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Abstract

We introduce here a simple finite-dimensional feedback control scheme for
stabilizing solutions of infinite-dimensional dissipative evolution equations, such
as reaction-diffusion systems, the Navier-Stokes equations and the Kuramoto-
Sivashinsky equation. The designed feedback control scheme takes advantage
of the fact that such systems possess finite number of determining parameters
(degrees of freedom), namely, finite number of determining Fourier modes, deter-
mining nodes, and determining interpolants and projections. In particular, the
feedback control scheme uses finitely many of such observables and controllers.
This observation is of a particular interest since it implies that our approach has
far more reaching applications, in particular, in data assimilation. Moreover, we
emphasize that our scheme treats all kinds of the determining projections, as
well as, the various dissipative equations with one unified approach. However,
for the sake of simplicity we demonstrate our approach in this paper to a one-
dimensional reaction-diffusion equation paradigm.
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1 Introduction

Dissipative dynamical systems, such as the Navier-Stokes equations, the Kuramoto-
Sivashinsky equation, the complex Ginzburg-Landau equation and various reaction-
diffusion systems are known to have a finite-dimensional asymptotic (in time)
behavior (see, e.g., [5], [6], [8], [15], [23], [29], [32], [34], and references therein).
This is evident due to the fact that such systems possess finite-dimensional global
attractors ([3], [8], [9], [29],[32],[34]), and finite number of determining modes
([17], [16], [15],[27]), determining nodes ([15], [20], [21], [22], [25], [27], [28]),
determining volume elements ([22],[26]) and other finite number of determining
parameters (degrees of freedom) such as finite elements and other interpolation
polynomials ([5],[6],[21].) Moreover, some of these systems, which enjoy the prop-
erty of separation of spatial scales, are also known to have a finite dimensional
inertial manifolds (see, e.g., [8], [9], [18], [19], [34], and references therein). That
is, in the presence of separation of spatial scales the long-term dynamics of such
a system is equivalent to that of a finite system of ordinary differential equations.

There has been some interesting work on reduction methods, with applica-
tions focused on scientific computing and feedback control theory, taking advan-
tage of the finite-dimensional asymptotic behavior of these dissipative dynamical
systems (see, e.g., [1],[10],[11], [24], [33] and references therein) . However, there
has been very little rigorous analytical work, in particular in the context of
feedback control theory, justifying these applications. In the case of separation
of spatial scales, and hence the existence of inertial manifolds, the authors of
[30] and [31] provide an example of finite-dimensional feedback control (lumped
feedback control) that drives the dynamics of one-dimensional reaction-diffusion
system to an a priori specified finite-dimensional dynamics. It is worth stressing
again that in the case of inertial manifold the dynamics of the underlying evo-
lution equation is equivalent to that of an ordinary different equations to begin
with. However, the main challenge is in being able to provide a representation of
this ODE system in the relevant parameters dictated by the applications. In [22]
and [6] the authors have shown that if a certain dissipative system has separation
of scales, and hence an inertial manifold, then such a manifold can be parameter-
ized by any set of adequate parameters, e.g. Fourier modes, nodal values, local
volume averages, etc... In the above mentioned work of [30] and [31] the authors
employed such an equivalence in the parameterization of the inertial manifolds
to show their results.

In this paper we propose a new feedback control for controlling general dis-
sipative evolution equations using any of the determining systems of parameters
(modes, nodes, volume elements, etc...) without requiring the presence of separa-
tion in spatial scales, i.e. without assuming the existence of an inertial manifold.
To fix ideas we demonstrate our idea for a simple reaction diffusion equation,
the Chafee-Infante equation, which is the real Ginzburg-Landau equation. It
is worth mentioning, however, that this new idea has a far more reaching ar-
eas of applications, other than feedback control, such as in data assimilations
for weather prediction [2]. In addition, one can use this approach to show that
the long time-time dynamics of the underlying dissipative evolution equation,
such as the two-dimensional Navier-Stokes equations, can be imbedded in an
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infinite-dimensional dynamical system that is induced by an ordinary differential
equations, named determining form, which is governed by a globally Lipschitz
vector field, cf. [12], [13] and [14].

In this paper we will use the Chafee-Infante reaction-diffusion equation

∂u

∂t
− ν uxx − αu+ u3 = 0 (1)

ux(0) = ux(L) = 0 (2)

for α > 0, large enough, as a paradigm to fix ideas and to use the notions
of finite number of determining modes, nodes and volume elements to design
feedback control to stabilize the v(x) ≡ 0 unstable steady state solution of (1)-
(2). Indeed, by linearizing equation (1) about v ≡ 0 one obtains the linear
equation

∂v

∂t
− νvxx − αv = 0 (3)

vx(0) = vx(L) = 0

Solving the equation (1) with initial value v0(x) = Ak cos(kxL π), with Ak ∈ IR,

and writting a solution of the form v(x, t) = ak(t) cos(k xL π) one obtains

ȧk + νak (
πk

L
)2 − αak = 0, (4)

whose solution is
ak(t) = Ak e

(ν (πkL )2−α) t. (5)

Therefore, for α > 0, large enough, all the low wave numbers k2 < αL2

π2ν
are un-

stable. Consequently, the dimension of the unstable manifold of v ≡ 0 behaves

like
√

αL2

ν (see, for instance, [3], [23] and [34] for a similar analysis).

The aim of this paper is to design a feedback control that stabilizes v ≡ 0, for
example, either by observing the values of the solutions at certain nodal points,
local averages of the solutions in subintervals of [0, L], or by observing finitely
many of their Fourier modes. Based on the above discussion, a naive analysis

would suggest that one would need about
√

L2α
ν feedback controllers to stabilize

v ≡ 0.
In this paper we will give a rigorous justification to this assertion. First, we
demonstrate our result for the case of local averages, which is the most straight-
forward approach. Later, we present a more general abstract result, that unifies
our approach, utilizing all sorts of approximate interpolating polynomials (in-
terpolants), observables and controllers, and show that this abstract approach
applies to the Fourier modes, local volume (i. e. local averages) and nodal value
as particular examples. It is worth mentioning that the same feedback control
scheme can be used to stabilize any other time-dependent solution of (1)-(2). The
details of the proof are similar to the ones presented here for stabilizing the zero
solution; thus, for the sake of simplicity they will not be provided. Furthermore,
similar scheme can be also implemented for feedback control of other nonlin-
ear dissipative dynamical systems, such as the two-dimensional Navier-Stokes
equations, the Kuramoto-Sivashinsky equation and reaction-diffusion systems.
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2 Finite volume Elements Feedback control

To fix ideas we propose the following feedback control system for (1)-(2) in order
to stabilize the steady state solution v ≡ 0,

∂u

∂t
− ν uxx − αu+ u3 = −µ

N∑
k=1

uk χJk
(x) (6)

ux(0) = ux(L) = 0, (7)

where Jk =
[
(k − 1) LN , k

L
N

]
, for k = 1, . . . , N , χ

Jk
(x) is the characteristic func-

tion of the interval Jk, and

ϕ̄k =
1

|Jk|

∫
Jk

ϕ(x) dx =
N

L

∫
Jk

ϕ(x) dx.

Here, the local averages of the solution, uk, for k = 1, ..., N, are the observables,
and they are also used as the feedback controllers in (6). It is easy to observe
v ≡ 0 is also a steady state solution for (6)-(7).
For ϕ ∈ H1([0, L]) we define

‖ϕ‖2H1 :=
1

L2

∫ L

0
ϕ2(x) dx+

∫ L

0
ϕ2
x(x) dx. (8)

Before showing that (6)-(7) globally stabilizes the steady state v ≡ 0, one has
to prove first the global existence and uniqueness of the feedback system (6)-(7).
In section 4, we will show in Theorem 4.1 a result concerning global existence
and uniqueness for a general family of finite-dimensional feedback control that
includes system (6)-(7) as a particular case. Therefore, we will postpone this
task of proving the global existence and uniqueness until section 4, and we only
show here the global stability of v ≡ 0. This is in order to fix ideas and to
demonstrate our general approach.
Next, assuming the global existence and uniqueness of (6)-(7), we will show
that every solution u of (6)-(7) tends to zero, as t → ∞, under specific explicit
assumptions on N, ν, α, L and µ (see Theorem 2.1 for details). First, we state
the following proposition which is needed for our result. It is worth mentioning
that similar propositions were introduced and proved in [7], [22], [25], [26] and
[27] (see also [30] and [31]). We adapt here similar ideas from [7] for our proof.

Proposition 2.1. Let ϕ ∈ H1([0, L]) then

‖ϕ(·)−
N∑
k=1

ϕk χJk
(·)‖L2 ≤ h ‖ϕx‖L2 ≤ h ‖ϕ‖H1 , (9)

where h = L
N . Moreover,

‖ϕ‖2L2 ≤
(
h

2π

)2 (
γ2(ϕ) + ‖ϕx‖2L2

)
, (10)

where

γ2(ϕ) =
N∑
k=1

ϕ2
k.
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Proof.

‖ϕ(·)−
N∑
k=1

ϕk χJk
(·)‖2L2 =

∫ L

0

(
ϕ(x)−

N∑
k=1

ϕk χJk
(x)

)2

dx

=

∫ L

0

(
ϕ(x)

N∑
k=1

χ
Jk

(x)−
N∑
k=1

ϕk χJk
(x)

)2

dx,

where in the last equality we used the fact that
∑N

k=1 χJk
(x) ≡ 1, almost every-

where. Therefore,

‖ϕ(·)−
N∑
k=1

ϕk χJk
(·)‖2L2 =

∫ L

0

(
N∑
k=1

(ϕ(x)− ϕk ) χ
Jk

(x))

)(
N∑
l=1

(ϕ(x)− ϕl ) χJl(x)

)
dx

=

∫ L

0

N∑
k,l=1

(ϕ(x)− ϕk) (ϕ(x)− ϕl)χJk(x)χ
Jl

(x)dx.

Since χ
Jl

(x)χ
Jk

(x) ≡ χ
Jk

(x)δkl, it follows from the above that

‖ϕ(·)−
N∑
k=1

ϕkχk
(·)‖2L2 =

∫ L

0

(
N∑
k=1

(ϕ(x)− ϕk)

)2

χ
Jk

(x) dx

=
N∑
k=1

∫
Jk

(ϕ(x)− ϕk)
2 dx. (11)

By vertue of Poincaré inequality we have∫
Jk

(ϕ(x)− ϕk)
2 dx ≤

(
h

2π

)2 ∫
Jk

(
ϕ′(x)

)2
dx. (12)

Thus, (11) and (12) imply

‖ϕ(·)−
N∑
k=1

ϕkχJk
(·)‖2L2 ≤

(
h

2π

)2 N∑
k=1

∫
Jk

(
ϕ′(x)

)2
dx

=

(
h

2π

)2 ∫ L

0

(
ϕ′(x)

)2
dx, (13)

which proves inequality (9) in the Proposition 2.1.
Next, we prove inequaliy (10). From the Poincaré inequality (12) we have∫

Jk

ϕ2(x) dx− ϕ2
k h ≤

(
h

2π

)2 ∫
Jk

(
ϕ′(x)

)2
dx. (14)

Thus, by summing over k = 1, . . . , N, in the above inequality we conclude in-
equality (10) of the Proposition 2.1.
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Theorem 2.1. Let N and µ be large enough such that µ ≥ ν >
(
h
2π

)2
max{α, µ}

where α > 0 and h = L
N . Then ‖u(t)‖L2 tends to zero, as t → ∞, for every

solution u(t) of (6)-(7).

Proof. Taking the L2 inner product of equation (6) with u, and integrating
by part, gives

1

2

d

dt
‖u‖2L2 + ν ‖ux‖2L2 − α‖u‖2L2 + ‖u‖4L4 = − µ

2π

N∑
j=1

L

N
u2j = − µ

2π

L

N
γ2(u),

and a result we have

1

2

d

dt
‖u‖2L2 + ν ‖ux‖2L2 + µ

(
h

2π

)
γ2(u)− α ‖u‖2L2 ≤ 0 (15)

Using (10), from Proposition 2.1, and the assumption µh ≥ ν we have

ν ‖ux‖2L2+µ

(
h

2π

)
γ2(u) = ν (‖ux‖2L2+γ2(u))+(µ

(
h

2π

)
−ν) γ2(u) ≥ 4π2 ν

h2
‖u‖2L2 .

(16)
Substituting (16) in (15) we obtain

1

2

d

dt
‖u‖2L2 + (

ν 4π2

h2
− α) ‖u‖2L2 ≤ 0.

Therefore, by virtue of Gronwall’s inequality and the assumption that ν > α h2

4π2

one obtains
‖u(t)‖2L2 ≤ e−(ν(

2πN
L

)2−α) t‖u(0)‖2L2 ;

and the Theorem follows.

Remark 2.1

It is worth mentioning that if we choose µ = O(α) then the assumption N >√
L2 α
ν in Theorem 2.1 is consistant with the fact that the dimension of the

unstable manifold about v ≡ 0 is of order of
√

L2 α
ν . Moreover, in Theorem 5.1

we give a different and more general proof that illustrate this point further.

3 Approximate interpolant feedback controllers

In this section we will consider a general linear map Ih : H1([0, L])→ L2([0, L])
which is an approximate interpolant of order h of the inclusion map i : H1 ↪→ L2,
that satisfies the estimate

‖ϕ− Ih(ϕ)‖L2 ≤ c h ‖ϕ‖H1 , (17)

for every ϕ ∈ H1([0, L]). The last inequality is a version of the well-known
Bramble-Hilbert inequality, that usually appears in the context of finite elements



Feedback Control of Reaction-Diffusion Equation 7

[4]. We propose here to consider the following general feedback system of the
form

∂u

∂t
− ν uxx − αu+ u3 = −µ Ih(u) (18)

ux(0) = ux(L) = 0 (19)

in order to stablize v ≡ 0. Here one can think of Ih(u) as the observables and
controllers that will be used to stabilize our system.
Before we state and prove our general theorems concerning system (18)-(19), we
will give some examples of the approximate interpolant Ih(ϕ) which satisfy the
approximation property (17). In particular, we are interested in approximate
interpolant Ih of finite rank, and whose rank is of the order O(1/h).

3.1 Examples of finite rank approximate interpolants

3.1.1 Finite volume elements

Using the notation of section 2 we consider the approximate interpolant

Ih(ϕ) =
N∑
j=1

ϕ̄k χJk
(x), (20)

that uses local spatial averages (finite volume elements) for approximating the
local values of the underlying function. We observe that the approximate inter-
polant Ih(ϕ) that is introduced in (20) and implemented in (18) is exactly the
same one discussed in detail in section 2. In particular, one can easily see that
approximating inequality (17) holds in this case, thanks to Proposition 2.1.

3.1.2 Approximate Interpolants based on nodal values

In this example we consider the approximate interpolant

Ih(ϕ) =
N∑
k=1

ϕ(xk)χJk
(x), (21)

where Jk and χ
Jk

are as in section 2, and the points xk ∈ Jk, for k = 1, 2, · · · , N

are arbitrary. Next, we show that approximate interpolant given in (21) satisfied
the approximation property (17). Here again we adopt ideas from [7] to prove
the next proposition.

Proposition 3.1. For every ϕ ∈ H1([0, L])

‖ϕ(·)−
N∑
k=1

ϕ(xk)χJk
(·)‖L2 ≤ h ‖ϕx‖L2 ≤ h ‖ϕ‖H1 .

Proof.

‖ϕ(.)−
N∑
k=1

ϕ(xk)χJk
(.)‖2L2 =

∫ L

0

(
ϕ(x)−

N∑
k=1

ϕ(xk)χJk
(x)

)2

dx,
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and since
N∑
k=1

χ
k
(x) ≡ 1 a.e., it follows that

‖ϕ(·)−
N∑
k=1

ϕ(xk)χJk
(·)‖2L2 =

∫ L

0

(
N∑
k=1

(ϕ(x)− ϕ(xk))χJk
(x))

)2

dx.

As in the proof of the Proposition 2.1, we observe that χ
Jk

(x)χ
Jl

(x) ≡ χ
Jk

(x) δkl

and then we obtain

‖ϕ(·)−
N∑
k=1

ϕ(xk)χJk
(.)‖2L2 =

∫ L

0

N∑
k=1

(ϕ(x)− ϕ(xk))
2 χ

Jk
(x) dx

=

N∑
k=1

∫
Jk

(ϕ(x)− ϕ(xk))
2 dx

=
N∑
k=1

∫
Jk

(∫ x

xk

ϕ′(y) dy

)2

dx

≤
N∑
k=1

∫
Jk

(∫
Jk

|ϕ′(y)| dy
)2

dx

≤ h
N∑
k=1

(∫
Jk

|ϕ′(y)| dy
)2

dx.

(22)

Using Cauchy-Schwarz inequality, we get

‖ϕ(.)−
N∑
k=1

ϕ(xk)χJk
(.)‖2L2 ≤

N∑
k=1

h2
∫
Jk

∣∣ϕ′(y)
∣∣2 dy,

= h2‖ϕx‖2L2 ; (23)

which concludes the proof of Proposition 3.1.
In view of (1), (18) and (21) we propose the following feedback controller for
stabilizing v ≡ 0

∂u

∂t
− ν uxx − αu+ u3 = −µ

N∑
k=1

u(xk) χJk
(x) (24)

ux(0) = ux(L) = 0, (25)

which is a special case of (18).

3.1.3 Projection onto Fourier modes as an approximate inter-
polant

Here, we consider the following projection onto the first N Fourier modes as an
example of an approximate interpolant;

Ih(ϕ) =

N∑
k=1

ϕ̂k cos(
k πx

L
), h =

L

N
, (26)
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where the Fourier coefficients are given by

ϕ̂k =
2

L

∫ L

0
ϕ(x) cos(

πkx

L
)dx.

Next, we observe that inequality (17) holds for the approximate interpolant given
in (26).

Proposition 3.2. Let ϕ ∈ H1([−L,L]) be an even function, i.e. ϕ(−x) = ϕ(x).
Then

‖ϕ(x)−
N∑
k=1

ϕ̂k cos

(
k xπ

L

)
‖L2([0,L]) ≤ c h ‖ϕx‖L2([0,L]). (27)

Proof. The proof of this proposition is a simple exercise in Fourier series.
Thus it will be omitted.

4 Global existence and uniqueness for the

closed-loop system

In this section we establish the global existence and uniqueness for the general
feedback system introduced in (18)-(19). This will be accomplished under the
assumption (17) and the condition

ν ≥ µ c2 h2. (28)

To this end one uses the standard Galerkin approximation procedure based on
the eigenfunctions of the Laplacian, subject to the Neumann boundary condition,
i.e., cos(π k xL ) for k = 1, 2.... We will omite the details of this standard procedure
and provide only the formal a-priori estimates (see, e.g., [34]). These estimates
can be obtained rigorously through the Galerkin procedure, by passing to the
limit while using the relevant compactness theorems.
Let us now establish the aformentioned formal a-priori bounds for the solution
which are essential for guaranteeing globlal existence and uniqueness.
System (18)-(19) can be rewritten as

∂u

∂t
− ν uxx +

ν

L2
u− (α+

ν

L2
)u = −u3 − µIh(u) (29)

ux(0) = ux(L) = 0. (30)

Taking the L2- inner product of (29) with u, integrating by parts and using the
Neumann boundary conditions, we obtain

1

2

d

dt

∫ L

0
u2 dx + ν

∫ L

0
u2x dx+

ν

L2

∫ L

0
u2 dx = −

∫ L

0
u4dx

+(α+
ν

L2
)

∫ L

0
u2 dx− µ

∫ L

0
Ih(u)u dx.
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Writing

Ih(u)u = Ih(u) (u− Ih(u)) + (Ih(u))2

and applying the Cauchy-Schwarz and Young’s inequalities, we get

1

2

d

dt

∫ L

0
u2 dx+ ν

∫ L

0
u2x dx+

ν

L2

∫ L

0
u2 dx ≤ −1

2

∫ L

0
u4dx+ (α+

ν

L2
)2
L

2

−µ
∫ L

0
|Ih(u)|2 dx+ µ

(∫ L

0
|Ih(u)|2 dx

) 1
2
(∫ L

0
|u− Ih(u)|2 dx

) 1
2

.

Using the Young inequality once again we reach

1

2

d

dt

∫ L

0
u2 dx+ ν

∫ L

0
u2x dx +

ν

L2

∫ L

0
u2 dx ≤ −1

2

∫ L

0
u4dx+ (α+

ν

L2
)2
L

2

− µ

2

∫ L

0
|Ih(u)|2 dx+

µ

2
‖u− Ih(u)‖2L2 dx.

Using (17), and the definition of the H1-norm given in (8) we obtain

1

2

d

dt

∫ L

0
u2 dx+ ν

∫ L

0
u2x dx+

ν

L2

∫ L

0
u2 dx ≤ −1

2

∫ L

0
u4dx+ (α+

ν

L2
)2
L

2

−µ
2

∫ L

0
|Ih(u)|2 dx+ µ

c2 h2

2

(
1

L2

∫ L

0
u2 dx+

∫ L

0
u2x dx

)
.

Thanks to the assumption (28) we conclude

1

2

d

dt

∫ L

0
u2 dx+

ν

2

(∫ L

0
u2x dx+

1

L2

∫ L

0
u2 dx

)
≤ (α+

ν

L2
)2
L

2

−1

2

∫ L

0
u4dx− µ

2

∫ L

0
|Ih(u)|2 dx.

Thus, one has

d

dt
‖u‖2L2 + ν (‖ux‖2L2 +

1

L2
‖u‖2L2) ≤ (α+

ν

L2
)2 L. (31)

Therefore, by dropping the ‖ux‖2L2 term from the left-hand side of (31) and
applying Gronwall’s inequality we have

‖u(t)‖2L2 ≤ e
−ν t
L2 ‖u(0)‖2L2 + (α+

ν

L2
)2
L3

ν

(
1− e

−ν t
L2

)
=: K0(t). (32)

Observe that by integrating equation (31) over the interval [t, t + 1], for t ≥ 0,
and using (32) one has

‖u(t+ 1)‖2L2 + ν

∫ t+1

t
(‖ux(s)‖2L2 +

1

L2
‖u(s)‖2L2) ds ≤ (α+

ν

L2
)2 L+ ‖u(t)‖2L2

≤ (α+
ν

L2
)2 L+K0(t). (33)
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Next, we find estimate for ‖ux‖2. Multiplying equation (18) by −uxx and inte-
grating by parts, using the Neumann boundary conditions (19), we obtain

1

2

d

dt

∫ L

0
u2x dx+ ν

∫ L

0
u2xx dx = α

∫ L

0
u2x dx+

∫ L

0
u3 uxxdx+ µ

∫ L

0
Ih(u)uxx dx

= α

∫ L

0
u2xdx− 3

∫ L

0
u2 u2x dx+ µ

∫ L

0
uuxxdx

+µ

∫ L

0
(Ih(u)− u)uxx dx.

Integrating by part, using (19), and using the Cauchy-Schwarz and Young in-
equalities we reach

1

2

d

dt

∫ L

0
u2x dx+ ν

∫ L

0
u2xx dx ≤ α

∫ L

0
u2xdx− 3

∫ L

0
u2 u2x dx− µ

∫ L

0
u2xdx

+
µ2

2ν
‖u− Ih(u)‖2L2 +

ν

2
‖uxx‖2L2 .

By the assumption (17) we get

1

2

d

dt

∫ L

0
u2x dx+

ν

2

∫ L

0
u2xx dx ≤ α

∫ L

0
u2xdx− 3

∫ L

0
u2 u2x dx− µ

∫ L

0
u2xdx

+
µ2

2ν
c2 h2‖u‖2H1 .

Dropping the negative terms in the right-hand side and using the definition of
H1-norm given in (8), will lead to

1

2

d

dt

∫ L

0
u2x dx+

ν

2

∫ L

0
u2xx dx ≤ α ‖ux‖2L2 +

µ2 c2 h2

2 ν

(
1

L2
‖u‖2L2 + ‖ux‖2L2

)
≤ (α+

µ2 c2 h2

2 ν
)

(
1

L2
‖u‖2L2 + ‖ux‖2L2

)
. (34)

Therefore, from the above and (34) we have

d

dt
‖ux‖2L2 ≤ 2 (α+

µ2 c2 h2

2 ν
)

(
1

L2
‖u‖2L2 + ‖ux‖2L2

)
. (35)

Since K0(t), which is given in (32), is a bounded uniformly, for all t ≥ 0, then by
virtue of Gronwall’s inequality one concludes from (35) that ‖ux(t)‖2L2 remains
bounded on every finite interval [0, T ] provided u(0) ∈ H1. However, this estimate
will grow exponentially in time. Our immediate goal will be to provide a uniform
bound for ‖ux(t)‖2L2 , for all t ≥ 0.
From the above discussion, following equation (35), we know that one has a
uniform bound over the time interval [0, 1]. Therefore, we will be focusing on the
time interval [1,∞). Now, let t + 1 ≥ s ≥ t ≥ 0. We integrate (35) over the
interval [s, t+ 1], and use (33) to obtain

‖ux(t+ 1)‖2L2 ≤ ‖ux(s)‖2L2 +
2

ν
(α+

µ2 c2 h2

2 ν
)
[
(α+

ν

L2
)L+K0(t)

]
.
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Next, we integrate the above inequality with respect to s over the interval [t, t+1],
and use (33), to conclude

‖ux(t+ 1)‖2L2 ≤
1

ν

[
(α+

ν

L2
)L+K0(t)

] [
1 + 2(α+

µ2 c2 h2

2 ν
)

]
, (36)

for all t ≥ 0. Therefore the H1−norm of u is bounded uniformly for all t ≥ 0.
Next, we show the continuous dependence of the solutions of (18) on the initial
data and the uniqueness, provided the assumptions (17) and (28) hold. Indeed,
let u1, u2 be two solutions and w = u1 − u2 of (18). From (18) we find that

∂w

∂t
− νwxx − αw = u32 − u31 − µ Ih(w).

Multiplying by w and integrating with respect to x over [0, L] we get

1

2

d

dt

∫ L

0
w2 dx+ ν

∫ L

0
w2
x dx = α

∫ L

0
w2 dx−

∫ L

0
w2 (u1 + u2)

2 + u21 + u22
2

dx

−µ
∫ L

0
Ih(w)w dx

≤ (α− µ)

∫ L

0
w2 dx+ µ

∫ L

0
|Ih(w)− w| |w| dx.

A straightforward computation, using the Cauchy-Schwarz and Young inequali-
ties and assumption (17), yields

1

2

d

dt

∫ L

0
w2 dx+ ν

∫ L

0
w2
x dx ≤ (α− µ)

∫ L

0
w2 dx+ µ ‖Ih(w)− w‖L2 ‖w‖L2

≤ (α− µ) ‖w‖2L2 dx+
µ

2
‖Ih(w)− w‖2L2 +

µ

2
‖w‖2L2

≤ (α− µ

2
) ‖w‖2L2 +

µ

2
c2 h2‖w‖2H1 .

Using (8), the definition of the H1-norm, we reach

1

2

d

dt

∫ L

0
w2 dx+ ν

∫ L

0
w2
x dx ≤

(
α− µ

2

)
‖w‖2L2 +

µ

2
c2 h2

(‖w‖2L2

L2
+ ‖wx‖2L2

)
≤

(
α− µ

2
+
µ

2

c2 h2

L2

)
‖w‖2L2 +

µ

2
c2 h2 ‖wx‖2L2 .

By assumption (28) the above implies

1

2

d

dt
‖w‖2L2 +

ν

2
‖wx‖2L2 ≤

(
α− µ

2
+
ν c2 h2

2L2

)
‖w‖2L2 .

Therefore

1

2

d

dt
‖w‖2L2 +

ν

2
‖wx‖2L2 ≤

(
α− µ

2
+
ν c2 h2

2L2

)
‖w‖2L2 =: β ‖w‖2L2 ,

and by Gronwall’s inequality we have

‖w(t)‖2L2 ≤ eβ t ‖w(0)‖2L2 . (37)
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Thus, if w(0) = 0 then ‖w(t)‖L2 ≡ 0. Moreover, inequaliy (37) implies the
continuous dependence of the solutions of (18)-(19) on the initial data. In con-
clusion, from the above, and in particular thanks to (32) and (36), we have the
following theorem:

Theorem 4.1. Let µ, ν and h be positive parameters satisfying assumption (28);
and that Ih satisfies (17). Suppose T > 0 and u0 ∈ H1([0, L]), then system (18)-
(19) has a unique solution u ∈ C([0, T ], H1) ∩ L2([0, T ], H2) which also depends
continuously on the initial data. Moreover,

lim sup
t→∞

‖u(t)‖2L2 ≤ R2
0 := (α+

ν

L2
)2
L3

ν
,

and

lim sup
t→∞

‖ux(t)‖2L2 ≤ R2
1 :=

1

ν

[
(α+

ν

L2

2
)L+R2

0

] [
1 + 2(α+

µ2 c2 h2

2 ν
)

]
.

5 Stabilization using Ih(u) as a feedback con-

trol

In the previous section we have established the global existence and uniqueness of
the general feedback system (18)-(19), under the assumptions (17) and (28). In
addition, we gave in section 3 specific examples for the approxiamate interpolant
Ih satisfying (17). Now, we are ready to state and prove our main result con-
cerning the general stabilizing feedback system (18)-(19), under the assumptions
(17), (28) and (38) below.

Theorem 5.1. Let Ih : H1([0, L]) → L2([0, L]) be a linear map, which is an
approximate interpolant of order h of the inclusion map i : H1 ↪→ L2, that
satisfies the approximation inequaliy (17). Moreover, assume that µ is large
enough such that

r := µ− (2α+
ν

L2
) > 0 (38)

and that h is small enough such that (28) is satisfied.
Then, for every u0 ∈ H1, the global unique solution of (18)-(19) decays exponen-
tially to zero as described in (41), below.

Proof. We present here a slightly different proof than the one we gave for
Theorem 2.1; taking into account the general form of the approximation property
(17). However, we emphasize that the main idea is similar. This proof will also
require simpler explicit choices for the parameters µ > 0 and h.
First, let us observe that assumption (28) guarantees the global existence and
uniqueness of the solutions to system (18)-(19), because of Theorem 4.1.
We take the L2 inner product of (18) with u to obtain

1

2

d

dt

∫ L

0
u2 dx + ν

∫ L

0
u2x dx− α

∫ L

0
u2 dx+

∫ L

0
u4dx

= −µ
∫ L

0
Ih(u)u dx. (39)
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From property (17), and the definition of the H1−norm, given in (8), we have

−2

∫ L

0
Ih(u)u dx ≤ c2 h2

(
‖ux‖2L2 +

1

L2
‖u‖2L2

)
− ‖u‖2L2 − ‖Ih(u)‖2L2 . (40)

Substituting (40) into (39) to obtain

1

2

d

dt
‖u‖2L2 + ν ‖ux‖2L2 − α ‖u‖2L2 +

∫ L

0
u4dx+

µ

2
‖u‖2L2

+
µ

2
‖Ih(u)‖2L2 −

µ

2
c2h2

(
‖ux‖2L2 +

1

L2
‖u‖2L2

)
≤ 0.

Thanks to assumption (28) the above implies

1

2

d

dt
‖u‖2L2 +

ν

2
‖ux‖2L2 +

µ

2
‖Ih(u)‖2L2 + ‖u‖4L4

+

(
µ

2
− α− µ c2 h2

2L2

)
‖u‖2L2 ≤ 0.

By assumption (28) we get

1

2

d

dt
‖u‖2L2 +

ν

2
‖ux‖2L2 +

µ

2
‖Ih(u)‖2L2 + ‖u‖4L4 +

r

2
‖u‖2L2 ≤ 0.

Thanks to assumption (38) and Gronwall’s inequality we have

‖u(t)‖2L2 ≤ e−r t ‖u(0)‖2L2 . (41)

Remark 5.1

Let us observe that in order to satisfy assumption (38) one can choose µ = O(α).

As a result, asssumption (28) will hold if we choose N := L
h = O(

√
αL2

ν ), that

is the number of feedback controllers is comparable to the dimension of the
unstable manifold about v ≡ 0. This is consistent with our earlier observation
in the inroduction and in Remark 2.1.

6 Stabilizing in the H1-norm

In the previous section we have shown that the feedback system (18)-(19) sta-
bilzes the steady state solution v ≡ 0 in the L2-norm, i.e., ‖u‖L2 → 0, as t→∞,
provided assumptions (28) and (38) hold.
Next, we show that we also have ‖u(t)‖H1 → 0, as t → ∞. To this end it is
enough to show that ‖ux‖L2 → 0, as t→∞.
Let us rewrite (18)-(19) as

ut +
1

L2
u− ν uxx − (α+

1

L2
)u+ u3 = −µ Ih(u) (42)

ux(0) = ux(L) = 0; (43)
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We take the L2 inner product of (42) with −uxx. Notice that from the proof
of global existence and uniqueness of Theorem 4.1, in particular from the uni-
form boundedness of the H1−norm and equation (34) we can show that u ∈
L2
(
[0, T ], H2

)
, and consequently ∂u

∂t ∈ L
2
(
[0, T ], L2

)
. Therefore, the above men-

tioned inner product, between ∂u
∂t and −uxx makes sense rigorously. Integrating

by parts, and using the Neumann boundary conditions (19) we obtain:

1

2

d

dt
‖ux‖2L2 + ν ‖uxx‖2L2 +

1

L2
‖ux‖2L2 − (α+

1

L2
)‖ux‖2

=

∫ L

0
u3 uxx dx+ µ

∫ L

0
Ih(u)uxx dx

= −3

∫ L

0
u2 u2x dx+ µ

∫ L

0
(Ih(u)− u)uxx dx

+ µ

∫ L

0
uuxx dx

= −3

∫ L

0
u2 u2x dx+ µ

∫ L

0
(Ih(u)− u)uxx dx

− µ

∫ L

0
u2x dx.

By Cauchy-Schwarz inequality we have

1

2

d

dt
‖ux‖2L2 + ν ‖uxx‖2L2 +

1

L2
‖ux‖2L2 ≤ (α+

1

L2
) ‖ux‖2L2 − µ ‖ux‖2L2

+ µ ‖Ih(u)− u)‖L2 ‖uxx‖L2 .

Applying Young’s inequality we obtain

1

2

d

dt
‖ux‖2L2+ν ‖uxx‖2L2+

1

L2
‖ux‖2L2 ≤ (α+

1

L2
−µ)‖ux‖2+

ν

2
‖uxx‖2L2+

µ2

2 ν
‖Ih(u)−u)‖2L2 .

Using property (17) and the definition of the H1−norm in (8), we have

1

2

d

dt
‖ux‖2L2 dx+

ν

2
‖uxx‖2L2 +

1

L2
‖ux‖2L2 ≤ (α+

1

L2
− µ)‖ux‖2L2

+
h2 µ2 c2

2 ν

(
1

L2
‖u‖2L2 + ‖ux‖2L2

)
.

1

2

d

dt
‖ux‖2L2 dx+

ν

2
‖uxx‖2L2 +

1

L2
‖ux‖2L2 ≤ (α+

1

L2
+
h2 µ2 c2

2 ν
− µ)‖ux‖2L2

+
h2 µ2 c2

2 ν L2
‖u‖2L2 .

Notice that ‖ux‖2L2 = −
∫ L
0 uuxxdx ≤ ‖u‖L2 ‖uxx‖L2 . Thus from above we have

1

2

d

dt
‖ux‖2L2 +

ν

2
‖uxx‖2L2 +

1

L2
‖ux‖2L2 ≤ |α+

1

L2
+
h2 µ2 c2

2 ν
− µ| ‖uxx‖L2 ‖u‖L2

+
h2 µ2 c2

2 ν L2
‖u‖2L2 .
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By Young’s inequality we have

1

2

d

dt
‖ux‖2L2 dx+

ν

2
‖uxx‖2L2 +

1

L2
‖ux‖2L2 ≤

(
(α+

1

L2
+
h2 µ2 c2

2 ν
− µ)2

1

ν
+
h2 µ2 c2

2 ν L2

)
‖u‖2L2

+
ν

4
‖uxx‖2,

which implies

1

2

d

dt
‖ux‖2L2 dx+

ν

4
‖uxx‖2L2 +

1

L2
‖ux‖2L2 ≤ γ ‖u‖2L2 ,

where γ =
(

(α+ 1
L2 + h2 µ2 c2

2 ν − µ)2 1
ν + h2 µ2 c2

2 ν L2

)
. Consequently, we have

d

dt
‖ux‖2L2 dx+

2

L2
‖ux‖2L2 ≤ γ ‖u(t)‖2L2 .

Since
lim
t→∞
‖u(t)‖2 = 0,

then, by Gronwall’s inequality it is easy to show that ‖ux‖2L2 → 0, as t → ∞
(see, also special Gronwall’s type Lemma in [25]). Notice that the sign of γ does
not matter in the above argument.

7 Nodal observables and feedback controllers

In this section we propose a different feedback control based on nodal value
observables and feedback controllers. Assume that the observables are the values
of the solutions u(xk), at the points xk ∈ Jk = [(k−1) L

N , k
L
N ], k = 1, ..., N, and

that the feedback is at some points xk ∈ Jk, xk is not necessarily the same as
xk. That is the measurements are made at xk, while the feedback controllers are
at xk, for k = 1, 2..., N. To avoid technical issues that are dealing with boundary
conditions, we focus here on the periodic boundary condition case. In this case
the feedback system will read

∂u

∂t
− ν uxx − αu+ u3 = −µ

N∑
k=1

hu(xk) δ(x− xk), (44)

u(x, t) = u(x+ L, t), (45)

where h = L
N ; and δ(x − a) ∈ H−1per([0, L]), for a ∈ [0, L], and is extended

periodically such that
< δ(· − a), ϕ >= ϕ(a) (46)

for every ϕ ∈ H1
per([0, L]).

The feedback control proposed in (44) -(45) is different than that of (18)-(19),
since the right-hand side in (44) is a distribution that belongs to H−1per([0, L]),
while the right-hand side in (18) belongs to L2([0, L]).
In this section we will show that, under similar assumptions to those in Theorem
5.1, the proposed feedback system (44) stabilizes the steady state v ≡ 0 in the
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L2−norm. One should not expect here a stronger statement, as the one stated in
section 6, in which the stabilizing is also valid in the H1−norm. This is because
the solutions of (44)-(45) are weaker than those of (18)-(19), since the right-hand
side in (44) is less regular than its counterpart in (18).
Below, we will show the formal steps, which demonstrate simultaneously the
global existence and stability. These formal steps and estimates can be justified
rigorously by implementing the Galerkin procedure based on the eigenfunction of
the Laplacian, subject to periodic boundary conditions, with period L (see, e.g.,
[34]. First, let us prove the following Lemma, which is basically the embedding

of the Hölder space of C
1
2 CH1 (see also [7]).

Lemma 7.1. Let xk, xk ∈ Jk = [(k − 1)h, k h], k = 1, .., N, where h = L
N ,

N ∈ ZZ +. Then for every ϕ ∈ H1([0, L]) we have

N∑
k=1

|ϕ(xk)− ϕ(xk)|2 ≤ h ‖ϕx‖2L2 , (47)

and

‖ϕ‖2L2 ≤ 2

[
h

N∑
k=1

|ϕ(xk)|2 + h2 ‖ϕx‖2L2

]
. (48)

Proof. We prove inequality (47) for ϕ ∈ C1([0, L]), and by the density of
C1 ⊂ H1 the result follows for every ϕ ∈ H1.

|ϕ(xk)− ϕ(xk)|2 ≤
∣∣∣∣∫ xk

xk

ϕ′(s) ds

∣∣∣∣2 ≤ (∫
Jk

|ϕ′(s)| ds
)2

≤ |Jk|
∫
Jk

|ϕ′(s)|2 ds = h

∫
Jk

|ϕ′(s)|2 ds.

By summing the above inequality over k = 1, .., N we conclude (47).
To prove (48) we observe that for every x ∈ Jk we have

|ϕ(x)| ≤ |ϕ(xk)|+
∫
Jk

|ϕ′(s)| ds.

Thus

|ϕ(x)|2 ≤ 2

[
|ϕ(xk)|2 +

(∫
Jk

|ϕ′(s)| ds
)2
]
, (49)

and by integrating with respect to x over Jk, and using the Cauchy-Schwarz
inequality, we obtain∫

Jk

|ϕ(x)|2 dx ≤ 2h

[
|ϕ(xk)|2 + h

∫
Jk

|ϕ′(s)|2 ds
]
. (50)

Now we conclude (48) by summing over k = 1, . . . , N.

Theorem 7.1. Let µ > 4α and h is small enough such that ν ≥ 2µh2. Then
for every T > 0, and every u0 ∈ L2

per[0, L] system (44) has a unique solution

u ∈ C([0, T ];L2
per[0, L]) ∩ L2

(
[0, T ];H1

per

[
0, L]) ∩ L4

(
[0, T ];L4

per[0, L]
)
,
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and
∂u

∂t
∈ L2

(
[0, T ];H−1per

)
.

Moreover,

lim
t→∞
‖u(t)‖L2 = 0. (51)

Proof. We take the H−1 action of (44) on u ∈ H1, and use Lemma of
Lions-Magenes (cf. Chap. III-p.169, [35]), to obtain:

1

2

d

dt
‖u‖2L2 + ν ‖ux‖2L2 = α ‖u‖2L2 −

∫ L

0
u4 dx− µh

N∑
k=1

u(xk)u(xk)

= α ‖u‖2L2 −
∫ L

0
u4 dx− µh

N∑
k=1

|u(xk)|2 + µh
N∑
k=1

(u(xk)− u(xk)) u(xk)

≤ α ‖u‖2L2 −
∫ L

0
u4 dx− µ

2
h

N∑
k=1

|u(xk)|2 +
µ

2
h

N∑
k=1

|u(xk)− u(xk)|2 ,

where in the last step we applied the Young’s inequality. Next, we apply (47)
and (48) to the right-hand side

1

2

d

dt
‖u‖2L2 + ν ‖ux‖2L2 ≤ α ‖u‖2L2 −

∫ L

0
u4 dx− µ

4
h ‖u‖2L2 + µh2 ‖ux‖2L2 .

Hence

1

2

d

dt
‖u‖2L2 + (ν − µh2) ‖ux‖2L2 ≤ (α− µ

4
) ‖u‖2L2 −

∫ L

0
u4 dx. (52)

Since ν ≥ 2µh2 and 4α < µ we conclude (52), thanks to Gronwall’s inequality.
Moreover, by integrating (52) over [0, T ], we conclude the regularity of the solu-
tion as stated in the theorem. Next, we prove the uniqueness of solutions.
Let u1 and u2 be any two solutions. Denote by w = u1 − u2. Then w satisfies

∂w

∂t
− ν wxx − αw + (u21 + u1 u2 + u22)w = −µh

N∑
k=1

w(xk) δ(x− xk) (53)

taking the H−1 action on w ∈ H1, and using again Lemma of Lions-Magenes
(cf. Chap. III-p.169, [35]), we obtain

1

2

d

dt
‖w‖2L2+ν ‖wx‖2L2−α ‖w‖2L2 =

∫ L

0
(u21+u1 u2+u

2
2)w

2 dx−µh
N∑
k=1

w(xk)w(xk).

Since
∫ L
0 (u21 + u1 u2 + u22)w

2 dx ≥
∫ L
0

u21+u
2
2

2 w2 dx ≥ 0 we obtain

1

2

d

dt
‖w‖2L2 + ν ‖wx‖2L2 − α ‖w‖2L2 ≤ −µh

N∑
k=1

w(xk)w(xk)
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From here we follow the same steps as in the proof of the stability to obtain

1

2

d

dt
‖w‖2L2 + (ν − µh2) ‖wx‖2L2 ≤ (α− µ

4
) ‖w‖2L2 .

Since ν ≥ 2µh2 and µ > 4α we conclude (52), thanks to Gronwall’s inequality.

‖w(t)‖2L2 ≤ e(α−µ/4) t‖w(0)‖2L2 . (54)

Notice that (54) implies the uniqueness of the solutions and their continuous
dependence on the initia data.

Remark 7.1

Here again we observe that by choosing µ = O(α) then the condition of the
theorem imply that N := L

h = O(
√

α
ν ) which is comparable to the dimension of

the unstable manifold about v ≡ 0.
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