − ϕ‖H1 ≤ ε}, 0 ≤ ε ≤ ε0, (3.7)

where 0 < ε0 ≤ 1 is specified in Remark 3.4 below.
Denote

Bα,ε = Bε ∩ {ϕ ∈ H1 : ϕ̂ = α}, Bβ,ε = Bε ∩ {ϕ ∈ H1 : ϕ̂ = β}.
We note that, once the components ϕ1, ϕ2, . . . of any element ϕ ∈ Bα,ε (Bβ,ε)
are fixed, the component ϕ0 is uniquely determined by the equality ϕ̂ = α (β),
cf. (2.24).
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Figure 3.2. Discontinuity of Pα if dv̂(t1)/dt = 0

We shall show that Bα,ε and Bβ,ε are closed bounded convex sets and the com-
position P(ϕ) = PβPα(ϕ) is a compact continuous operator on Bα,ε. Then the
Schauder fixed point theorem ensures the existence of a fixed point ϕ ∈ H1 of the
operator P. The corresponding periodic solution of period T = t1 + τ2 is then given
by v(x, t) = vα(x, t) for x ∈ Q, t ∈ (0, t1) and v(x, t) = vβ(x, t − t1) for x ∈ Q,
t ∈ (t1, T ).

The following results from the definition of Bα,ε and Bβ,ε and from Lemma 2.1
(part 2).

Lemma 3.1. The sets Bα,ε and Bβ,ε are closed bounded convex sets in H1.

Lemma 3.2. Pα(Bα,ε) ⊂ Bβ,ε and Pβ(Bβ,ε) ⊂ Bα,ε.

Proof. The result follows from the fact that dist(v(·, t), B0) monotonically decreases
(see Theorem 2.3).

Lemma 3.3. The operators Pα : Bα,ε → Bβ,ε and Pβ : Bβ,ε → Bα,ε are compact.

Proof. It follows from (2.33) and (2.40) that, for any ϕ ∈ Bα,ε ⊂ H1, the first
switching moment t1 satisfies

0 < τ∗ ≤ t1 ≤ t∗ +
2(β − α)

m0K0
,

where τ∗ and t∗ do not depend on ϕ from the bounded set Bα,ε. Now the com-
pactness of Pα is a consequence of part 1 of Lemma 2.2 and the compactness of the
embedding H2 ⊂ H1. The compactness of Pβ is proved in the similar way.

To apply the Schauder fixed point theorem, it remains to prove that the operator
Pα (Pβ) is continuous. The continuity may fail if, for some ϕ ∈ Bα,ε, we have
dv̂(t1)/dt = 0, where v(x, t) = vα(x, t) is the solution of problem (3.1)–(3.3) (see
Fig 3.2). We note that this difficulty is inherent not only in parabolic problems but
in systems of ordinary differential equations with hysteresis, too (see, e.g., [3]).

Lemma 2.2 ensures that the mean temperature v̂(t) is increasing for sufficiently
large t. We will show that the first switching occurs for such t, provided that β−α
is not too small and the trajectories originate from Bα,ε (and even from a wider
set). This will guarantee that dv̂(t1)/dt > 0.

Lemma 3.4. There is a number tmin > 0 which does not depend on ϕ, T, α, β such
that, for any ϕ ∈ H1, the solution v(x, t) = vα(x, t) (vβ(x, t)) of problem (3.1)–(3.3)
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((3.4)–(3.6)) satisfies

m0K0

2
≤ dv̂(t)

dt
≤ 3m0K0

2
, t ≥ tmin, (3.8)

provided that  ∞∑
j=1

(1 + λj)|ϕj |2
1/2

≤ 2c‖K‖H1/2 . (3.9)

Proof. The result follows from part 4 of Lemma 2.2 by setting tmin = t∗(R∗), where
R∗ = 2c‖K‖H1/2 .

Now we formulate a sufficient condition in terms of the difference of the “tem-
perature thresholds” β − α under which dv̂(t1)/dt 6= 0. The continuity of Pα will
follow from the implicit function theorem.

Set

C = 3cm̃‖K‖H1/2 , m̃ =

 ∞∑
j=1

|mj |2
1/2

, (3.10)

where c > 0 is the constant from Lemma 2.1. Note that m̃ ≡ 0 if and only if
m(x) ≡ const. Let tmin be the number from Lemma 3.4 (which does not depend on
ϕ, T, α, β).

Condition 3.1. β − α > m0K0tmin + C.

The following lemma plays a fundamental role in the proof of the continuity of
the operators Pα and Pβ .

Lemma 3.5. Let Condition 3.1 hold. Then there is δ > 0 such that, for any ϕ ∈ H1

satisfying ∞∑
j=1

(1 + λj)|ϕj |2
1/2

< 2c‖K‖H1/2 , |ϕ̂− α| < δ (|ϕ̂− β| < δ), (3.11)

the solution vα(x, t) (vβ(x, t)) of problem (3.1)–(3.3) ((3.4)–(3.6)) satisfies

m0K0

2
≤ dv̂α(t1)

dt
,
dv̂β(τ2)

dt
≤ 3m0K0

2
.

Proof. Using representation (2.24), the formula for the solutions of (2.22), and
Lemma 2.1, we have for t ≤ tmin and, e.g., v(x, t) = vα(x, t):

v̂(t) = v̂(0) +m0K0t+

∞∑
j=1

mj

(
ϕj −

Kj

λj

)(
e−λjt − 1

)

≤ α+ δ +m0K0tmin +

 ∞∑
j=1

|mjϕj |+
∞∑
j=1

∣∣∣∣mj
Kj

λj

∣∣∣∣


≤ α+ δ +m0K0tmin + C < β,

provided that δ > 0 is small enough. This implies that the switching moment t1 is
greater than tmin. Now the desired result follows from Lemma 3.4.
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Remark 3.3. In what follows, we will write (3.11)α or (3.11)β depending on
whether we mean the neighborhood for which |ϕ̂ − α| < δ or |ϕ̂ − β| < δ, re-
spectively.

Remark 3.4. Now we choose the number ε0 which bounds the numbers ε in the
definition of the set Bα,ε (Bβ,ε). First we fix δ > 0 from Lemma 3.5. Then we choose
ε0 = ε0(δ) > 0 so that Bα,ε (Bβ,ε) is contained in the open neighborhood (3.11)α
((3.11)β).

3.2. Existence of a periodic solution. In this subsection, we establish the exis-
tence of a periodic solution of the thermocontrol problem (2.1), (2.3).

Theorem 3.1. Let Condition 3.1 hold. Then there is a periodic solution of prob-
lem (2.1), (2.3).

Due to Lemmas 3.1, 3.2, and 3.3 and the Schauder fixed point theorem, it remains
to prove the continuity of the operator PβPα : Bα,ε → Bα,ε. To do so, we prove
the continuity (and even the Fréchet differentiability) of the operator

Pα : Bα,ε → Bβ,ε.

The arguments for Pβ are the same.
We introduce the linear continuous operator M : H1 → R given by

Mϕ = ϕ̂

(
=

∫
Q

m(x)ϕ(x) dx

)
.

We recall that S′t (t > 0) denotes the derivative of the analytic semigroup St : L2 →
L2 (see Sec. 2). It is well known that the linear operators St,S

′
t : L2 → D(P ) ⊂ H2

are bounded for any fixed t > 0, where P is given by (2.13). Therefore, they are
bounded as the operators acting from H1 into itself.

We consider the operator v : H1 × R→ H1 given by

v(ϕ, t) = St(ϕ− vK) + ft+ vK , t > 0. (3.12)

Clearly, the function v(·, t) = v(ϕ, t) coincides with the solution of the thermo-
control problem (2.1)–(2.3) with the initial data ϕ for t ≤ t1, where t1 is the first
switching moment of H(v̂).

We also consider the operator (functional) t1 : H1 → R given by

t1(ϕ) = the first switching moment of H(v̂)

and defined in the neighborhood (3.11)α (which does not intersect with the set
{ϕ̂ = β}).

Due to the continuity of v̂(t), we have t1(ϕ) > 0 for any ϕ from the above
neighborhood of Bα,ε.

Clearly,

Pα(ϕ) = v(ϕ, t1(ϕ)).

Since v(ϕ, t) is continuous with respect to (ϕ, t), the operator Pα(ϕ) is also continu-
ous, provided that t1(ϕ) is continuous. Thus, we will prove that t1(ϕ) is continuous
(and even continuously Fréchet-differentiable).

Lemma 3.6. Let Condition 3.1 be satisfied. Then the following assertions hold for
ϕ from the neighborhood (3.11)α.

1. The operator v(ϕ, t) is continuously differentiable with respect to ϕ, t, and
(ϕ, t), where t > 0. Moreover,
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(a) Dϕv(ϕ, t) : H1 → H1 is given by

Dϕv(ϕ, t)ψ = Stψ ∀ψ ∈ H1, t > 0, (3.13)

(b) Dtv(ϕ, t) : R→ H1 is given by

Dtv(ϕ, t)θ = (S′t(ϕ− vK) + f)θ ∀θ ∈ R, t > 0, (3.14)

(c) Dv(ϕ, t) : H1 × R→ H1 is given by

Dv(ϕ, t)(ψ, θ) = Dϕv(ϕ, t)ψ +Dtv(ϕ, t)θ ∀(ψ, θ) ∈ H1 × R, t > 0. (3.15)

2. The operator t1(ϕ) is continuously differentiable in the neighborhood (3.11)α.
The linear bounded operator Dϕt1(ϕ) : H1 → R is given by

Dϕt1(ϕ)ψ = −
(
dv̂(t1)

dt

)−1

MSt1ψ ∀ψ ∈ H1. (3.16)

Here v(x, t) = vα(x, t) is a solution of problem (3.1)–(3.3) with the initial data
ϕ and t1 = t1(ϕ) is the first switching moment of H(v̂).

Proof. Part 1 follows from (3.12) and the fact that St,S
′
t : H1 → H1 are bounded

for t > 0.
Let us prove part 2. Clearly, t1(ϕ) is the least (positive) solution of the equation

v̂(ϕ, t1) := Mv(ϕ, t1) = β,

which exists for any ϕ ∈ H1 (and even from L2) by Lemma 2.2.
Since M is a linear continuous operator, it follows that v̂ = Mv : H1 × R → R

is also continuously differentiable with respect to ϕ, t, and (ϕ, t). Moreover, us-
ing (3.14), the Fourier representation of the semigroup (2.17) and of the solu-
tion (2.21), we see that Dtv̂(ϕ, t) : R→ R is given by

Dtv̂(ϕ, t)θ = M(S′t(ϕ− vK) + f)θ =
dv̂(t)

dt
θ ∀θ ∈ R, t > 0. (3.17)

Now Lemma 3.5 and Remark 3.4 imply that there is a bounded inverse operator

[Dtv̂(ϕ, t)]−1 =

(
dv̂(t)

dt

)−1

continuous in a neighborhood of any (ϕ, t1(ϕ)), ϕ in

the neighborhood (3.11)α.
By the implicit function theorem, t1(ϕ) is continuously differentiable and the

derivative Dϕt1(ϕ) : H1 → R is given by (see (3.13) and (3.17))

Dϕt1(ϕ)ψ = −(Dtv̂(ϕ, t1))−1Dϕv̂(ϕ, t1)ψ = −
(
dv̂(t1)

dt

)−1

MSt1ψ ∀ψ ∈ H1.

Corollary 3.1. Let Condition 3.1 hold. Then the operator t1 : H1 → R is uni-
formly Lipschitz continuous on Bα,ε.

Proof. Formula (3.16), Remark 3.4, and estimates (2.33) and (2.40) imply that, for
any ϕ,ψ ∈ Bα,ε,

|t1(ϕ)− t1(ψ)| ≤ sup
ξ∈Bα,ε

‖Dξt1(ξ)‖ · ‖ϕ−ψ‖H1 ≤ 2

m0K0
‖M‖ sup

τ
‖Sτ‖ · ‖ϕ−ψ‖H1 ,

where the last supremum is taken over τ ∈
[
τ∗, tmin +

2(β − α)

m0K0

]
. The latter fact

ensures that sup
τ
‖Sτ‖ <∞, and the corollary is proved.



PARABOLIC PROBLEMS WITH HYSTERESIS 1063

Lemma 3.7. Let Condition 3.1 hold. Then the operator Pα(ϕ) is continuously
differentiable in the neighborhood (3.11)α of Bα,ε. The linear bounded operator
DϕPα(ϕ) : H1 → H1 is given by

DϕPα(ϕ) = St1 −
(
dv̂(t1)

dt

)−1

·
(
S′t1(ϕ− vK) + f

)
·MSt1 , (3.18)

where v(x, t) = vα(x, t) is the solution of problem (3.1)–(3.3) with the initial data
ϕ and t1 = t1(ϕ) is the first switching moment of H(v̂).

Proof. As we have mentioned before, Pα(ϕ) = v(ϕ, t1(ϕ)). Therefore, using the
chain rule and Lemma 3.6, we obtain

DϕPα(ϕ) = Dϕv(ϕ, t1) +Dtv(ϕ, t1)Dϕt1(ϕ)

= St1 −
(
dv̂(t1)

dt

)−1

·
(
S′t1(ϕ− vK) + f

)
·MSt1 .

Now we can prove Theorem 3.1.
Proof of Theorem 3.1 follows from Lemmas 3.1, 3.2, 3.3, 3.7, and the Schauder fixed
point theorem.

Note that if ẑ(0) = α, then z(·, 0) ∈ Bα,0. To conclude this subsection, we prove
the following “symmetry” result (see Figures 3.3 and 3.4).

Theorem 3.2. Let v(x, t) be a T -periodic solution of problem (2.1), (2.3), and let
v(·, 0) = ϕα ∈ Bα,0, t1 be the first switching moment of H(v̂), and v(·, t1) = ϕβ

(∈ Bβ,0). Then

1. the solution z(x, t) of problem (2.1)–(2.3) with the initial data z(·, 0) = ψα

(∈ Bα,0) given by

ψαj = −ϕβj (j = 1, 2, . . . ), ψα0 =
α+ β

m0
− ϕβ0

is a T -periodic solution of problem (2.1), (2.3) with the first switching moment
of H(ẑ) equal to T − t1;

2. z(x, t) =
α+ β

m0
e0 − v(x, t+ t1);

3. if ϕαj = −ϕβj for at least one j ≥ 1 with Kj 6= 0, then t1 = T/2; if t1 = T/2,

then z(x, t) ≡ v(x, t) and ϕαj = −ϕβj for all j = 1, 2, . . . .

Proof. 1. First of all, we note that ψα indeed belongs to Bα,0 because

∞∑
j=0

mjψ
α
j = α+ β − ϕβ0m0 −

∞∑
j=1

mjϕ
β
j = α+ β − β = α.

Let t2 = T − t1. We show that z(·, t2) ∈ Bβ,0. Using Lemma 2.2, part 2, we have
for j = 1, 2

zj(t2) =

(
ψαj −

Kj

λj

)
e−λjt2 +

Kj

λj
= −

[(
ϕβj +

Kj

λj

)
e−λjt2 − Kj

λj

]
= −ϕαj , (3.19)

z0(t2) = ψα0 +K0t2 =
α+ β

m0
− ϕβ0 +K0t2 =

α+ β

m0
− ϕα0 . (3.20)
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Figure 3.3. Periodic solutions v(x, t) and z(x, t) =
α+ β

m0
e0 −

v(x, t+ t1) (parts 1 and 2 in Theorem 3.2)

Figure 3.4. Periodic solution v(x, t) = z(x, t), t1 = t2 = T/2
(part 3 in Theorem 3.2)

Therefore,
∞∑
j=0

mjzj(t2) = β,

which proves that z(·, t2) ∈ Bβ,0, i.e., the first switching moment of H(ẑ) is equal
to t2 = T − t1.

Similarly to (3.19) and (3.20), one can check that the second switching moment
of H(ẑ) is equal to t2 + t1 = T and

zj(T ) = −ϕβj = ψαj (j = 1, 2, . . . ), z0(T ) =
α+ β

m0
− ϕβ0 = ψα0 ,

which implies the first part of the theorem.

2. One can easily see that
α+ β

m0
e0 − v(x, t1) =

α+ β

m0
e0 − ϕβ(x) = ψα(x). On

the other hand, z(x, t) is a solution of problem (2.1)–(2.3) with the initial data
z(x, 0) = ψα(x). Therefore, part 2 of the theorem follows from the uniqueness part
in Theorem 2.2.

3. The third part of the theorem follows from the relations (see part 2 of
Lemma 2.2)

ϕβj = vj(t1) =

(
ϕαj −

Kj

λj

)
e−λjt1 +

Kj

λj
,

ϕαj = vj(t1 + t2) =

(
ϕβj +

Kj

λj

)
e−λjt2 − Kj

λj
,
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where j = 1, 2, . . . , which yield ϕαj = −ϕβj = ψαj (j = 1, 2, . . . ) if and only if

t1 = t2 ( 6= 0). In particular, if t1 = t2, then ϕα = ψα and, hence, z(x, t) ≡ v(x, t)
by the uniqueness part in Theorem 2.2.

4. Global and phase-shifted attraction to periodic solution. Under a con-
dition that is slightly stronger than Condition 3.1, we prove that there is a unique
periodic solution of problem (2.1), (2.3). To do so, we show that the Poincaré map
is a contraction on the corresponding set. Then we show that any other solution is
attracted to z(x, t− δ) with some δ (depending on the solution) exponentially fast.

Our plan is as follows.

1. We consider the set Bα,ε as the Poincaré cross-section at the point z(·, 0).
Then we define the spaceW by the equality H1 = Span(e0)⊕W and show that
Bα,ε is represented as the graph of an operator-valued function ϕ = Rα(Φ)
for Φ in a subset of W, where Rα is an affine function (see Fig. 4.1).

2. We consider the projection Bε of the sets Bα,ε and Bβ,ε onto W and the
corresponding projection Π of the Poincaré map P. We prove that Π is a
contraction map on Bε ⊂ W. This will imply the uniqueness of a periodic
solution z(x, t).

3. We show that z(x, t) is a global B-attractor.

4.1. Poincaré cross-section. We consider the orthogonal complement W to e0

in H1 and the orthogonal projector

E : H1 →W

onto W given by Eϕ = Φ, where

ϕ(x) =

∞∑
j=0

ϕjej(x), Φ(x) =

∞∑
j=1

ϕjej(x).

We also introduce the lifting operator

Rα :W → H1

given by

Rα(Φ) =
1

m0

α− ∞∑
j=1

mjΦj

 e0 +

∞∑
j=1

Φjej .

Thus, RαE(ϕ) = ϕ for ϕ ∈ H1, ϕ̂ = α, and ERα(Φ) = Φ for Φ ∈ W (see Fig. 4.1).
Consider the set

Bε = E(Bα,ε) = E(Bβ,ε).

Thus, Bε is the closed ε-neighborhood of the set

B0 = E(B0) =

{
Φ ∈ W : |Φj | ≤

|Kj |
λj

, j = 1, 2, . . .

}
in the W-topology (see Fig. 4.2).

Clearly, Bα,ε = Rα(Bε).
Denote by Πα :W →W the “projection” of Pα onto W given by

Πα(Φ) = EPαRα(Φ).

Due to Theorem 2.3, Πα(Bε) ⊂ Bε. Similarly, one can define the operators Rβ

and Πβ .



1066 PAVEL GUREVICH

Figure 4.1. The projection operator E and the lifting operators
Rα and Rβ

Figure 4.2. The operators Πα and Π = ΠβΠα in the space W = Span(e1, e2, . . . )

The operators E, Rα, and Rβ are continuously (and even infinitely) differen-
tiable. Therefore, the operators Πα and Πβ are also continuously differentiable,
provided so are Pα and Pβ .

4.2. Projection of the Poincaré map. We introduce the operator Π :W →W
by the formula

Π(Φ) = EPRα(Φ).

The following property of Π is straightforward (see Fig. 4.2).

Lemma 4.1. Π = ΠβΠα.

Now we will prove that ‖DΦΠ(Φ)‖ ≤ 1/4 for Φ ∈ Bε, provided that β − α is
not too small. (Here and further the norm of DΦΠ(Φ) is the norm of the operator
on W.)

First, we calculate the derivative DΦΠα(Φ) : W → W. It follows from the
definitions of the operators E, Rα, and Πα and from the chain rule that

DΦΠα(Φ)Ψ = E[DϕPα(Rα(Φ))]ψ, (4.1)

where

ψ = −MΨ

m0
e0 +

∞∑
j=1

Ψjej = − 1

m0

 ∞∑
j=1

mjΨj

 e0 +

∞∑
j=1

Ψjej ∀Ψ ∈ W. (4.2)
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Now we assume that Condition 3.1 holds (we will somewhat strengthen it below).
Denote by v(x, t) = vα(x, t) the solution of problem (3.1)–(3.3) with the initial data
v(·, 0) = Rα(Φ) and by t1 the first switching moment of H(v̂). Then using (4.1),
Lemma 3.7, and the relation Ef = 0 for f = const yields

DΦΠα(Φ)Ψ = ESt1ψ −
(
dv̂(t1)

dt

)−1

ES′t1(Rα(Φ)− vK)MSt1ψ. (4.3)

We rewrite (4.3) in terms of the Fourier series.

Lemma 4.2. Let Condition 3.1 hold. Then the derivative of Πα :W →W is given
by

DΦΠα(Φ)Ψ =

∞∑
j=1

e−λjt1Ψjej(x)

+

(
dv̂(t1)

dt

)−1
 ∞∑
j=1

mjΨj

(
e−λjt1 − 1

) ∞∑
j=1

λje
−λjt1

(
Φj −

Kj

λj

)
ej(x)

(4.4)

for any Φ ∈ Bε and Ψ ∈ W, where Φj and Ψj (j = 1, 2, . . . ) are the Fourier
coefficients of Φ and Ψ, respectively.

Proof. Using the representation in (2.17), we rewrite the terms

ESt1ψ, ES′t1(Rα(Φ)− vK), MSt1ψ.

We have

ESt1ψ =

∞∑
j=1

e−λjt1Ψjej(x). (4.5)

Further, since vKj = Kj/λj for j = 1, 2, . . . (see Lemma 2.1), we obtain

ES′t1(Rα(Φ)− vK) = −
∞∑
j=1

λje
−λjt1

(
Φj −

Kj

λj

)
ej(x). (4.6)

Finally, taking into account (4.2), we have

MSt1ψ = m0ψ0 +

∞∑
j=1

mje
−λjt1ψj =

∞∑
j=1

mjΨj

(
e−λjt1 − 1

)
. (4.7)

Combining (4.3) with (4.5)–(4.7) completes the proof.

Now we can prove the following result.

Lemma 4.3. There is smin ≥ tmin such that if

β − α > m0K0smin + C, (4.8)

then ‖DΦΠα(Φ)‖ ≤ 1/2 for all Φ ∈ Bε. Here tmin and C are the same as in
Condition 3.1.

Proof. Let v(x, t) and t1 be the same as in Lemma 4.2.
By assumption, Condition 3.1 holds. Therefore, as in the proof of Lemma 3.5,

we have

t1 ≥ tmin (> 0),

where tmin does not depend on Φ, T, α, β. Using this inequality, we estimate each
term in (4.4).
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First, we have ∥∥∥∥∥∥
∞∑
j=1

e−λjt1Ψjej

∥∥∥∥∥∥
W

≤ e−λ1t1‖Ψ‖W . (4.9)

Due to Lemma 3.4, ∣∣∣∣∣
(
dv̂(t1)

dt

)−1
∣∣∣∣∣ ≤ 2

m0K0
. (4.10)

By the Schwartz inequality,∣∣∣∣∣∣
∞∑
j=1

mjΨj

(
e−λjt1 − 1

)∣∣∣∣∣∣ ≤ m̃‖Ψ‖W (4.11)

(recall that m̃ is defined in (3.10)).
Finally, using Lemma 2.1 and the inequality (cf. (2.30))

λ2
je
−2λjt ≤ 4(et1)−2e−λ1t1 , (4.12)

we obtain for Φ ∈ Bε and t1 > tmin∥∥∥∥∥∥
∞∑
j=1

λje
−λjt1

(
Φj −

Kj

λj

)
ej

∥∥∥∥∥∥
W

=

2

∞∑
j=1

(1 + λj)λ
2
je
−2λjt1

(
|Φj |2 +

∣∣∣∣Kj

λj

∣∣∣∣2
)1/2

≤ k1e
−λ1t1/2,

(4.13)

where

k1 =
2
√

10c‖K‖H1/2

etmin
.

Combining Lemma 4.2 and inequalities (4.9)–(4.13), we derive the estimate

‖DΦΠα(Φ)‖ ≤
(

1 +
2k1m̃

m0K0

)
e−λ1t1/2. (4.14)

As in the proof of Lemma 3.5, we see that if condition (4.8) holds, then

t1 > smin.

Therefore, (4.14) yields the desired result, provided that smin ≥ tmin is sufficiently
large.

Thus, the sufficient conditions under which ‖DΦΠα(Φ)‖ ≤ 1/2 is as follows (cf.
Condition 3.1).

Condition 4.1. β − α > m0K0smin + C, where smin is defined in Lemma 4.3 and
C is the same as in Condition 3.1.

Lemma 4.4. Let Condition 4.1 hold. Then there is a unique fixed point ψ ∈ Bα,0
of the operator P : Bα,ε → Bα,ε and, for any ϕ ∈ Bα,ε,

‖Pk(ϕ)− ψ‖H1 ≤ const 4−k ‖ϕ− ψ‖H1 , k = 1, 2, . . . ,

where const > 0 does not depend on ϕ, ψ, and k.
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Proof. Using Lemmas 4.1 and 4.3 and the chain rule, we see that ‖DΦΠ(Φ)‖ ≤ 1/4
for all Φ ∈ Bε. Therefore, for any Φ,Ψ ∈ Bε and σ ∈ [0, 1], we have Φ+σ(Ψ−Φ) ∈ Bε
and

‖Π(Φ)−Π(Ψ)‖W =

∥∥∥∥∫ 1

0

Dσ[Π(Φ + σ(Ψ− Φ))] dσ

∥∥∥∥
W

=

∥∥∥∥∫ 1

0

DΠ(Φ + σ(Ψ− Φ))(Ψ− Φ) dσ

∥∥∥∥
W
≤ 4−1‖Ψ− Φ‖W ,

where DΠ(Φ +σ(Ψ−Φ)) is the derivative of the operator Π calculated at the point
(Φ + σ(Ψ − Φ)). Therefore, Π : Bε → Bε is a contraction map for all 0 ≤ ε ≤ ε0.
Since B0 ⊂ Bε, it follows that the unique fixed point of Π belongs to B0. This fact
and the formula Pk(ϕ) = (RαΠkE)(ϕ) for ϕ ∈ Bα,ε imply the conclusion of the
lemma.

Lemma 4.4 and Theorems 2.3 and 3.2 imply the first main result of this section.

Theorem 4.1. Let Condition 4.1 hold. Then there exists a unique periodic solution
z(x, t) of problem (2.1), (2.3) (up to time translations). If z(·, 0) ∈ Bα,0, then the
period T of z(x, t) satisfies T = 2s1, where s1 is the first switching moment of H(ẑ).

Remark 4.1. Lemma 4.4 and Theorem 2.3 also imply that if z(x, t) is a periodic
solution with the initial data ψ = z(·, 0) ∈ Bα,0 and v(x, t) another solution with
v̂(t2), v̂(t4), v̂(t6), . . . = α (t2 < t4 < t6 < . . . ), then the distances

‖v(·, t2i)− ψ‖H1

tend to zero monotonically decreasing as i→∞.

In the next subsection, we prove that the periodic solution itself is a global B-
attractor.

4.3. Global B-attractor and phase-shifted attraction. Throughout this sub-
section, we assume that Condition 4.1 holds and that z(x, t) is a (unique) T -periodic
solution of problem (2.1), (2.3). Denote z(x, 0) = ψ(x). Since z(·, t) ∈ Bα,0 for
some t ∈ [0, T ], we assume without loss of generality that this holds for t = 0, i.e.,
ψ ∈ Bα,0.

Definition 4.1. We say that a T -periodic solution z(x, t) of problem (2.1), (2.3)
is a global B-attractor if the set Γ = {z(·, s) ∈ H1 : s ∈ [0, T ]} is a global B-
attractor, i.e., if, for any R > 0 and ϕ ∈ H1, ‖ϕ‖H1 ≤ R, the solution v(x, t) of
problem (2.1)–(2.3) in Q∞ with the initial data ϕ satisfies

dist(v(·, t),Γ) = min
s∈[0,T ]

‖v(·, t)− z(·, s)‖H1 → 0 as t→∞, (4.15)

where the convergence to zero is uniform with respect to ϕ, ‖ϕ‖H1 ≤ R.

We shall prove that z(x, t) is a global B-attractor.
Let v(x, t) be an arbitrary solution of problem (2.1)–(2.3) in Q∞ with the initial

data v(x, 0) = ϕ(x). We assume throughout that ‖ϕ‖H1 ≤ R.
First, we note the following.

Remark 4.2. 1. If ϕ ∈ Bε, then, by Theorem 2.3, v(·, t) ∈ Bε for all t ≥ 0.
2. Estimate (2.33) and Theorem 2.3 imply that, for any R > 0, there is θ∗ =
θ∗(R) > 0 with the following property. For any ϕ, ‖ϕ‖H1 ≤ R, there exists a
time moment θ ≤ θ∗ such that v(·, θ) ∈ Bα,ε.
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Due to Theorem 4.1, s1 = T/2, s2 = 2s1 = T, s3 = 3s1 = 3T/2, s4 = 4s1 =
2T, . . . are the switching moments of H(ẑ). Denote by t1, t2, t3, . . . the switching
moments of H(v̂) and by τ1 = t1, τ2 = t2 − t1, τ3 = t3 − t2, . . . the corresponding
differences between the switching moments.

First, we show that these differences converge to s1.

Lemma 4.5. Let Condition 4.1 hold. Then

|τi+1 − s1| ≤ k2−i, (4.16)

where k = k(R) > 0 does not depend on ϕ.

Proof. We prove the lemma for even i. The case of odd i is similar.
1. First, we assume that ϕ ∈ Bα,ε. By using Corollary 3.1 and Lemma 4.4, we

have

|τi+1 − s1| = |t1(Pi/2(ϕ))− t1(ψ)| ≤ k1‖Pi/2(ϕ)− ψ‖H1 ≤ k22−i,

where k1, k2 > 0 depend on Bα,ε but do not depend on ϕ and ψ.
2. Now we consider an arbitrary ϕ with ‖ϕ‖H1 ≤ R and the solution v(x, t) on the

interval [0, θ] (cf. Remark 4.2, part 2). Estimates (2.33) and (2.40) imply that the
differences τi+1 and the number of switchings of H(v̂) on the interval [0, θ] ⊂ [0, θ∗]
are bounded by a constant depending only on R. This fact combined with part 1
of the proof completes the argument.

We will also need to estimate the solution v(x, t) on the time intervals between
the corresponding switchings of H(v̂) and H(ẑ). By Lemma 4.5, these intervals are
small for large t.

Lemma 4.6. 1. Let v(x, t) be a solution of problem (2.1)–(2.3) in Q∞ with ini-
tial data ϕ ∈ Bα,ε, and let ti and τi be the same as above. Then v(·, t) is
Lipschitz-continuous in a left neighborhood of ti uniformly with respect to i
and ϕ, i.e.,

‖v(·, t)− v(·, s)‖H1 ≤ k1|t− s| for t, s ∈ [θi, ti+1], i = 0, 1, 2, . . . , (4.17)

where θi = ti + τi+1/2 and k1 > 0 does not depend on t, s, i, and ϕ.
2. Let z(x, t) be a T -periodic solution of problem (2.1), (2.3). Then z(·, t) is

uniformly Lipschitz-continuous for t ∈ [0, T ], i.e.,

‖z(·, t)− z(·, s)‖H1 ≤ k2|t− s| for t, s ∈ [0, T ], (4.18)

where k2 > 0 does not depend on t and s.

Proof. 1. We prove the first part of the lemma for even i. The case of odd i is
similar. Let t, s ∈ [θi, ti+1] and t > s. Then, using Lemma 2.2 (part 2), we have

v(x, t)− v(x, s) =

∞∑
j=0

(vj(t)− vj(s))ej(x)

= K0e0(t− s) +

∞∑
j=1

(
(Pi/2(ϕ))j −

Kj

λj

)
e−λj(s−ti)

(
e−λj(t−s) − 1

)
ej(x),

where the series converge in H1. Therefore, taking into account that s − ti ≥
τi+1/2 ≥ τ∗/2 (τ∗ does not depend on ϕ from the bounded set Bα,ε, see (2.40)), we
have

‖v(·, t)− v(·, s)‖2H1 ≤ K2
0 (t− s)2 + 2F (t− s), (4.19)
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where

F (t− s) =

∞∑
j=1

(1 + λj)

(∣∣∣(Pi/2(ϕ))j

∣∣∣2 +

∣∣∣∣Kj

λj

∣∣∣∣2
)
e−λjτ

∗
(
e−λj(t−s) − 1

)2

.

Taking into account the fact that Pi/2(ϕ) lies in the bounded setBα,ε, Lemma 2.1,
and the asymptotics of λj (Remark 2.3), we see that F (a) is infinitely differentiable
for a ≥ 0 and F (0) = F ′(0) = 0. Therefore,

F (a) ≤ 1

2
max

σ∈[0,τi+1/2]
|F ′′(σ)|a2 ≤ k̃a2,

where k̃ > 0 does not depend on i (because τi are uniformly bounded with respect
to i) and ϕ. Combining the estimate of F (a) with (4.19), we obtain (4.17).

2. Let z(x, t) be a periodic solution and z(·, 0) ∈ Bα,0 (⊂ H1). By using the
representations (2.14) and (2.17), one can see that z(·, t) is a continuously dif-
ferentiable H1-valued function on [T, T + s1] and on [T + s1, 2T ]. Therefore, it
is uniformly Lipschitz-continuous on [T, 2T ]. By periodicity, it is also uniformly
Lipschitz-continuous on [0, T ].

Now, using the above two lemmas, we can prove the first result of this section
concerning a global B-attractor and the phase-shifted attraction.

Theorem 4.2. Let Condition 4.1 hold. Then the (unique) T -periodic solution
z(x, t) of problem (2.1), (2.3) is a global B-attractor.

Moreover, any solution v(x, t) of problem (2.1)–(2.3) in Q∞ with initial data
ϕ ∈ H1, ‖ϕ‖H1 ≤ R (R > 0 is arbitrary), satisfies

‖v(·, t)− z(·, t− δ)‖H1 ≤ k4−t/T , t ≥ 0, (4.20)

where δ = δ(ϕ) and the constant k = k(R) > 0 does not depend on ϕ.
Furthermore, |δ| ≤ δ∗, where δ∗ = δ∗(R) does not depend on ϕ.

Proof. 1. Denote

δ =

∞∑
l=1

(τl − s1),

where the series is absolutely convergent due to Lemma 4.5 and

|δ| ≤
∞∑
l=1

|τl − s1| ≤ δ∗,

where δ∗ = δ∗(R). To be definite, we assume that

δ > 0.

Since ti =
i∑
l=1

τl and si =
i∑
l=1

s1, it follows from Lemma 4.5 that

|ti − δ − si| ≤
∞∑

l=i+1

|τl − s1| ≤ k12−i, (4.21)

where k1, k2, . . . > 0 depend on R, but do not depend on i and ϕ.
Thus, the switching moment ti asymptotically “delays” by δ with respect to the

switching moment si.
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2. Let us estimate v(x, t+ δ)− z(x, t) for t ∈ [si, si+1]. Due to (4.21) and (2.40),
there is i∗ = i∗(R) such that, for i ≥ i∗, neither H(v̂(· + δ)) nor H(ẑ) switches on
the (small) intervals between si and ti − δ and between ti+1 − δ and si+1.

Let

si < ti − δ < ti+1 − δ < si+1.

All the other cases are treated similarly.
First, we assume that ϕ ∈ Bα,ε, i ≥ i∗, and i is even (the case of odd i is

analogous) and consider the following three cases.

Case 1. t ∈ [si, ti − δ] (small interval),
Case 2. t ∈ [ti − δ, ti+1 − δ],
Case 3. t ∈ [ti+1 − δ, si+1] (small interval).

2.1. Let t ∈ [si, ti−δ] (small interval). ThenH(v̂(·+δ))(t) = −1 andH(ẑ)(t) = 1.
Using Lemmas 4.4 and 4.6 and inequality (4.21), we have

‖v(·, t+ δ)− z(·, t)‖H1

≤ ‖v(·, t+ δ)− v(·, ti)‖H1 + ‖v(·, ti)− z(·, si)‖H1 + ‖z(·, si)− z(·, t)‖H1

≤ k22−i.

(4.22)
2.2. Let t ∈ [ti − δ, ti+1 − δ]. Then H(v̂(· + δ))(t) = H(ẑ)(t) = 1. Applying

Lemma 2.3 to the function v(x, t+ δ)− z(x, t) and taking into account Remark 2.1,
we have

‖v(·, t+ δ)− z(·, t)‖H1 ≤ k3‖v(·, ti)− z(·, ti − δ)‖H1

≤ k3 (‖v(·, ti)− z(·, si)‖H1 + ‖z(·, si)− z(·, ti − δ)‖H1) .

Therefore, by Lemmas 4.4 and 4.6 and by inequality (4.21),

‖v(·, t+ δ)− z(·, t)‖H1 ≤ k42−i. (4.23)

2.3. Let t ∈ [ti+1 − δ, si+1] (small interval). Then H(v̂(· + δ))(t) = −1 and
H(ẑ)(t) = 1. We have

‖v(·, t+ δ)− z(·, t)‖H1 ≤ ‖v(·, t+ δ)− z(·, t− ti+1 + δ + si+1)‖H1

+ ‖z(·, t)− z(·, si+1)‖H1 + ‖z(·, si+1)− z(·, t− ti+1 + δ + si+1)‖H1

The hysteresis operator H is equal to −1 for both functions in the first norm; hence
it is estimated via 2−i as in part 2.2. The second and third norms are estimated
via 2−i with the help of Lemma 4.6 and inequality (4.21). Therefore,

‖v(·, t+ δ)− z(·, t)‖H1 ≤ k52−i. (4.24)

Inequalities (4.22)–(4.24) (and the analogous inequalities for odd i) yield

‖v(·, t)− z(·, t− δ)‖H1 ≤ k62−i ≤ k72−t/s1 (4.25)

for t ∈ [si + δ, si+1 + δ], i ≥ i∗, ϕ ∈ Bα,ε.
3. Now consider arbitrary ϕ, ‖ϕ‖H1 ≤ R and i ≥ 0. Theorem 2.2 implies that

max
t∈[0,θ∗+si∗+δ∗]

‖v(·, t)‖H1 ≤ k7(θ∗, i∗, δ∗, R) = k8(R),

where θ∗ is defined in Remark 4.2. Therefore, the inequality in (4.25) holds for any
ϕ, ‖ϕ‖H1 ≤ R, and t ≥ 0.
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Now we complement Theorem 4.2 by showing that any solution v(x, t) not only
converges point-wise to the T -periodic solution z(x, t) (after appropriately shifting
the time argument), but also converges to the corresponding part of the T -periodic
trajectory. Namely, it converges to the part

Γ1 = {z(·, s), s ∈ [0, T/2]} (4.26)

if t ∈ [ti, ti+1] and to the part

Γ2 = {z(·, s), s ∈ [T/2, T ]} (4.27)

if t ∈ [ti+1, ti+2] as i→∞ and i is even. Thus, the next theorem is a mathematical
formulation of the intuitively expectable observation: the parts of the v-trajectory
with H(v̂) = 1 (H(v̂) = −1) become close to the part of the periodic z-trajectory
with H(ẑ) = 1 (H(ẑ) = −1).

Theorem 4.3. Let Condition 4.1 hold. Then, given R > 0, there is k = k(R) > 0
such that any solution v(x, t) of problem (2.1)–(2.3) in Q∞ with initial data ϕ ∈ H1,
‖ϕ‖H1 ≤ R, satisfies

dist(v(·, t),Γ1) = min
s∈[0,T/2]

‖v(·, t)− z(·, s)‖H1 ≤ k2−i for t ∈ [ti, ti+1],

dist(v(·, t),Γ2) = min
s∈[T/2,T ]

‖v(·, t)− z(·, s)‖H1 ≤ k2−i for t ∈ [ti+1, ti+2],
(4.28)

where i = 0, 2, 4, . . . , ti are the switching moments of H(v̂), T is the period of
z(x, t), and T/2 and T are the first and the second switching moments of H(ẑ).

Proof. We prove the first inequality in (4.28). The second inequality can be proved
in the same way.

1. Let ϕ ∈ Bα,ε. We take an arbitrary i = 0, 2, 4, . . . and assume that τi+1 =
ti+1 − ti > s1 = T/2. The case τi+1 ≤ s1 is analogous and simpler.

First, we consider t ∈ [ti, ti + s1]. The function w(x, s) = v(x, s+ ti)− z(x, s) is
a solution of the parabolic problem

ws(x, s) = ∆w(x, s) ((x, s) ∈ Qs1),

w(x, 0) = Pi/2(ϕ)− ψ (x ∈ Q),

∂w

∂ν
= 0 ((x, s) ∈ Γs1).

Therefore, setting s = t − ti ∈ [0, s1] for t ∈ [ti, ti + s1] and using Lemma 2.3 and
Remark 2.1, we have

‖v(·, t)− z(·, s)‖H1 = ‖w(·, s)‖H1 ≤ k1‖Pi/2(ϕ)− ψ‖H1 ,

where k1, k2, . . . > 0 do not depend on ϕ and i. This inequality and Lemma 4.4
yield

‖v(·, t)− z(·, s)‖H1 ≤ k22−i. (4.29)

2. It remains to consider t ∈ [ti + s1, ti+1] = [ti + s1, ti + τi+1]. We estimate the
difference v(x, t)−v(x, ti+s1), assuming without loss of generality that s1 ≥ τi+1/2.
(Otherwise, one can first consider sufficiently large i, for which this inequality holds
by Lemma 4.5, and then argue as in part 3 of the proof of Theorem 4.2.) Then, by
using Lemma 4.6 (part 1) and Lemma 4.5, we have

‖v(·, t)− v(·, ti + s1)‖H1 ≤ k3(t− ti − s1) ≤ k3(τi+1 − s1) ≤ k42−i. (4.30)

Estimates (4.29) and (4.30) prove the first inequality in (4.28) for ϕ ∈ Bα,ε.
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3. Now, for arbitrary ϕ, ‖ϕ‖H1 ≤ R, we take into account Remark 4.2 and the
estimate (see Theorem 2.2)

max
t∈[0,θ∗]

‖v(·, t)‖H1 ≤ k6(θ∗, R) = k7(R),

which complete the proof.

4.4. Stability of periodic solution. When studying the stability of the periodic
solution, one considers its small neighborhood. When doing so, one has to take into
account the initial state of the hysteresis operator. For any periodic solution z(x, t),
let Γ1 and Γ2 be given by (4.26) and (4.27), and let Γ = Γ1 ∪ Γ2 (cf. Remark 3.1).

Definition 4.2. A T -periodic solution z(x, t) of problem (2.1), (2.3) is orbitally
uniformly asymptotically stable if

1. for any neighborhood U of Γ in H1, there exist neighborhoods V1 of Γ1 and
V2 of Γ2 in H1 such that if

ϕ ∈ V1, ϕ̂ < β or ϕ ∈ V2, ϕ̂ ≥ β,

then the solution v(x, t) of problem (2.1)–(2.3) in Q∞ with the initial data ϕ
belongs to U for all t ≥ 0;

2. there exist neighborhoods W1 of Γ1 and W2 of Γ2 in H1 such that, for all

ϕ ∈W1, ϕ̂ < β or ϕ ∈W2, ϕ̂ ≥ β,

the solutions v(x, t) of problem (2.1)–(2.3) in Q∞ with initial data ϕ satisfy

dist(v(·, t),Γ)→ 0 as t→ +∞

uniformly with respect to ϕ.

We underline that the phenomena in Definitions 4.1 (global attractivity) and 4.2
(asymptotic orbital stability) do not follow from each other. Clearly, orbital asymp-
totic stability does not imply global attractivity. On the other hand, the fact that
a periodic solution is a global B-attractor does not generally imply that it is stable.
In principle, all trajectories originated arbitrarily close to the periodic trajectory Γ
may leave a given small neighborhood of Γ and then converge to Γ as t→ +∞.

However, we will show that, in our case, the periodic solution is not only a global
B-attractor, but is also stable in the above sense.

Let z(x, t) be a T -periodic solution of problem (2.1), (2.3) such that z(·, 0) =
ψ ∈ Bα,0 (Bβ,0). Let v(x, t) be an arbitrary solution of problem (2.1)–(2.3) in Q∞
with initial data v(·, t) = ϕ ∈ Bα,ε (Bβ,ε).

Lemma 4.7. Let Condition 4.1 hold, and let z(x, t) and v(x, t) be as above. Then,
for any σ > 0, there is δ > 0 such that

dist(v(·, t),Γ) = min
s∈[0,T ]

‖v(·, t)− z(·, s)‖H1 ≤ σ ∀t ≥ 0

whenever ‖ϕ− ψ‖H1 ≤ δ.

Proof. To be definite, we assume that ψ ∈ Bα,0. Fix σ > 0. Let δ > 0 be so
small that the δ-neighborhood of ψ lies in Bα,ε. Let s1, s2, . . . and t1, t2, . . . be
the successive switching moments of H(ẑ) and H(v̂), respectively. Due to (2.40),
s1, t1 ≥ τ∗, where τ∗ does not depend on ϕ.
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Let s1 ≤ t1 (the case s1 > t1 is similar). Then the difference z − v satisfies for
t ≤ s1 the following relations:

(z − v)t = ∆(z − v) ((x, t) ∈ Qs1),

(z − v)(x, 0) = ψ(x)− ϕ(x) (x ∈ Q),

∂(z − v)

∂ν
= 0 ((x, t) ∈ Γs1).

Therefore, due to Lemma 2.3 and Remark 2.1, we have for t ≤ s1

‖z(·, t)− v(·, t)‖H1 ≤ k1‖ψ − ϕ‖H1 ≤ k1δ, (4.31)

where k1 > 0 is equal to the constant c1(τ∗) from estimate (2.31), i.e., does not
depend on ϕ and δ.

Further, due to Corollary 3.1,

|s1 − t1| ≤ k2‖ψ − ϕ‖H1 ≤ k2δ,

where k2, k3, . . . > 0 do not depend on ϕ and δ. Therefore, taking into account
Lemma 4.6 and inequality (4.31), we have for t ∈ [s1, t1]

‖z(·, s1)− v(·, t)‖H1 ≤ ‖z(·, s1)− v(·, s1)‖H1 + ‖v(·, s1)− v(·, t)‖H1

≤ k1δ + k3|s1 − t1| ≤ k4δ.
(4.32)

Estimates (4.31) and (4.32) yield

dist(v(·, t),Γ1) ≤ k4δ ∀t ∈ [0, t1],

‖z(·, s1)− v(·, t1)‖H1 ≤ k4δ,

where Γ1 is the part of the periodic trajectory given by (4.26).
Repeating the above arguments, we obtain

dist(v(·, t),Γ) ≤ ki4δ ∀t ∈ [0, ti], i = 1, 2, . . . .

However, by Lemma 4.4, there is a number i∗ such that

‖v(·, t2i∗)− ψ‖H1 ≤ ‖ϕ− ψ‖H1 ≤ δ.

Thus, the conclusion of the lemma follows by taking δ = σ/k2i∗

4 (or δ = σ if
k4 ≤ 1).

Now, to prove the stability of the periodic solution, we have to consider arbitrary
solutions with initial data not necessarily from Bα,ε, but rather in a neighborhood
of Γ1 or Γ2. To be definite, we will consider a neighborhood of Γ1.

Theorem 4.4. Let Condition 4.1 hold, and let m ∈ H1. Then the T -periodic
solution z(x, t) of problem (2.1), (2.3) is orbitally uniformly asymptotically stable.

Proof. 1. By Theorem 4.3, it suffices to check only the first part of Definition 4.2.
Due to Lemma 4.7, we have to prove the following. For any δ > 0, there is µ > 0

such that if ‖ϕ− ψ‖H1 ≤ µ for some ψ ∈ Γ1 and ϕ̂ < β, then

dist(v(·, t),Γ1) ≤ δ ∀t ≤ t1,
‖z(·, s1)− v(·, t1)‖H1 ≤ δ,

(4.33)

where z(x, 0) = ψ(x), v(x, 0) = ϕ(x), and s1 and t1 are the first switching moments
of H(ẑ) and H(v̂), respectively. The number µ does not depend on ψ ∈ Γ1.

2. The difficulty in the proof of (4.33) is that ϕ and ψ need not be in Bα,ε;
hence, Lemma 3.6 and Corollary 3.1 do not directly apply. Moreover, ϕ̂ need not
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be close to α, and Lemma 3.5 does not apply either. For this reason, we will use the
assumption m ∈ H1 to “control” the derivative dv̂/dt at the switching moment t1.

If we show that
dv̂(t1)

dt
≥ m0K0

8
(4.34)

for any ϕ in the µ-neighborhood of ψ, then, as in Lemmas 3.6 and 3.7, it will follow
that t1(ϕ) and Pα(ϕ) are continuously differentiable in the µ-neighborhood of ψ.

3. Denote by zα(x, t) and vα(x, t) the solutions of problem (2.5)–(2.7) with the
initial data ψ and ϕ, respectively.

We know from Lemma 3.5 that

dẑα(s1)

dt
≥ m0K0

2
.

By the continuity, there is θ > 0 such that

dẑα(t)

dt
≥ m0K0

4
∀t ∈ [s1, s1 + θ]. (4.35)

On the other hand, using Lemma 2.2 (see, in particular, (2.26) and (2.27)) and
the relation m ∈ H1, we obtain for t ≤ min(s1, t1)

∣∣ẑα(t)− v̂α(t)
∣∣ =

∣∣∣∣∣∣m0(ψ0 − ϕ0) +

∞∑
j=1

mj(ψj − ϕj)e−λjt
∣∣∣∣∣∣ ≤ k1µ, (4.36)

∣∣∣∣∣dẑα(t)

dt
− dv̂α(t)

dt

∣∣∣∣∣ =

∣∣∣∣∣∣
∞∑
j=1

mjλj(ϕj − ψj)e−λjt
∣∣∣∣∣∣ ≤ k2‖m‖H1‖ϕ− ψ‖H1 ≤ k3µ,

(4.37)
where k1, k2, . . . > 0 do not depend on µ, ψ, and ϕ.

4. First, we assume that s1 ≤ t1. As in the proof of Lemma 4.7 (see (4.31)), we
have for t ≤ s1

‖z(·, t)− v(·, t)‖H1 ≤ k4µ. (4.38)

Assuming that µ is small enough, we deduce from (4.35) and (4.37) that

dv̂(t)

dt
≥ m0K0

8
∀t ∈ [s1, s1 + θ].

On the other hand, due to (4.36), β − v̂(s1) ≤ k1µ. Therefore, if µ is small
enough, the switching of H(v̂) occurs before the moment s1 + θ, i.e.,

dv̂(t)

dt
≥ m0K0

8
∀t ∈ [s1, t1].

Hence,

t1 − s1 ≤
8k1

m0K0
µ. (4.39)

Now, using the estimate analogous to (4.31) and the Lipschitz continuity of zα(·, t)
for t ≥ t1 combined with (4.39), we have for t ∈ [s1, t1]

‖v(·, t)−z(·, s1)‖H1 ≤ ‖vα(·, t)−zα(·, t)‖H1 +‖zα(·, t)−zα(·, s1)‖H1 ≤ k5µ. (4.40)

Estimates (4.38) and (4.40) yield the first inequality in (4.33). The second in-
equality follows from the continuous differentiability of Pα(ϕ):

‖v(·, s1)− z(·, t1)‖H1 = ‖Pα(ϕ)−Pα(ψ)‖H1 ≤ k6µ.
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5. Finally, we assume that t1 ≤ s1. As before, for t ≤ t1,

‖z(·, t)− v(·, t)‖H1 ≤ k7µ, (4.41)

which implies the first inequality in (4.33).
Further, due to (4.36),

β − ẑ(t1) ≤ k8µ,

while dz(t)/dt ≥ m0K0/2 at the switching moment s1, i.e., when z(t) = β. There-
fore, one can choose µ so small that

s1 − t1 ≤ k9µ,
dẑ(t)

dt
≥ m0K0

4
∀t ∈ [t1, s1].

(Combined with (4.37), this implies
dv̂(t1)

dt
≥ m0K0

8
, provided that µ is small

enough.)
Taking into account the Lipschitz continuity of z(·, t) for t ∈ [t1, s1], the fact that

s1 − t1 ≤ k9µ, and estimate (4.41) for t = t1, we have

‖z(·, s1)− v(·, t1)‖H1 ≤ ‖z(·, s1)− z(·, t1)‖H1 + ‖z(·, t1)− v(·, t1)‖H1 ≤ k10µ.

This yields the second inequality in (4.33).

Remark 4.3. In the proof of Theorem 4.4, we showed the following important
property of the periodic solution z(x, t). If m ∈ H1 and

dẑ

dt
6= 0 at the switching moments, (4.42)

then the operators Pα(ϕ), P(ϕ), and t1(ϕ) are continuously differentiable in a
neighborhood of Γ1∩{ϕ ∈ H1 : ϕ̂ < β}. The operator Pβ(ϕ) is continuously differ-
entiable in a neighborhood of Γ2∩{ϕ ∈ H1 : ϕ̂ > α}. Note that this property holds
for any α and β, irrespectively of Condition 3.1 or 4.1. However, the transversality
condition (4.42) is crucial.

5. An alternative condition for the existence of periodic solution. In this
section, we formulate a theorem on the existence and uniqueness of a periodic
solution of problem (2.1), (2.3) as well as a theorem on attraction to it under the
assumption that the weight function m(x) is close to a constant.

Theorem 5.1. Let m ∈ H1. There is a number M > 0 such that if

‖∇m‖L2
≤Mm0, (5.1)

then there is a periodic solution of problem (2.1), (2.3). The number M depends on
K(x) but does not depend on m(x), α, and β.

Proof. The main point in the preceding results was to show that

m0K0

2
≤ dv̂(t)

dt
≤ 3m0K0

2
. (5.2)

for sufficiently large t. Under assumption (5.1), we will show that (5.2) holds for all
t > 0 and all ϕ from the neighborhoods (3.11)α and (3.11)β . This will guarantee
the continuity of the Poincaré map P, hence the assertion of the theorem.

Let ϕ belongs, e.g., to the neighborhood (3.11)α. It suffices to show that
∞∑
j=1

∣∣mj(Kj − λjϕj)e−λjt
∣∣ ≤ m0K0

2
∀t ≥ 0 (5.3)
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(cf. the proof of Lemma 2.2). Indeed, using Lemma 2.1, we obtain

∞∑
j=1

∣∣mj(Kj − λjϕj)e−λjt
∣∣

≤

 ∞∑
j=1

λj |mj |2
1/2


 ∞∑
j=1

|Kj |2

λj

1/2

+

 ∞∑
j=1

λj |ϕj |2
1/2


≤ 3c‖K‖H1/2‖∇m‖L2

.

Thus, (5.3) follows, provided that

‖∇m‖L2 ≤
K0

6c‖K‖H1/2

m0.

Theorem 5.2. Let m ∈ H1 and inequality (5.1) hold. There is a number M̃ such
that if

m̃ ≤ M̃, (5.4)

then the following are true:

1. the conclusions of Theorems 4.1–4.3 with 2 and 4 in (4.28) and (4.20) replaced
by constants A and 2A,

2. the conclusion of Theorem 4.4.

Here m̃ is given by (3.10), M̃ > 0 and A > 1 depend on m0, K, and β − α.

Proof. 1. The crucial point in the proof of Theorems 4.1–4.3 was to show that
‖DΦΠα(Φ)‖ ≤ 1/2 for all Φ ∈ Bε. We will show that, under assumptions (5.1)
and (5.4),

‖DΦΠα(Φ)‖ ≤ σ < 1 ∀Φ ∈ Bε (5.5)

(analogously for Πβ). The rest will follow from the contraction mapping principle
as before.

2. Thus, let us prove (5.5) with appropriate σ. It follows from the proof of
Theorem 5.1 that the operator Πα : W → W is continuously differentiable on Bε.
Further, as in the proof of Lemma 4.3, we have for t1 ≥ τ∗ (cf. (2.40))

‖DΦΠα(Φ)‖ ≤
(

1 +
2k1m̃

m0K0

)
e−λ1τ

∗/2, (5.6)

where

k1 =
2
√

10c‖K‖H1/2

eτ∗
. (5.7)

Note that, for m̃ ≤ m0, one has

‖m‖2L2
= m2

0 + m̃2 ≤ 2m2
0.

Therefore, taking into account (2.41), we obtain

τ∗ ≥ k2
(β − α)2

2m2
0

, (5.8)

where k2 > 0 depends only on Bε.
Combining inequalities (5.6)–(5.8) yields

‖DΦΠα(Φ)‖ ≤ (1 +M1m̃)M2, (5.9)
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where M1 > 0 and 0 < M2 < 1 depend on m0, K, and β − α but do not depend
on m̃. The desired estimate (5.5) follows from (5.6) by choosing m̃ ≤ M̃ with a

sufficiently small M̃ .

6. Outlook. In this section, we point out possible directions of further research
for parabolic problems with discontinuous hysteresis. We formulate some open
questions and discuss a possibility of extending the results and methods of the
present paper.

6.1. Small β −α. The understanding of how the thresholds α and β influence the
properties of periodic solutions is far from complete. We showed that there are two
positive numbers δ1 ≤ δ2 with the following properties.

1. If β−α > δ1, then (the projection of) the Poincaré map is continuous; hence,
there is a periodic solution.

2. If β−α > δ2, then (the projection of) the Poincaré map is a contraction; hence,
there is unique periodic solution, which is stable and is a global attractor.

The question remains whether the situation δ1 6= δ2 is possible and, if so, what
happens between δ1 and δ2. Can several periodic solutions co-exist? If there exists
only one periodic solution, is it stable? Is it a global attractor?

The next question is how the system behaves for β − α ≤ δ1. We expect that
this situation is much more complicated because one need to seek for fixed points
of a discontinuous Poincaré map, or some power of it. This gives rise to the study
of periodic solutions with several switchings on the period.

Consider the following example. Let Q be a one-dimensional domain, e.g., Q =
(0, π). Consider the following problem

vt(x, t) = vxx(x, t) (x ∈ (0, π), t > 0),

vx(0, t) = 0, vx(π, t) = H(v̂)(t) (t > 0).

From the physical point of view, this models a thermocontrol process in a rod with
heat-insulation at one end and heating (cooling) element at the other.

It is easy to find that

λ0 = 0, e0 =
√

1/π, K0 = e0(π) =
√

1/π,

λj = j2, ej(x) =
√

2/π cos jx, Kj = ej(π) = (−1)j
√

2/π, j = 1, 2, . . . .

Let us consider the case where m0 = 0.8, m1 = m2 = 1, m3 = m4 = · · · = 0,
α = 0, and β = 0.05. In Figures 6.1 and 6.2, a periodic solution and, respectively,
a trajectory converging to it are shown. More precisely, their projections to the
plane spanned by the vectors e1 and e2 are depicted. The graphs were obtained
numerically with the software “Dynamical Systems Iterations” (see [23]).

Figure 6.1. Periodic solution; projection to the axis e1, e2; the
parameters are m0 = 0.8, m1 = m2 = 1, m3 = m4 = · · · = 0;
λj = j2; K0 =

√
1/π, Kj = (−1)j

√
2/π; α = 0 and β = 0.05
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Figure 6.2. A trajectory converging to the periodic solution. The
parameters are as in Fig. 6.1

Figure 6.3. Periodic solution; α = 0, β = 0.01, the other param-
eters are as in Fig. 6.1

Figure 6.4. Zoomed upper-left corner of Fig. 6.3

What we see in the figures indicates the existence of periodic solutions with more
than one switching on the period. The periodic trajectory consists of six parts: three
parts correspond to the excursion from α to β and three parts to the excursion in
the opposite direction.

Furthermore, the smaller the difference β−α is, the more switchings may occur on
the period (see Fig. 6.3 and its zoomed upper-left corner in Fig. 6.4). Moreover, due
to numerical simulations, these solutions can be stable and can be global attractors.

6.2. Continuous temperature control on the boundary. In this paper, we
assume that the thermal elements on the boundary change their values by jump.
A more general setting including both continuous and discontinuous temperature
control is as follows (cf. [10, 11, 26, 14]):

vt(x, t) = ∆v(x, t) (x ∈ Q, t > 0),

∂v

∂ν
= K(x)u(t) (x ∈ ∂Q, t > 0),

where the control function u(t) satisfies the ordinary differential equation

au̇(t) + u(t) = H(v̂)(t)

with a ≥ 0. The right-hand side of the latter equation contains the hysteresis
operator H which depends on the mean temperature v̂, as before.
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The “discontinuous” case a = 0 is considered in the present paper. Similarly, if
a > 0, one can use the Fourier method to obtain an infinite-dimensional dynamical
system for the unknowns (u(t), v1(t), v2(t), . . . ). If β−α is large enough, we expect
the results analogous to the case a = 0. However, the dynamics for small β − α
remains an open question.

6.3. Parabolic equations with variable coefficients and other boundary
conditions. Throughout the paper, the parabolic equation under consideration
was the heat equation. A more general linear parabolic equation would be

vt(x, t) = Pv(x, t) (x ∈ Q, t > 0)

with a general boundary condition of the form

Bv = K(x)H(v̂)(t) (x ∈ ∂Q, t > 0).

Here B defines the Dirichlet, Neumann, oblique-derivative or more general (e.g.,
nonlocal) boundary condition;

Pw(x) =

n∑
i,j=1

aij(x)wxixj (x) +

n∑
i=1

ai(x)wxi(x) + a0(x)w(x)

is a second-order elliptic operator with variable coefficients, whose domain is given
by the corresponding homogeneous boundary condition (cf. (2.13)):

D(P ) = {w ∈ H2 : Bw = 0 (x ∈ ∂Q)}.

In applications, the operator P is not necessarily selfadjoint, but often turns
out to be sectorial. Hence, it generates an analytic semigroup (see, e.g., [24]).
Furthermore, under suitable assumptions, all the eigenvalues of the operator P are
of finite algebraic multiplicity, while the solution v can be expanded into the Fourier
series with respect to the root vectors (i.e., eigen- and associated vectors), which is
Abel-summable to v [19, 1]; see also [25] for more general boundary operators B (in
particular, nonlocal operators) and operators P with nonselfadjoint principal part.

Therefore, the original parabolic problem with hysteresis can be reduced, at
least formally, to an infinite-dimensional dynamical system by projecting onto cor-
responding eigenspaces. However, the justification of such a reduction is a subtle
issue because the root vectors of the operator P do not, in general, form a basis in
the classical sense.

On the other hand, the resulting dynamical system may be more complicated
than that in the present paper. If the operator P is selfadjoint, we still have a
system of infinitely many ODEs of the form

v̇j = −λjvj +KjH(v̂),

where −λj are the eigenvalues of the operator P and Kj are constants that are
defined by the function K(x) and the operators P and B. But if P is not selfad-
joint, its eigenvectors may have associated vectors, which form Jordan chains. For
example, let −λj = −λj+1 be the eigenvalue of P of algebraic multiplicity 2; we
denote it by −λ. Let ej and ej+1 be its eigen- and associated vectors. They satisfy

Pej = −λej (x ∈ Q), Bej = 0 (x ∈ ∂Q),

P ej+1 = −λej+1 + ej (x ∈ Q), Bej+1 = 0 (x ∈ ∂Q).
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In this case, the infinite system of ODEs will contain a coupled two-dimensional
subsystem of the form(

v̇j
v̇j+1

)
=

(
−λ 1
0 −λ

)(
vj
vj+1

)
+

(
Kj

Kj+1

)
H(v̂).

6.4. Nonlinear reaction-diffusion equations. Another generalization is a non-
linear reaction-diffusion equation instead of the linear heat equation:

vt = ∆v + f(v).

In this case, one can try to use the Galerkin method instead of the Fourier method
to reduce the problem to a dynamical system. The difficulty here is that, on the
kth step, we obtain a k-dimensional system, which is nonlinear even on the time
intervals between the switchings of H. Moreover, the nonlinearity changes when
passing from the k-dimensional system to the (k + 1)-dimensional system.

Thus, the first questions to answer are as follows:

1. Are there periodic solutions in the finite-dimensional systems?
2. Can the dynamics of the original problem be approximated by the dynamics

of the k-dimensional nonlinear systems as k →∞?
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