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On the non-existence of Feller semigroups in the non-transversal case

P. L. Gurevich

In the theory of Markov processes the question arises as to whether there is a strongly
continuous non-negative contraction semigroup (a Feller semigroup) of operators acting in
spaces of continuous functions. Feller semigroups describe (from a probabilistic point of
view) the motion of a Markovian particle in a domain. The general form of the generator
of such a semigroup on an interval was studied in [1]. In the multidimensional case it
was proved that the generator of a Feller semigroup is an elliptic differential operator
(possibly degenerate) whose domain consists of continuous functions satisfying non-local
conditions involving an integral over the closure of the domain with respect to some
non-negative Borel measure [2]. However, the inverse problem remains open. Suppose
that we are given an elliptic integro-differential operator whose domain is described by
non-local conditions. Will the closure of this operator then be the generator of a Feller
semigroup? In the transversal case the order of the non-local terms is less than the order
of the local terms [3]–[7], and in the more complicated non-transversal case these orders
coincide [7] (see also the references in [7]).

In [8] an example was constructed of a non-local operator (containing a transformation
of the boundary into itself), whose closure is not the generator of a Feller semigroup.
In this paper we give three examples to illustrate the non-existence of Feller semigroups in
cases when the transformations Ω(y) (under non-transversal non-local conditions) map
the boundary into the domain. For any y on the boundary the indicated Borel measure
is the delta-function with support at the point Ω(y) in the closure of the domain. We note
that the conditions 3.3 and 3.6 in [7] are violated in our first and second examples, while
the conditions 3.5 and 3.9 in [7] are violated in our third example.

1. ‘Jumps’ with zero probability to the outside of a neighbourhood of the termina-
tion points of the process. Let G ⊂ R2 be a bounded domain with smooth boundary
∂G =Γ1 ∪Γ2 ∪K , where Γ1 and Γ2 are C∞-curves that are open and connected in the
topology of ∂G, Γ1 ∩ Γ2 = ∅, Γ1 ∩ Γ2 = K , and the set K consists of two points g1

and g2. It is assumed that in some ε-neighbourhood Oε(gi) of gi (i = 1, 2) the domain G
coincides with the flat angle with opening π.

We consider the non-local conditions

u(y)− b1(y)u(Ω1(y)) = 0, y ∈ Γ1, u(y) = 0, y ∈ Γ2, (1)

where b1 ∈ C∞(Γ1), 0 6 b1(y) 6 1, b1(y) = b∗1 > 0 for y ∈ Oε/2(g1), b1(y) = 0 for
y /∈ Oε(g1), Ω1 is a smooth non-singular transformation defined in a neighbourhood of
the curve Γ1, Ω1(Γ1) ⊂ G, Ω1(g1) ∈ G, and Ω1(y) is the composition of a rotation about g1

and a translation by some vector for y ∈ Oε(g1). From the probabilistic point of view, the
Dirichlet condition means that the Markovian particle is absorbed (that is, the process
terminates) once it arrives at a point y ∈ Γ2, and the non-local condition means that after
some random time the particle ‘jumps’ from a point y ∈ Γ1 to the point Ω1(y) ∈ G with
probability b1(y).

Let us consider the unbounded operator P1 : D(P1) ⊂ C1(G) → C1(G) defined by the
formula

P1u = ∆u, u ∈ D(P1) = {u ∈ C1(G) : ∆u ∈ C1(G)},
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where C1(G) is the set of functions in C(G) satisfying the conditions (1), and ∆ is the
Laplacian acting in the sense of distributions.

2. ‘Jumps’ from conjugation points which are not termination points of the process. We
consider the non-local conditions

u(y)− b1(y)u(Ω1(y)) = 0, y ∈ Γ1, u(y)− b2(y)u(Ω2(y)) = 0, y ∈ Γ2, (2)

where bj ∈ C∞(Γj), 0 6 bj(y) 6 1, bj(y) = const > 0 for y ∈ Oε/2(g1), bj(y) = 0 for
y /∈ Oε(g1), Ωj is a smooth non-singular transformation defined in a neighbourhood of
the curve Γj , Ωj(Γj) ⊂ G, Ωj(g1) ∈ G, Ω1(g1) ̸= Ω2(g1), and Ωj(y) is the composition
of a rotation about the point g1 and a translation by some vector for y ∈ Oε(g1).

Let P2 : D(P2) ⊂ C2(G) → C2(G) be the unbounded operator defined by

P2u = ∆u, u ∈ D(P2) = {u ∈ C2(G) : ∆u ∈ C2(G)},

where C2(G) is the set of functions in C(G) satisfying the non-local conditions (2).

3. ‘Jumps’ with probability 1 in a neighbourhood of the termination points of the process.
We consider the non-local conditions

u(y)− bj(y)u(Ωj(y)) = 0, y ∈ Γj , j = 1, 2; u(y) = 0, y ∈ K , (3)

where bj ∈ C∞(Γj), 0 6 bj(y) 6 1, bj(y) = 1 for y ∈ Oε/2(g1) and bj(y) = 0 for
y /∈ Oε(g1), Ωj is a smooth non-singular transformation defined in a neighbourhood of
the curve Γj , Ωj(Γj) ⊂ G, Ωj(g1) = g1, and Ωj(y) is a rotation by the angle π/2 into the
domain G for y ∈ Oε(g1).

Let P3 : D(P3) ⊂ C3(G) → C3(G) be the unbounded operator defined by

P3u = ∆u, u ∈ D(P3) = {u ∈ C3(G) : ∆u ∈ C3(G)},

where C3(G) is the set of functions in C(G) satisfying the non-local conditions (3).

Theorem 1. The operators Pj admit closure Pj : D(Pj) ⊂ Cj(G) → Cj(G) (j = 1, 2, 3),
and the operators Pj (j = 1, 2, 3) are not the generators of a Feller semigroup.

Remark. It is possible to prove that Cj(G) \R(Pj − qI) ̸= ∅ for sufficiently small q > 0.
Therefore, Cj(G) \R(Pj − qI) ̸= ∅. By the Hille–Yosida theorem, this gives Theorem 1.
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