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Abstract

In this thesis we study Pyragas control, a form of time–delayed feedback control that stabilizes unstable
periodic solutions of differential equations. We first give an introduction to the theory of differential delay
equations. We then apply the Pyragas control scheme to the normal form of the Hopf bifurcation and show
for which values of parameters stability can be achieved.
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Introduction

Robustness is one of the fundamental principles in engineering sciences, since it is undesirable that distur-
bances of the system structurally change the state of the system. In the context of the study of motion, this
translates into a wish for the observed motion to be stable: if we add a small disturbance to the system, the
observed motion should after some time converge to the initial motion of the system.

A way to achieve that motion is stable, is by applying time–delayed feedback control. In this thesis, we
study Pyragas control, a form of time–delayed feedback control that is particularly well–suited to stabilize
periodic motion.

Let us study the differential equation

ẋ(t) = f(x(t)), x(0) = x0 (1)

with f : Rn → Rn. We assume that an unstable periodic solution u(t) of period T is known to exist. The
idea of Pyragas control is to add a control term, such that the system becomes

ẋ(t) = f(x(t)) +K [x(t)− x(t− T )] (2)

with K an n×n-matrix. We note that u(t) is still a solution of (2). We can therefore attempt to choose the
matrix K in such a way that u(t) becomes in fact a stable solution of (2). [15]

Stability theory

Since robustness is an important concept in engineering, one needs to be able to tell whether a system is
robust or not. In the context of Pyragas control, we need to decide upon the (in)stability of motion, and
specifically upon the (in)stability of periodic solutions. In this thesis, we will mainly use linearized stability
to do so.

Since equilibria are the simplest form of periodic solutions, we introduce the concept of linearized stabilty
by studying the stability of equilibria. Let A be a n× n-matrix and

ẋ(t) = Ax(t), x(0) = x0 (3)

We note that x = 0 is an equilibrium of (3). Using the definition of stability for equilibria, one can prove
that if all the eigenvalue λj satisfy Reλj < 0, the equilibrium x = 0 is stable. If there exists an eigenvalue
λ of A such that Reλ > 0, then the solution x = 0 of (3) is unstable (see Appendix A). Therefore, for we
can decide upon the stablity of the equilibrium x = 0 of (3) by looking a the eigenvalues of A.

Now, let x ∈ Rn be a equilibrium of (1), i.e. f(x) = 0. If f is smooth enough, we can use a Taylor
expansion to write

ẋ(t) = f(x(t)) = f(x) +Df(x)(x(t)− x) +O((x(t)− x)2)

= Df(x)(x(t)− x) +O((x(t)− x)2)

Under the assumption that Reλj 6= 0 for all eigenvalues λj of Df(x), it follows from the Hartman-Grobman
Theorem (see Appendix A) that the stability of the fixed point x = x of

ẋ(t) = Df(x)(x(t)− x) (4)
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is the same as the stability of the fixed point x = x of (1). Since (4) is the form of (3), we know how to
determine the stability of the fixed point x = x, that is, by looking at the eigenvalues of Df(x). Thus, we
now have a criterion to determine the stability of the equilibrium x = x of (1). Since we arrived at this
criterion by studying the linearized problem, this approach is known as linearized stability.

We can extend this approach to periodic solutions. If we assume that u(t) is a periodic solution of (1),
we can linearize system (1) around u(t); this yields the so-called linear variational equation. From the linear
variational equation we can extract the characteristic multipliers, that play the role that eigenvalues have in
the study of equilibria. We can determine stability of the periodic orbit u(t) of (1) using these characterstic
multipliers. If all the non-trivial characteristic multipliers ρ satisfy |ρ| < 1, the periodic solution u(t) of (1)
is stable; if one of the characteristic multipliers satisfies |ρ| > 1, the periodic solution u(t) of (1) is unstable
(see Section A.5 in the Appendix).

Delay equations

Using the stability theory discussed above, we are able to determine the stability of solutions of the ordinary
differential equation (1). We note, however, that (2) is not an ordinary differential equation, but a differential
delay equation. The mathematical treatment of differential delay equations is different from that of ordinary
differential equations, the main difference being that the state space of a differential delay equation is infinite
dimensional.

We define the state of a differential equation at time τ as the minimal amount of information needed to
give an unique solution for t ≥ τ . The state space S is defined as the set consisting of all such possible states.
Under the assumption that f ∈ C1(Rn,Rn), it is a well-known result from ordinary differential equations
that the initial-value problem (1) has an unique solution for t in some open neighbourhood around zero.
Thus, given an x0 ∈ Rn, (1) has an unique solution for some t ≥ 0. The state of (1) is therefore given by
x0 ∈ Rn and the state space by S = Rn.

Now let us study the linear differential delay equation

ẋ(t) = Ax(t) +Bx(t− T ), t ≥ 0 (5)

with A,B n× n-matrices and T > 0. Using the variation of constants formula, one finds that

x(t) = eAtx(0) +

∫ t

0

eA(t−s)Bx(s− T )ds, t ∈ [0, T ] (6)

For the right hand side of (5) to be defined for t ∈ [0, T ], one should know at least know the value of x(t)
for all t ∈ [−T, 0]. Using (6) we see that this is also sufficient information to give an unique solution of (5)
for t ∈ [0, T ]. Therefore, the state space of (5) is given by S = C ([−T, 0],Rn). We note that this space is
infinite dimensional, whereas the dimension of the state space S = Rn of (1) is finite.

Using functional analysis, one can extend the stability theory for ordinary differential equations to dif-
ferential delay equations. This will be explored in Chapter 1.

Pyragas control

Having discussed the necessary theory to discuss stability of ordinary differential equations and differential
delay equations, we now turn to feedback–control. Specifically, we study Pyragas control in the context of
the concrete model

ż(t) = (λ+ i)z(t) + (1 + iγ) |z(t)|2 z(t) (7)

For the controlled system we write

ż(t) = (λ+ i)z(t) + (1 + iγ) |z(t)|2 z(t)−Keiβ [z(t)− z(t− T )] (8)
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System (7) is related to travelling wave solutions of the complex Ginzberg-Landau equation, that models a
variety of physical phenomena. The model (7) has the nice property that we can find a simple expression
for a periodic solution. This periodic solution is unstable and arises from a subcritical Hopf bifurcation.
We now want to choose the values of K,β in (8) in such a way that the periodic orbit emmanates from a
supercritical Hopf bifurcation. If this is the case, it follows that the periodic solution is stable as a solution
of (8). Using this approach, we are able to determine the stability of the periodic solution of (8), although
this periodic orbit has an infinite number of characteristic multipliers.

Organization of the thesis

We start by introducing the main concepts of differential delay equations in Chapter 1. In Chapter 2 we
study Pyragas control of system (7), where we find conditions for the periodic orbit of (7) to be (un)stable
as a solution of (8). In Chapter 3 we study the bifurcation diagram of system (8) in more detail, as to
gain more insight in the overall in the dynamics of the system. In Sections 2.2 and 2.4 and in Chapter 3,
we mostly follow [10]. In Chapter 4 we present a different approach to the analysis discussed in Chapter 2.
Using this, we are able to weaken the conditions found in [10] for the periodic orbit of (7) to be (un)stable
as a solution of (8). We conclude by discussing the methods and results of this thesis in Chapter . An
overview of stability theory for ordinary differential equations and the Hopf bifurcation theorem for ordinary
differential equations can be found in Appendix A.
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Chapter 1

Introduction to differential delay
equations

As was mentioned in the Introduction, (2) is a differential delay equation. In order to be able to discuss
Pyragas control, we therefore introduce the main concepts and the basic theory of differential delay equations.

A difference between differential delay equations and ordinary differential equations is that in the first
case the state space is infinite dimensional. Since this is an important concept in the study of differential
delay equations, we explore this more carefully in Section 1.1. In Section 1.2, we study the characteristic
equation and its relation with stability of equilibria. In Section 1.3 we explore the relation between the
flow maps and the characteristic equation; we use this to decompose the state space in subspace where the
stability of a fixed point is better known. In these discussions, we mostly follow [8].

1.1 The state space of a differential delay equation

If we study general differential equations, we usually do not only want to know whether a solution exists, but
also if this solution is unique given some initial data. We formalize this concept in the following definition:

Definition 1.1.1. We define the state at time τ of a differential equation to be the minimal information
that is needed to uniquely determine the solution for t ≥ τ . The state space S is a normed space consisting
of all such possible states. [8]

To explore this concept, we start by determining the state space of an ordinary differential equation. If
we study the system

ẋ(t) = f(x(t)) (1.1)

with f ∈ C1(Rn,Rn), we recall from the theory of ordinary differential equations that when the initial
condition x(τ) = xτ ∈ Rn is given, we can uniquely extend the solution of (1.1) to some open neighbourhood
of τ . [4] In this case, the state space is thus S is given by Rn.

We now want to determine the state space of the differential delay equation

ẋ(t) = Ax(t) +Bx(t− r) + f(t) (1.2)

where A,B are constant n × n-matrices, r > 0 and f : R → Rn is continuous. We first explore what the
initial value should be in order to give the initial value problem corresponding to (1.2) an unique solution.
Inspired by ordinary differential equations, we first try a point in Rn as initial value:

ẋ(t) = Ax(t) +Bx(t− r) + f(t), x(0) = x0 (1.3)
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We apply the variation of constants method (see for example [6]) to find that x(t) should satisfy:

x(t) = eAtx0 +

∫ t

0

eA(t−s) (Bx(s− r) + f(s)) ds, t ∈ [0, r]

From here, we see that for (1.2) to have an unique solution, we should know the value of x(t) for t ∈ [−r, 0].
If we write x(t) = φ(t) for t ∈ [−r, 0] and some φ ∈ C ([−r, 0],Rn), we should therefore look at the initial
value problem

ẋ(t) = Ax(t) +Bx(t− r) + f(t), x(t) = φ(t) for t ∈ [−r, 0] (1.4)

We see by the argument above that for t ∈ [0, r], its (unique) solution is given by

x(t) = eAtφ(0) +

∫ t

0

eA(t−s) (Bφ(s− r) + f(s)) ds, t ∈ [0, r]

Since this defines a continuous function on [0, r], we can repeat this argument to find an unique solution on
[r, 2r], etc. This method, also known as the method of steps, ensures that the problem (1.4) has an unique
solution for t ∈ [0,∞).

Denote by x(t, φ) the solution of (1.2) which agrees with φ on [−r, 0]. We can then use the above remarks
to see that once x(τ + θ, φ) is known for all θ ∈ [−r, 0], we can uniquely extend the solution for all t ≥ τ .
Thus, the state is given by xτ (φ), with

xt(φ)(θ) = x(t+ θ, φ) for θ ∈ [−r, 0]

Since xτ (φ) ∈ C ([−r, 0],Rn), we conclude that the state space of system (1.2) is given by

C := C ([−r, 0],Rn)

which we equip with the supremum-norm. With this in mind, we will from now on say that x(t) is a solution
of (1.2) with initial condition φ if x(t) satisfies (1.2) and x(t) = φ(t) for all t ∈ [−r, 0].

We note that the state space S = C ([−r, 0],Rn) of the differential delay equation (1.2) is an infinite–
dimensional space; whereas the state space of the ordinary differential equation (1.1) is given by the finite–
dimensional space S = Rn. This difference turns out to be an important concept in the study of differential
delay equations. For example, it does not matter with which norm we equip the state space S = Rn
of an ordinary differential equation, since all norms on Rn are equivalent. If we study the state space
S = C ([−r, 0],Rn) of (1.2), the choice of norm does matter. We usually choose to equip S = C ([−r, 0],Rn)
with the supremum–norm ‖.‖∞, since this turns S = C ([−r, 0],Rn) into a Banach–space.

We recall from the theory of ordinary differential equations that one can define flow maps φ(t, .) from
the state space to itself, such that the flow maps translate a state ‘along the solution’ of the differential
equation (see Definition A.1.1). Mimicking this idea for differential delay equations, we define for all t ≥ 0.

T (t) : C → C, T (t)φ = xt(φ)

As in the case of ordinary differential equations, we see that

T (0) = I

T (s)T (t) = T (t+ s)

for t, s ≥ 0. In the case of ordinary differential equations, we also have the additional property that
φ(−t, .)φ(t, .) = I (see Appendix A). For differential delay equations, however, backward continuation of a
solution is not always possible. If φ ∈ C ([−r, 0],Rn) and we want to define the solution x(t, φ) of Eq. (1.2) for
t ∈ [−2r,−r], it is a necessary condition that φ ∈ C1 ([−r, 0],Rn). Thus, for general t ≥ 0, φ ∈ C ([−r, 0],Rn)
the expression T (t)φ may not be defined. We conclude that {T (t) | t ≥ 0} defines a semi-group, but not a
group.[8] We therefore refer to the maps T (t) for t ≥ 0 as the semi-flow. In Section 1.3, we will prove some
more properties of the semi-flow for the case where f = 0 in Eq. (1.2)
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1.2 The characteristic equation and stability of equilibria

In the following, we will look at the differential delay equation

ẋ(t) = Ax(t) +Bx(t− r) (1.5)

with A,B n × n-matrices and x ∈ Rn. To find a non-trivial solution, we try the function x(t) = eλtc, with
λ ∈ C and c ∈ Rn. For this function to be a solution of (1.5), we should have that

λeλtc = Aeλtc+Beλte−λrc

Cancelling the terms eλt on both sides, we find that this equation has a non-trivial solution if and only if
the map

c 7→ (λI −A−Be−λr)c

has a non–trivial kernel, i.e. if and only if det
(
λI −A−Be−λr

)
= 0. This motivates the following definition:

Definition 1.2.1. The characteristic function of Eq. (1.5) is defined to be ∆(λ) = λI − A − Be−λr. The
equation det ∆(λ) = 0 is referred to as the characteristic equation.

We can use complex analysis to say something about the distribution of the solutions of det ∆(λ) = 0 in
the complex plane, as is summarized in the following lemma:

Lemma 1.2.1. Denote by ∆(λ) the characteristic function of Eq. (1.5). If there exists a sequence (λj)j∈N
of zero’s of det ∆(λ) such that |λj | → ∞ as j →∞, then Re (λj)→ −∞ as j →∞. In this case, there exists
an α ∈ R such that {λ | det ∆(λ) = 0} ⊆ {z ∈ C | Re (z) < α}. It always holds that only a finite number of
zero’s of det ∆(λ) can be contained in any compact set or in a vertical strip of the complex plane.

Proof. Let (λj)j∈N be a sequence of zero’s det ∆(λ) such that |λj | → ∞ as j →∞. By definition of det ∆(λ),
we find for each j ∈ N a cj ∈ Rn such that λjcj − Acj − Bcje−rλj = 0. Without loss of generality, we may

assume that ‖cj‖ = 1. Thus we find that ‖λjcj −Acj‖ = ‖Bcj‖ e−Re (λj)r. Since ‖cj‖ = 1, it follows from
the definition of the operator norm that

‖B‖ e−rRe (λj) ≥ ‖λjcj −Acj‖ = |λj |
∥∥∥∥cj − 1

λj
Acj

∥∥∥∥
If |λj | → ∞, then |λj |

∥∥∥cj − 1
λj
Acj

∥∥∥ → ∞ (note that ‖cj‖ = 1 for all j ∈ N) and thus it follows by the

inequality that ‖B‖ e−rRe (λj) → ∞. Since ‖B‖ < ∞, it follows that Re (λj) → −∞ as j → ∞. We can
therefore find an α ∈ R such that {λj | j ∈ N} ⊆ {z ∈ C | Re z < α}.

From here, we find that det ∆(λ) can only have finitely many zero’s in any compact subset U ⊆ C. If
det ∆(λ) has infintely many zero’s in U , then it follows by the Bolzano-Weierstrass Theorem and the fact
that U is closed that there exists a sequence (λj)j∈N such that det ∆(λj) = 0 and limj→∞ λj = j ∈ U . Since
det ∆(λ) is continuous, we have that ∆(λ) = 0. Since λ is an accumulation point of zero’s and det ∆(λ) is
holomorphic on C, it follows that det ∆(λ) on all of C, which is a contradiction.

Now, let W be a vertical strip of the complex plane, such that W contains an infinite number of roots
λ of det ∆(λ). Then the set {λ ∈ W | det ∆(λ) = 0} is clearly either bounded or not bounded. If it is
bounded, we can find a compact subset V ⊆ W such that λ ∈ V for all λ ∈ {λ ∈ W | det ∆(λ) = 0}.
This contradicts that any compact set can only contain a finite number of zero’s of det ∆(λ). If the set
{λ ∈ W | det ∆(λ) = 0} is unbounded, we can find a sequence (λj)j∈N ⊆ {λ ∈ W | det ∆(λ) = 0} such that
|λj | → ∞ as j → ∞. But then Re (λj) → −∞ as j ∈ ∞, which contradicts the fact that λj ∈ W for all
j ∈ N. Thus, W can only contain a finite number of zero’s of det ∆(λ). [8]

We state the following result without proof:
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Theorem 1.2.2. Let x(t, φ) be a solution of (1.5) with initial condition φ ∈ C([−r, 0]). If α0 = max{Re (λ) |
det ∆(λ) = 0}, then for any α > α0, there exists a constant K(α) such that

‖x(t, φ)‖ ≤ Keαt ‖φ‖

A proof can be found in [8]. We note that by Lemma 1.2.1, the maximum in max{Re (λ) | det ∆(λ) = 0}
is well-defined.

If we choose φ ∈ C as φ = 0, then x(t) = 0 is a solution of (1.5) with initial value φ. The stability
of the equilibrium φ = 0 is defined in exactly the same manner as for equilibria of ordinary differential
equations (see also Definition A.2.2 in the Appendix). We have defined the state space of system (1.5) to
be C = C ([−r, 0],Rn) equipped with the supremum-norm. Since now the state space is infinite-dimensional
and not all norms are equivalent, we stress that the chosen norm is important. If we equip C with another,
non-equivalent norm, stability properties of the equilibrium can be entirely different. As in the case of linear
ordinary differential equations, the distribution of roots of the characteristic equation in the complex plane
can help us to determine the stability of the equilibrium x = 0. This is summarized in the following Corollary,
which resembles the one found for linear ordinary differential equations with constant coefficients.

Corollary 1.2.1. Denote by α0 = max{Re (λ) | det ∆(λ) = 0}, where ∆ is the characteristic function
correpsonding to (1.5). If α0 < 0, the equilibrium x = 0 of (1.5) is asympotitcally stable. If α0 > 0, then
x = 0 is an unstable equilibrium of (1.5).

Proof. Denote by x(t, φ) the solution of (1.5) with initial condition φ. If α0 < 0, we can choose an α0 < α < 0.
Using Theorem 1.2.2, we find that there exists a constant K such that

‖x(t, φ)‖ ≤ Keαt ‖φ‖

thus, if ‖φ− 0‖ = ‖φ‖ < ε
K , then ‖x(t, φ)‖ < ε for all t ≥ 0. Furthermore, since α < 0, ‖x(t, φ)‖ → 0 for all

φ ∈ C. We conclude that x = 0 is asymptotically stable.
If α0 > 0, there exists a λ such that det ∆(λ) = 0 and Re (λ) > 0. By definition of ∆, it follows that

there exists a µ ∈ R, c ∈ Rn with ‖c‖ = 1 such that xµ(t) = µeλtc is a solution of Eq. (1.5). We note that
this solution satisfies the initial condition φµ(t) = µeλtc for all t ∈ [−r, 0]. Since Re (λ) > 0, we have that
‖φµ − 0‖ = ‖φµ‖ = |µ| ‖c‖ = |µ|. For ε = 1 and δ > 0 arbritary, we choose µ = δ

2 . Then ‖φµ‖ = µ = δ
2 < δ.

However, since Re (λ) > 0, we have that ‖xµ(t)‖ → ∞ as t → ∞, hence there exists a time t0 such that
‖xµ(t0)‖ ≥ 1 = ε. Thus we conclude that x = 0 is an unstable equilibrium of Eq. (1.5).

1.3 The semi–flow and decomposition of the state space

In Section 1.1, the semi-flow maps T (t) were introduced. In this Section, we will first prove some properties
of these maps. This will enable us to find a relation between the spectrum of T (t) and the roots of det ∆(λ).
Using this, we will work toward a more geometric approach on stability of a fixed point.

We need the following Theorem:

Theorem 1.3.1. Let x(t, φ) be a solution of the initial value problem (1.4). Then there exists constants
a, b ≥ 0 such that

|x(t, φ)| ≤ aebt
(
‖φ‖+

∫ r

0

‖f(s)‖ ds
)

For the proof, we need the following inequality

Lemma 1.3.2 (Gronwall Inequality). Let u, α, β ∈ C ([a, b],R), β ≥ 0 such that

u(t) ≤ α(t) +

∫ t

a

β(s)u(s)ds, a ≤ t ≤ b
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If α is non-decreasing, then it holds that

u(t) ≤ α(t) exp

(∫ t

a

β(s)ds

)
For a proof, see for example [8].

Proof. (of Theorem 1.3.1) Since x(t, φ) satisfies 1.4, we find by integration that

x(t, φ) = φ(0) +

∫ t

0

Ax(s) +Bx(s− r) + f(s)ds

and thus that

‖x(t, φ)‖ ≤ ‖φ‖+

∫ t

0

‖A‖ ‖x(s)‖+ ‖B‖ ‖x(s− r)‖+ ‖f(s)‖ ds

We also see that∫ t

0

‖B‖ ‖x(s− r)‖ ds =

∫ 0

−r
‖B‖ ‖x(s)‖ ds+

∫ t

r

‖B‖x(s− r)ds =

∫ 0

−r
‖B‖ ‖φ(s)‖ ds+

∫ t−r

0

‖B‖ ‖x(s)‖ ds

≤ r ‖B‖ ‖φ‖+

∫ t

0

‖B‖ ‖x(s)‖ ds

where the last inequality holds since ‖B‖ ‖x(s)‖ ≥ 0. Thus we find that

‖x(t, φ)‖ ≤ (1 + ‖B‖ r) ‖φ‖+

∫ t

0

(‖A‖+ ‖B‖) ‖x(s)‖ ds+

∫ t

0

‖f(s)‖ ds

If we choose α(t) = (1+Br) ‖φ‖+
∫ t
0
‖f(s)‖ ds and β(t) = ‖A‖+‖B‖, then we have that α, β are real-valued

continuous functions, α is non–decreasing and β ≥ 0. Applying the Gronwell Inequality, we find that

‖x(t)‖ ≤
(

(1 + ‖B‖ r) ‖φ‖+

∫ t

0

‖f(s)‖ ds
)

exp ((‖A‖+ ‖B‖) t)

= (1 + ‖B‖ r) exp ((‖A‖+ ‖B‖)t) ‖φ‖+ (1 + ‖B‖ r) exp ((‖A‖+ ‖B‖)t)
∫ t

0

‖f(s)‖ ds

Setting a = 1 + ‖B‖ r and b = ‖A‖+ ‖B‖ proves the theorem. [8]

Using this, we can prove the following:

Lemma 1.3.3. Let C = C ([−r, 0],Rn) denote the state space of the differential delay equation ẋ(t) =
Ax(t) + Bx(t− r), where A,B are n× n matrices and r > 0. Denote by T (t) the corresponding semi-flow,
i.e. T (t)φ = xt(φ) for all φ ∈ C. Then T (t) : C → C is a bounded linear operator for t ≥ 0 and is compact
for t ≥ r.

Proof. We note that x(t, φ) +x(t, ψ) and x(t, φ+ψ) are solutions of (1.5) with initial condition φ+ψ. Since
solutions of (1.5) are unique given an initial condition, it follows that x(t, φ)+x(t, ψ) = x(t, φ+ψ). Similarly,
we see that x(t, λφ) = λx(t, φ). Using this, we easily see that T (t) is a linear operator.

To see that T (t) is bounded for T > 0, we use Theorem 1.3.1 to obtain the estimate:

‖T (t)φ‖ = ‖xt(φ)‖ = sup
θ∈[−r,0]

‖x(t+ θ, φ)‖ ≤ sup
θ∈[−r,0]

aeb(t+θ) ‖φ‖ = aebt ‖φ‖

for some a, b ≥ 0. We conclude that ‖T (t)‖ ≤ aebt <∞, i.e. T (t) is a bounded operator.
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To show that T (t) is compact for t ≥ r, we denote by x(t) a solution of (1.5) with initial condition φ and
remark that

‖ẋ(t)‖ ≤ ‖A‖ ‖x(t)‖+ ‖B‖ ‖x(t− r)‖ ≤
(
‖A‖ aebt + ‖B‖ aeb(t−r)

)
‖φ‖ = k(t) ‖φ‖

for t ≥ r and for some a, b ≥ 0. It now follows that

‖x(t)‖ =

∥∥∥∥x(0) +

∫ t

0

ẋ(s)ds

∥∥∥∥ ≤ ‖φ(0)‖+

∫ t

0

‖ẋ(s)‖ ds ≤
(

1 +

∫ t

0

k(s)ds

)
‖φ‖ := p(t) ‖φ‖

where p(t) is a continuous function. Therefore, if ε > 0 is given, there exists a δ > 0 such that |s− t〈 δ
implies ‖p(t)− p(s)‖ < ε. If we take ‖φ‖ < 1, we can use the estimate to find that ‖x(t, φ)− x(s, φ)‖ < ε.

Using Arzela-Ascoli’s Theorem, it follows that T (t)
(
BC1 (0)

)
is a compact subset of C (where BC1 (0) denotes

the unit ball in C), i.e. the operator T (t) is compact for t ≥ r. [8]

It turns out that the spectrum of T (t) is strongly related to the zero’s of the characteristic function
det ∆(λ). In order to show this, we introduce the following operator:

Definition 1.3.1. Denote by T (t) : C → C the flow map corresponding to Eq. (1.5). The infinitesimal
generator A of T (t) is defined as

D(A) = {φ ∈ C | lim
t→0

1

t
[T (t)φ− φ] exists}

Aφ = lim
t→0

1

t
[T (t)φ− φ] if φ ∈ D(A)

where D(A) denotes the domain of A.

It turns out that we are able to compute the domain D(A) and give a more explicit form for the operator
A, as is shown in the following Lemma:

Lemma 1.3.4. Let A be the infinitesimal generator of T (t) as in Definition 1.3.1. Then the following holds:

D(A) = {φ ∈ C | φ ∈ C1 ([−r, 0],Rn) , φ̇(0) = Aφ(0) +Bφ(−r)}
Aφ = φ̇ if φ ∈ D(A)

Proof. We first prove that if φ ∈ D(A), then Aφ = φ̇. By definition of the semi-flow, we have that

lim
t→0

1

t
[T (t)φ− φ] = lim

t→0

1

t
[xt(φ)− x0(φ)]

We notice that the last expression is a difference quotient; thus, if the limit exists, it should equal

lim
t→0

1

t
[xt(φ)− x0(φ)] =

d

dt
xt(φ)|t=0

Since x(θ, φ) = φ(θ) for θ ∈ [−r, 0], we conclude that

Aφ =
d

dt
xt(φ)|t=0 = φ̇

To prove that D(A) = {φ ∈ C | φ ∈ C1 ([−r, 0],Rn) , φ̇(0) = Aφ(0) + Bφ(−r)}, we first take φ ∈
C1 ([−r, 0],Rn) , φ̇(0) = Aφ(0) + Bφ(−r). We note that by (1.5), x(t, φ) is continuously differentiable for
t > 0. Since we have taken, φ ∈ C1 := C1 ([−r, 0],Rn) and x(t, φ) = φ(t) for all t ∈ [−r, 0], we find that x(t, φ)
is continuously differentiable for t ∈ (−r, 0). Since x(t, φ) is a solution of (1.5), we find that its right deriva-
tive at t = 0 equals Ax(0, φ) +Bx(−r, φ) = Aφ(0) +Bφ(−r). The condition that φ̇(0) = Aφ(−r) +Bφ(−r)
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thus ensures that the left derivative of x(t, φ) at t = 0 equals its right derivative. We find that the derivative
of x(t, φ) at t = 0 exists and, since x(t, φ) satisfies (1.5), that this derivative is continuous. We conclude that
x(t, φ) is continuously differentiable on (−r,∞).

Denoting by ‖.‖∞ the supremum-norm, and by ‖.‖ a norm on Rn, we find that∥∥∥∥1

t
[T (t)φ− φ]− φ̇

∥∥∥∥
∞

= sup
θ∈[−r,0]

∥∥∥∥1

t
[x(t+ θ, φ)− x(θ, φ)]− d

dt′
x(t′, φ)|t′=θ

∥∥∥∥
We note that

d

dt′
x(t′, φ)|t′=θ = lim

t→0

1

t
[x(t+ θ, φ)− x(θ, φ)]

for all θ ∈ [−r, 0]. Let ε > 0 be given. Then we can find for every θ ∈ [−r, 0] a δ > 0 such that if ‖t‖ < δ,
then

∥∥ 1
t [x(t+ θ, φ)− x(θ, φ)]− d

dt′ x(t′, φ)|t′=θ
∥∥ < ε. However, since

θ 7→ 1

t
[x(t+ θ, φ)− x(θ, φ)]− d

dt′
x(t′, φ)|t′=θ

is continuous by the remarks made above, and since [−r, 0] is compact, we can make such an estimate
independent of θ, i.e. we can find a δ > 0 such that∥∥∥∥1

t
[x(t+ θ, φ)− x(θ, φ)]− d

dt′
x(t′, φ)|t′=θ

∥∥∥∥ < ε

if ‖t‖ < δ and θ ∈ [−r, 0]. We conclude that limt→0
1
t [T (t)φ− φ] = φ̇ in the supremum-norm and in

particular, the limit exists. Thus, we find that φ ∈ D(A) and {φ ∈ C | φ ∈ C1 ([−r, 0],Rn) , φ̇(0) =
Aφ(0) +Bφ(−r)} ⊆ D(A).

We now prove that D(A) ⊆ {φ ∈ C | φ ∈ C1 ([−r, 0],Rn) , φ̇(0) = Aφ(0) + Bφ(−r)}. The fact that
limt→0

1
t [T (t)φ− φ] exists, implies that both the left-sided and right-sided limit exist and equal each other.

Arguing as in the first part of the reverse inclusion, we should have that φ ∈ C1 and φ̇(0) = Aφ(0)+Bφ(−r).
Thus, we conclude that D(A) ⊆ {φ ∈ C | φ ∈ C1 ([−r, 0],Rn) , φ̇(0) = Aφ(0) + Bφ(−r)}. Combining this
with the reversed inclusion as shown above, we find that D(A) = {φ ∈ C | φ ∈ C1 ([−r, 0],Rn) , φ̇(0) =
Aφ(0) +Bφ(−r)}. [8]

We prove the following lemmata concerning the spectra of T (t) and A:

Lemma 1.3.5. With A as in Definition 1.3.1, we have that σ(A) = σpt(A) = {λ ∈ C | det ∆(λ) = 0}, where
σpt(A) denotes the point spectrum of A.

Proof. We first prove that σpt(A) = {λ ∈ C | det ∆(λ) = 0}. We note λI − A is not injective if and only

if there exists an φ 6= 0 such that Aφ = φ̇ = λφ. It follows that φ(θ) = ceλθ for some c ∈ Rn, c 6= 0.
But such a c ∈ Rn\{0} exists if and only if det ∆(λ) = det(λI − A − Be−rλ) 6= 0. Thus, we find that
σpt(A) = {λ ∈ C | det ∆(λ) = 0}.

By definition of the point spectrum, we have that σpt(A) ⊆ σ(A). Thus, if σ(A) ⊆ σpt(A) = {λ ∈ C |
det ∆(λ) = 0}, the statement of the lemma follows. Take a λ ∈ C such that det ∆(λ) 6= 0. We want to
show that λ ∈ ρ(A), where ρ(A) denotes the resolvent set of A. We do so by constructing an inverse: take
any ψ ∈ C. We note that (λI − A)φ = λφ − φ̇ = ψ is equivalent to φ̇(θ) = λφ(θ) − ψ(θ) for all θ ∈ [−r, 0].
Applying the variation of constants formula, we find that a solution is given by:

φ(θ) = eλθ

(
c−

∫ θ

0

e−λsψ(s)ds

)
(1.6)
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where c ∈ Rn is a constant which we want to choose in such a way that φ ∈ D(A). We note that, independent
of the choice of c, we have that φ ∈ C1 ([−r, 0],Rn). Furthermore, we have that

φ̇(θ) = λeλθ

(
c−

∫ θ

0

e−λsψ(s)ds

)
− eλθe−λθψ(θ) = λeλθ

(
c−

∫ θ

0

e−λsψ(s)ds

)
− ψ(θ)

φ̇(0) = λc− ψ(0)

Aφ(0) +Bφ(−r) = Ac+Be−λrc− e−λrB
∫ −r
0

e−λsψ(s)ds

Thus, we find that φ̇(0) = Aφ(0) +Bφ(−r) if and only if

λc−Ac−Be−rλc = ψ(0)− e−λrB
∫ −r
0

e−λsψ(s)ds (1.7)

Since we chose λ such that det ∆(λ) 6= 0, we find that the map c 7→ λc − Ac − Be−rλc is surjective. In
particular, there exists a c ∈ Rn that satisfies equality (1.7). For this choice of c, we have by construction
that φ as defined in Eq. (1.6) satisfies φ ∈ D(A) and λφ − Aφ = ψ. Since the map c 7→ λc − Ac − Be−rλc
is linear, so is its inverse. Thus, for a fixed λ, the choice of c depends continuously on ψ. We can combine
this with the expression in (1.6) to see that the map ψ 7→ φ = (λI − A)−1ψ is continuous, hence bounded.
We conclude that λ ∈ ρ(A) and thus that σ(A) ⊆ σpt(A) = {λ ∈ C | det ∆(λ) = 0}. Combining this with
the inequality {λ ∈ C | det ∆(λ) = 0} = σpt(A) ⊆ σ(A), the Lemma follows. [8]

Lemma 1.3.6. Let T (t), A be as above. If µ(t) is an eigenvalue of T (t), then there exists a λ ∈ C such
that µ(t) = eλt. Furthermore, (eλt, φ) is an eigenpair of T (t) if and only if (λ, φ) is an eigenpair of A. For
t > 0 we find that

σ(T (t))\{0} = {eλt | det ∆(λ) = 0}

Proof. If (λ, φ) is an eigenpair of A, we have that Aφ = λφ or φ = ceλt for some c ∈ Rn\{0}. In the previous
Lemma we proved that det ∆(λ) = 0 if and only if λ is an eigenvalue of A; therefore we can use the definition
of ∆ to see that x(t, φ) = ceλt = φ is an eigenfunction of T (t). To compute the eigenvalue, we note that
(T (t)φ) (θ) = eλteλθc = eλtφ(θ), i.e. the eigenvalue is given by eλt. Conversely, we see that if (eλt, φ) is
an eigenpair of T (t), then we should have that φ(θ) = eλθc for some c 6= 0. Thus we find that (λ, φ) is an
eigenpair of A.

Combining this with the previous lemma, we find that

σpt(T (t)) = {eλt | λ ∈ σpt(A)} = {eλt | det ∆(λ) = 0}

We now recall that for t ≥ r, the operator T (t) is compact; hence it follows from the general properties for
the spectrum of compact operators that σ(T (t))\{0} consists of point spectrum only. Thus, for t ≥ r, the
claim follows. For any given 0 < t < r, we note that there exists an n ∈ N such that nt ≥ r. Using the
properties of the semi-flow, we have that σ(T (nt)) = σ(T (t)n). We can now use the Polynomial Spectral
Theorem (see, for example, [13]) to see that

σ(T (nt)) = σ(T (t)n) = (σ(T (t)))
n

:= {λn | λ ∈ σ(T (t))}

Since nt ≥ r, we have already proven the claim in this case and we can use this to find that

σ(T (t))\{0} = { n
√
λ | λ ∈ σ(T (nt)\{0}} = {

(
eλnt

)1/n | λ ∈ C, det ∆(λ) = 0} = {eλt | λ ∈ C, det ∆(λ) = 0}

which proves the claim in the case 0 < t < r. [8]
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We recall from Section 1.2 that if all the zero’s of det ∆(λ) satisfy Re (λ) < 0, then the fixed point x = 0
of (1.5) is asymptotically stable; if there exists a root such that Re (λ) > 0, then x = 0 is unstable. However,
if there are roots on the imaginary axis and all the other roots are in the left half plane, we are not yet
able to determine the stability of x = 0. To tackle this question, we note by the previous lemma’s that the
spectrum of T (t) is related to the zero’s of det ∆(λ). We can try to decompose the state space C in two
invariant subsets U and V , such that we ‘remove’ the purely imaginary eigenvalues by restricting T (t) to U .
Then the system (1.5) restricted to U is stable. We illustrate this procedure by an example.

Example 1.3.1. We consider the system (1.5) with A + B = 0 and Ar < 1. One can show that the roots
of det ∆(λ) all satisfy Re (λ) < 0, except for a simple root at z = 0.[8] Because this root at z = 0, we cannot
apply Corollary 1.2.1 to analyze the stability of the fixed point x = 0.

We define e0(θ) = 1 = e0θ for −r ≤ θ ≤ 0. Furthermore we define:

C0 = {φ ∈ C | φ(0) +B

∫ 0

−r
φ(θ)dθ = 0}

Π0(φ) =
1

1 +Br

[
φ(0) +B

∫ 0

−r
φ(θ)dθ

]
e0

We first note that Π0 is a projection, i.e. Π2
0 = Π0. If we introduce the notation

α =
1

1 +Br

[
φ(0) +B

∫ 0

−r
φ(θ)dθ

]
we find that

Π2
0φ =

1

1 +Br

[
α+B

∫ 0

−r
αe0dθ

]
e0 =

1

1 +Br
[α+Brα] e0 = αe0 = Π0φ

If we denote by R(Π0) the range of Π0 and by N (Π0) the kernel, we can write any φ ∈ C as φ = φ0 + φr
with φ0 ∈ N (Π0) and φr ∈ R(Π0). Indeed, if we set φr = Π0φ and φ0 = φ−Π0φ, we have that φr ∈ R(Π0)
and we can use the property of the projection to see that φ0 ∈ N (Π0). Thus, we find the decomposition
C = N (Π0)⊕R(Π0).

We now show that C0 = N (Π0) is invariant under T (t), i.e.

x(t) +B

∫ 0

−r
x(t+ θ)dθ = 0, t ≥ 0

Let φ ∈ C0 and denote by x(t) the solution of (1.5) through φ. Since x(0) = φ(0) we have for t = 0 that

x(0) +B

∫ 0

−r
x(θ)dθ = φ(0) +B

∫ 0

−r
φ(θ)dθ = 0

by the assumption that φ ∈ C0. For t > 0 we have that

ẋ(t) +B

∫ 0

−r
ẋ(t+ θ)dθ = ẋ(t) +B(x(t)− x(t− r)) = Ax(t) +Bx(t− r) +B(x(t)− x(t− r)) = (A+B)x(t) = 0

by the assumption that A + B = 0. This implies that x(t) + B
∫ 0

−r x(t + θ)dθ is constant, and since

φ(0) +B
∫ 0

−r φ(θ)dθ = 0 we find that x(t) +B
∫ 0

−r x(t+ θ)dθ = 0 for all t ≥ 0. We conclude that T (t)φ ∈ C0
if φ ∈ C0 for all t ≥ 0.

Since C0 is invariant under T (t), we can restrict T (t) to C0 to obtain the flow map S(t). Since Π0e0 =
e0 6= 0, we find that e0 6∈ C0. Thus by construction, 1 (corresponding to the root λ = 0 of ∆) is not an
eigenvalue of S(t). Since all the other roots of det ∆(λ) were in the left half plane, the fixed point x = 0 is
now a stable equilibrium if we restrict the state space of (1.5) to C0. [8]
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Chapter 2

Time delayed feedback control

After discussing the basic concepts in the study of differential delay equations, we now turn to Pyragas
control. We study the system

ż(t) = (λ+ i)z(t) + (1 + iγ) |z(t)|2 z(t) (2.1)

where λ, γ ∈ R are parameters and z : R → C. This system can be used to model a various physical
phenomena. [3] Furthermore, system (2.2) is the normal form of a subcritical Hopf bifurcation. This implies
the existence of an unstable periodic orbit for λ < 0. This periodic orbit, that we explicitly compute in
Section 2.1, will be the target state of the control.

For the controlled system, we write

ż(t) = (λ+ i)z(t) + (1 + iγ) |z(t)|2 z(t)−Keiβ [z(t)− z(t− τ)] (2.2)

with K ∈ R, β ∈ [0, π] and τ is an appropriately chosen delay term.
The main idea of the analysis in this chapter is to choose the value of K in such a way that the target

periodic orbit still emmanates from a Hopf bifurcation, but now from a supercritical one. The target periodic
orbit is then stable for parameter values near the bifurcation point. To do so, we do not fix τ as the period T
of the target state from the start, but instead we treat τ as a parameter. For general values of τ , we cannot
expect the periodic orbit of (2.1) to be a solution of (2.2), but by studying these values of τ as well, we are
able to use the Hopf bifurcation theorem in such a way that it gives us information on the stability of the
periodic solution for τ = T .

In Section 2.1, we study the uncontrolled system, (2.1), in more detail. In Section 2.2, we study conditions
for the occurence of a Hopf bifurcation of system (2.2); in Section 2.3, we determine whether the Hopf
bifurcation at the bifurcation points is sub– or supercritical. Using this, we give conditions for the target
periodic orbit to be an (un)stable solution of (2.2) in Section 2.3. In Sections 2.2 and 2.4 we will mostly
follow [10].

2.1 Bifurcations of the uncontrolled system

Before turning to the controlled system (2.2), we first study the bifurcation diagram of the uncontrolled
system (2.1) in more detail. We first note that z = 0 is a fixed point of (2.1). Using stability theory for
ordinary differential equations we can determine the stability of this fixed point; the necessary stability
theory – if not yet known to the reader – can be found in Appendix A.

Lemma 2.1.1. The fixed point z = 0 of system (2.1) is stable if λ < 0 and unstable if λ > 0.

Proof. Put z(t) = x(t) + iy(t) and rewrite (2.1) as

ẋ(t) + iẏ(t) = (λ+ i)(x(t) + iy(t)) + (1 + iγ)(x2(t) + y2(t))(x(t) + iy(t))
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which is equivalent to the system (ẋ(t), ẏ(t)) = f(x(t), y(t)), with f : R2 → R2 given by

f(x, y) =

(
λx− y + (x2 + y2)(x− γy)
x+ λy + (x2 + y2)(y + γx)

)
(2.3)

The derivative of (2.3) at the point (x, y) = (0, 0) is given by

Df(0, 0) =

(
λ −1
1 λ

)
whose eigenvalues are

µ± = λ± i

Noting that Re (µ±) = λ we see that origin is a stable equilibrium if λ < 0 and an unstable equilibrium if
λ > 0 (see also Corollary A.3.1).

We note that µ(0) = ±i ∈ C\R and d
dλRe (µ(λ)) = dλ

dλ = 1 6= 0. Therefore, the Hopf bifurcation theorem,
Theorem A.6.1, guarantees the existence of a periodic solution of (2.1) for λ near 0. It turns out that we
can actually compute this periodic orbit of (2.1).

Lemma 2.1.2. A periodic solution of (2.1) is given by

z(t) =
√
−λei(1−γλ)t, λ < 0 (2.4)

with period

T =
2π

1− γλ

Proof. We rewrite (2.1) in polar coordinates:

ṙ(t)eiθ(t) + iθ̇(t)r(t)eiθ(t) = (λ+ i)r(t)eiθ(t) + (1 + iγ)r3(t)eiθ(t)

Cancelling the factor eiθ(t) on both sites an taking real and imaginary parts (note that both r and θ are real)
we find the following two equations:

ṙ(t) = λr(t) + r3(t) (2.5)

θ̇(t)r(t) = r(t) + γr3(t) (2.6)

The root r = 0 of (2.5) corresponds to the equilibrium at the origin. We note that r(t) = ±
√
−λ are roots of

(2.5). Since in polar coordinates we should have that r(t) ≥ 0,we find that for λ < 0 there exsits a periodic
orbit satisfying r(t) =

√
−λ. For r(t) =

√
−λ, Eq. (2.6) reduces to θ̇(t) = 1− γλ, i.e. θ(t) = (1− γλ)t+ t0.

Thus, a periodic solution of (2.1) is given by

z(t) =
√
−λei(1−γλ)t

with minimal period T = 2π
1−γλ .

Using the theory of characterstic multipliers (see Appendix A), we are able to determine the stability of
the periodic solution (2.4) of system (2.1).

Lemma 2.1.3. The periodic solution (2.4) of system (2.1) is unstable if γλ < 1 and stable if γλ > 1.
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Figure 2.1: Bifurcation diagram of system (2.1) for γ > 0 (left) and γ < 0 (right)

Proof. We write g(r, θ) = (λr+r3, 1+γr2) such that the system (2.5), (2.6) for r(t) 6= 0 becomes (ṙ(t), θ̇(t)) =
g(r(t), θ(t)). Then in polar coordinates, we find that

A(t) = Dg(
√
−λ, (1− γλ)t) =

(
λ+ 3r(t)2 0

2γr(t) 0

)∣∣∣∣
r=
√
−λ,θ(t)=(1−γλ)t

=

(
−2λ 0

2γ
√
−λ 0

)
Thus, the linear variational equation is given by ẋ(t) = A(t)x(t) with A(t) = Dg(

√
−λ, (1− γλ)t) as above.

Since A(t) = A does not depend on time, we see that the fundamental matrix solution is given by X(t) = eAt.
Thus, we find for the monodromy matrix C (see Definition A.4.2):

C = X(0)−1X(T ) = eAT

The eigenvalues of A are given by λ1 = 0, λ2 = −2λ. Since C = eAT , we find that the eigenvalues µ1,2 of C
are given by

µ1 = eλ1T = 1

µ2 = eλ2T = e−2λ
2·π

1−γλ

We indeed find the trivial characteristic multiplier, as should be according to the theory of characterstic
multipliers (see Appendix A). Since the periodic orbit of interest only exists for λ < 0, we find that for
the non-trivial characteristic multiplier that µ2 > 1 if γλ < 1 and µ2 < 1 if γλ > 1. We conclude that the
periodic orbit (2.4) of (2.1) is unstable if γλ < 1 and stable for γλ > 1 (see Theorem A.5.1). Specifically,
if we choose γ > 0, we have that γλ < 0 < 1 for all values of λ < 0; thus the periodic orbit is unstable
for all values of λ < 0. For γ < 0, we find that the periodic orbit is unstable for 1

γ < λ < 0 and stable for

λ < 1
γ .

The behaviour described in Lemmata 2.1.1 – 2.1.3 is summarized in Figure 2.1.
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2.2 Occurence of a Hopf bifurcations in the controlled system

In the previous section, we studied the bifurcation diagram of system (2.1). We found for λ < 0 and γλ < 1
that (2.4) is an unstable periodic solution of system (2.1). This periodic orbit is the orbit we want to stabilize
via feedback control, see (2.2). We want to choose the parameters K,β in such a way that the periodic orbit
(2.4) emmanates from a supercritical Hopf bifurcation, since this implies stability of the periodic orbit (2.4)
near the bifurcation point.

In order to do so, we first determine for which parameter values we find a Hopf bifurcation. We introduce
the Hopf bifurcation theorem for differential delay equations.

Theorem 2.2.1. Let us consider the differential delay equation{
ẋ(t) = A(µ)x(t) +B(µ)x(t− τ) + g(xt, µ) for t ≥ 0

x(t) = φ(t) for − τ ≤ t ≤ 0
(2.7)

where xt ∈ C([−τ, 0],Rn) is such that xt(θ) = x(t + θ). Furthermore, µ is a scalar parameter, A(µ), B(µ)
n×n-matrices, µ 7→ A(µ), µ 7→ B(µ) smooth maps, g : C([−τ, 0],Rn)×R→ R is a Ck mapping for k ≥ 2 and
φ ∈ C ([−τ, 0],Rn). Assume that g(0, µ) = D1g(0, µ) = 0 for all µ ∈ R. Denote by ∆(λ, µ) the characterstic
function of the linearized system of (2.7).

Assume that for µ = µ0 there exists an ω0 ∈ R\{0} such that z = ±iω0 are simple roots of ∆(λ, µ0) and
no other roots of ∆(λ, µ0) are of the form z = iωn for some n ∈ Z.

Furthermore, let p, q ∈ Cn be such that

∆(iω0, µ0)p = 0

∆(iω0, µ0)T q = 0

qD1∆(iω0, µ0)p = 1

(2.8)

and assume that

Re (q ·D2∆(iω0, µ0)p) < 0 (2.9)

Then for µ = µ0 a Hopf bifurcation of the origin occurs.

The theorem for more general cases of differential delay equations and a proof can be found in [3].

Remark 2.2.1. The second condition in the Hopf bifurcation theorem ensures that the eigenvalue on the
imaginary axis moves into the right half plane for µ > µ0. If we would have that Re (q ·∆2(iω0, µ0)p) > 0,
i.e. the eigenvalue on the imaginary axis moves into the left half plane for µ > µ0, we can still ensure that the
condition 2.9 is satisfied by studying the system (2.7) with the substitution µ→ −µ. Instead of the condition
(2.9), we could therefore also require that Re (q ·∆2(iω0, µ0)p) 6= 0. The formulation as in Theorem (2.2.1),
however, will be more convenient in the study of the direction of the Hopf bifurcation, since it makes the
‘direction of the Hopf bifurcation’ a well–defined notion.

Remark 2.2.2. By the occurence of a Hopf bifurcation at µ = µ0 we mean that there exists a mapping
ε 7→ µ∗(ε), such that for all ε sufficiently small, system (2.7) has a periodic solution for µ = µ∗(ε). This
periodic solution is a unique periodic orbit for µ = µ∗(ε) except for a translation in phase.

We have that the origin z = 0 is an equilibrium of system (2.2). Using Theorem 2.2.1, we want to study
the values of the parameters λ, τ for which we find a Hopf bifurcation of the origin.

We want to study the Hopf bifurcation with parameters in the (λ, τ)-plane. Theorem 2.2.1 applies to
scalar parameters and therefore we should choose a curve through the (λ, τ) plane. There are, of course,
different ways to do this. In this Chapter, we will vary the parameter λ and leave τ fixed. A different
approach is treated in Chapter 4.
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Lemma 2.2.2. Let us consider the system (2.2) where we leave all parameters but λ fixed. Let (λ, τ) 6= (0, 0)
be such that

λ = K [cosβ − cos(β − φ)] (2.10)

τ =
φ

1−K [sinβ − sin(β − φ)]
(2.11)

for some φ ∈ R. Furthermore, assume that

1 +Kτei(β−φ) 6= 0 (2.12)

1 +Kτ cos(β − φ) > 0 (2.13)

Then a Hopf bifurcation of the origin of system (2.2) occurs.

Proof. We note that we can cast system (2.2) in the form of (2.7) by setting

A(λ) = λ+ i−Keiβ , B(λ) = Keiβ , g(xt, λ) = (1 + iγ) |xt(0)|2 xt(0)

We see that the maps λ 7→ A(λ), λ 7→ B(λ) are smooth and that g is a smooth map with g(0, λ) =
D1g(0, λ) = 0.

We note that the linearized system of (2.2) is given by the differential delay equation

ż(t) = (λ+ i)z(t)−Keiβ [z(t)− z(t− τ)]

whose characteristic function ∆ (see Definition 1.2.1) reads

∆(µ, λ) = µ− λ− i+Keiβ
[
1− e−µτ

]
We want to find the value of (λ, τ) such that we find a non–zero root of the characterstic equation on the
imaginary axis. Writing this root as µ = iω ∈ R\{0}, we should have that

iω = λ+ i−Keiβ
[
1− e−iωτ

]
Splitting in real and imaginary parts, we find that

0 = λ−K [cosβ − cos(β − ωτ)]

ω = 1−K [sinβ − sin(β − ωτ)]

Introducing the notation φ = ωτ and rewriting yields (2.10) and (2.11). Thus, for (λ, τ) satisfying (2.10)
and (2.11) we find a non–zero root of the characterstic equation on the imaginary axis.

We note that

D1∆(iω, λ) = 1−Keiβe−iωτ (−τ) = 1 +Kτei(β−φ)

Thus, if (2.12) is satisfied, we find that µ = iω is a simple zero of the characteristic equation. By construction,
µ = iω is the only zero of the characterstic equation of the form µ = iωn, n ∈ Z.

Set p = 1, q = α. If λ, τ satisfies (2.10), (2.11) for φ = ωτ , then we have that ∆(iω, λ)p = ∆(iω, λ)T q = 0.
Furthermore, we find that

q ·D1∆(iω, λ)p = α
(
1−Keiβe−iωτ (−τ)

)
= α

(
1 +Kτei(β−φ)

)
Thus, if we choose

p = 1, q = α =
1

1 +Kτei(β−φ)
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the conditions (2.8) are satisfied. We have that

Re (q ·D2∆(iω, λ)p) = Re

(
− 1

1 +Kτei(β−φ)

)
= −1 +Kτ cos(β − φ)∣∣1 +Kτei(β−φ)

∣∣2
Thus, Re (q ·D2∆(iω, λ)p) < 0 if and only if (2.13) is satisfied. Using Theorem 2.2.1, we conclude that if
the conditions (2.10) - (2.13) are satisfied a Hopf bifurcation of the origin occurs.

If we fix the value of K, then a given value of φ gives us directly a value of λ via equation (2.10) and a
value of τ via (2.11). Thus, we can treat φ as a free parameter and we find that the equations (2.10)-(2.11)
parametrize a curve in (λ, τ)-space.

Definition 2.2.1. We define the Hopf bifurcation curve as the curve in (λ, τ)-parameter space parametrized
by equations (2.10) and (2.11).

Using Lemma 2.2.2, we see that the points on the Hopf bifurcation curve are candidate parameter values
for the occurence of a Hopf bifurcation. If for a point (λ, τ) on the Hopf bifurcation curve the conditions
(2.12)-(2.13) are also satisfied, we indeed find a Hopf bifurcation of the origin of system (2.2).

We can also look at the points in (λ, τ)-parameter space for which (2.4) is a solution of system (2.2). We
recall from Lemma 2.1.2 that for λ < 0, (2.4) is a periodic solution of (2.1) with period T = 2π

1−γλ . Hence, for

τ = T = 2π
1−γλ , (2.4) is by construction a periodic solution of (2.2). This motivates the following definition:

Definition 2.2.2. We define the Pyragas curve in (λ, τ)-parameter space as the graph of

τ(λ) =
2π

1− γλ
(2.14)

with λ in the domain (−∞, 0).

For points on the Pyragas curve, we have that the periodic solution (2.4) is a solution of (2.2).
We note that the Pyragas curve ends at the point (λ, τ) = (0, 2π). By applying (2.10) and (2.11) with

φ = 2π, we find that this point also lies on the Hopf bifurcation curve, i.e. the Pyragas curve ends on
the Hopf bifurcation curve. The Hopf bifurcation at this point can be sub- or supercritical. If the Hopf
bifurcation is subcritical, an unstable periodic orbit occurs to the left hand side of the Hopf bifurcation
curve; for a supercritical Hopf bifurcation, a stable periodic orbit is generated to the right hand side of the
Hopf bifurcation curve. Thus, we can try to determine the orientation of the Hopf bifurcation curve with
respect to the Pyragas curve at (λ, τ) = (0, 2π) and combine this with the direction of the Hopf bifurcation
(i.e. whether the Hopf bifurcation is sub– or supercritical) at (λ, τ) = (0, 2π). This will give us information
on the stability of the periodic solution (2.4) of (2.2) for parameter values near (λ, τ) = (0, 2π).

To apply this method, we of course need to know the direction of the Hopf bifurcation at (λ, τ) = (0, 2π).
Determining this direction will be the main topic in the following section.

2.3 Direction of the Hopf bifurcation in the controlled system

In the previous Section, we introduced the Hopf bifurcation curve and the Pyragas curve in the (λ, τ)-plane,
see Definitions 2.2.1-2.2.2. Parameter values on the Hopf bifurcation curve are candidates for the occurence
of a Hopf bifurcation of system (2.2); for parameter values on the Pyragas curve, (2.4) is a solution of (2.2).
We saw that the Pyragas curve ends on the Hopf bifurcation curve. Therefore, we can try to choose the
parameters K,β in such a way that the periodic solution (2.4) of (2.2) emmanates from a supercritical Hopf
bifurcation; then (2.4) is a stable solution of (2.2) for parameter values near the bifurcation point.

In order to apply this method, we start by determining the direction of the Hopf bifurcation.

Remark 2.3.1. By the ‘direction of the Hopf bifurcation’ at a point we mean whether the Hopf bifurcation
is sub– or supercritical at that point.
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In [10], the direction of the Hopf bifurcation for parameter values on the Pyragas curve is determined by
performing a normal form reduction on the system (2.2). In literature, we can also find closed–form formulas
that determine the direction of the Hopf bifurcation for a general differential delay equation, see for example
[3]. Here, we use this closed–form formula to determine the direction of the Hopf bifurcation of (2.2) for
parameter values on the Hopf bifurcation curve.

Theorem 2.3.1. Let us consider the differential delay equation{
ẋ(t) = A(µ)x(t) +B(µ)x(t− τ) + g(xt, µ) for t ≥ 0

x(t) = φ(t) for − τ ≤ t ≤ 0
(2.15)

where µ is a scalar parameter, and A(µ), B(µ) and g are as in Theorem 2.2.1. Assume that a Hopf bifurcation
of the equilibrium x = 0 occurs for µ = µ0, i.e. let the conditions in Theorem 2.2.1 be satisfied. Denote
by ∆(λ, µ) the characteristic function of (2.15) and let ω ∈ R\{0} be such that det ∆(iω0, µ0) = 0. Let
p, q ∈ Cn satisfy (2.8). If we introduce

µ2 =
Re (c)

Re (q ·D2∆(iω0, µ0)p)
(2.16)

with

c =
1

2
q ·D3

1g(0, µ0)(φ, φ, φ) + q ·D2
1g(0, µ0)(e0.∆(0, µ0)−1D2

1g(0, µ0)(φ, φ), φ)

+
1

2
q ·D2

1g(0, µ0)(e2iω0.∆(2iω0, µ0)−1D2
1g(0, µ0)(φ, φ), φ)

(2.17)

then for µ2 < 0, the Hopf bifurcation is subcritical; for µ2 > 0, the Hopf bifurcation is supercritical.

A proof of the theorem can be found in [3].
We want to apply Theorem 2.3.1 to the system (2.2). Since the differential delay equation (2.15) in

Theorem 2.3.1 is real–valued, we give a real–valued representation for (2.2) and its characteristic function.

Lemma 2.3.2. System (2.2) can also be represented as a system R2 given by(
ẋ1(t)
ẋ2(t)

)
=

(
λ−K cosβ −1 +K sinβ
1−K sinβ λ−K cosβ

)(
x1(t)
x2(t)

)
+
(
x1(t), x2(t)

)(x1(t)
x2(t)

)(
1 −γ
γ 1

)(
x1(t)
x2(t)

)
+K

(
cosβ − sinβ
sinβ cosβ

)(
x1(t− τ)
x2(t− τ)

) (2.18)

whose characteristic function ∆ is given by

∆(µ, λ) = µI −
(
λ−K cosβ −1 +K sinβ
1−K sinβ λ−K cosβ

)
−Ke−µτ

(
cosβ − sinβ
sinβ cosβ

)
(2.19)

Proof. Setting z = x1 + ix2 in (2.2) and taking real and imaginary parts yields (2.18), whose characteristic
function is given by (2.19).

Define xt ∈ C([−τ, 0],R2) as xt(θ) = x(t+ θ). Then we can describe the non-linear term in (2.18) by the
function g : C([−τ, 0],R2)× R→ R2 given by

g(xt, λ) = 〈xt(0), xt(0)〉Cxt(0) with C =

(
1 −γ
γ 1

)
(2.20)

where 〈. , . 〉 denotes the standard inner product on R2. In order to apply formula (2.16) and (2.17), we begin
by computing D2

1g(0, λ) and D3
1g(φ, λ).
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Lemma 2.3.3. Define g as in (2.20). For all values of λ, D2
1g(0, λ) = 0 holds. Furthermore, we have that

D3
1g(φ, λ)(f1, f2, f3) =

∑
σ∈S3

〈
fσ(1)(0), fσ(2)(0)

〉
Cfσ(3)(0) (2.21)

for all φ, f1, f2, f3 ∈ C
(
[−τ, 0],R2

)
. Here S3 denotes the permutation group of three objects.

Proof. We introduce

T : C
(
[−τ, 0],R2

)
→ R2, T (φ) = φ(0) (2.22)

which is a bounded linear operator. We can now write

g(φ, λ) = 〈T (φ), T (φ)〉CT (φ)

Denote by

h : C
(
[−τ, 0],R2

)
→ R, h(φ) = 〈T (φ), T (φ)〉

Since T is a linear map, DT (φ) = T holds for all φ ∈ C
(
[−τ, 0],R2

)
. By combining the derivative of the

inner product with the chain rule, we find that

Dh(φ) = 〈T (φ), T (.)〉+ 〈T (.), T (φ)〉 : C
(
[−τ, 0],R2

)
→ R

Using Leibniz’ Rule, we find that

D1g(φ, λ) = 〈T (φ), T (.)〉CT (φ) + 〈T (.), T (φ)〉CT (φ) + 〈T (φ), T (φ)〉CT (.)

Denote by Lin(X,Y ) the space of linear maps fromX to Y . We have thatD1g(φ, λ) ∈ Lin(C
(
[−τ, 0],R2

)
,R2)

and D2
1g(φ, λ) ∈ Lin(C

(
[−τ, 0],R2

)
,Lin(C

(
[−τ, 0],R2

)
,R2)). Denoting by .. the argument such that

D2
1g(φ, λ)(..) : C

(
[−τ, 0],R2

)
→ Lin(C

(
[−τ, 0],R2

)
,R2)

we find by the Leibniz rule that

D2
1g(φ, λ) = 〈T (..), T (.)〉CT (φ) + 〈T (φ), T (.)〉CT (..) + 〈T (.), T (..)〉CT (φ)

+ 〈T (.), T (φ)〉CT (..) + 〈T (..), T (φ)〉CT (.) + 〈T (φ), T (..)〉CT (.)
(2.23)

Since T (0) = 0, we find that D2
1g(0, λ) = 0 for all λ ∈ R.

Denote by ... the argument such that

D3
1(φ, λ)(...) : C

(
[−τ, 0],R2

)
→ Lin(C

(
[−τ, 0],R2

)
,Lin(C

(
[−τ, 0],R2

)
,R2))

By (2.23) we have that D2
1g(φ, λ) is a linear map in φ. Therefore, we find that

D3
1g(φ, λ, τ) = 〈T (..), T (.)〉CT (...) + 〈T (...), T (.)〉CT (..) + 〈T (.), T (..)〉CT (...)

+ 〈T (.), T (...)〉CT (..) + 〈T (..), T (...)〉CT (.) + 〈T (...), T (..)〉CT (.)

By applying this formula, we find that

D3
1g(φ, λ)(f1, f2, f3) =

∑
σ∈S3

〈
T (fσ(1)), T (fσ(2))

〉
CT (fσ(3)) =

∑
σ∈S3

〈
fσ(1)(0), fσ(2)(0)

〉
Cfσ(3)(0)

for all φ, f1, f2, f3 ∈ C
(
[−τ, 0],R2

)
.

We can apply Lemma 2.3.3 to calculate the value of c as defined in (2.17).
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Lemma 2.3.4. Let (λ, τ) be a point on the Hopf bifurcation curve (see Definition 2.2.1) and let φ ∈ R
satisfy (2.10)–(2.11). Then the value of Re c with c as defined in (2.17) is given by

Re c =
4(1 +Kτ (cos(β − φ) + γ sin(β − φ))∣∣1 +Kτei(β−φ)

∣∣2 (2.24)

Proof. We first calculate p, q as defined in (2.8). Set

A =

(
λ−K cosβ −1 +K sinβ
1−K sinβ λ−K cosβ

)
, B = K

(
cosβ − sinβ
sinβ cosβ

)
(2.25)

We recall from Lemma 2.2.2 that if (λ, τ) lies on the Hopf bifurcation curve, we find that there exsists an
ω ∈ R such that ∆(iω, λ) = 0. Using Lemma 2.3.2 we can rephrase this condition by saying that iω is an
eigenvalue of the matrix A + Be−iω. By definition, p ∈ C2 satisfies ∆(iω, λ, τ)p = 0 (see (2.8)), i.e. p is an
eigenvector of the matrix A+Be−iω corresponding to the eigenvalue iω. Using this, we find for p:

p =

(
1
−i

)
(2.26)

Similarly, we find that

q = α

(
1
i

)
Here, the renormalization factor α ∈ C should be chosen such that

q ·D1∆(iω, λ)p = 1 (2.27)

We note that

D1∆(iω, λ) = I +Kτe−iωτ
(

cosβ − sinβ
sinβ cosβ

)
= I +Kτe−iφ

(
cosβ − sinβ
sinβ cosβ

)
Here, we write φ = ωτ , as we did in Lemma 2.2.2. Thus we find that

q ·D1∆(iω, λ)p = α

(
(1, i)

(
1
−i

)
+Kτe−iφ(1, i)

(
cosβ − sinβ
sinβ cosβ

)(
1
−i

))
= 2α

(
1 +Kτei(β−φ)

)
Condition (2.27) thus implies that

α =
1

2(1 +Kτei(β−φ))

Applying Lemma 2.3.3 and expression 2.17 we find that

c =
1

2
q ·D3

1g(0, λ)(φ, φ, φ) + 0 + 0

=
1

2
q ·
(

2 〈φ(0), φ(0)〉Cφ(0) + 2
〈
φ(0), φ(0)

〉
Cφ(0) + 2

〈
φ(0), φ(0)

〉
Cφ(0)

)
= q · (〈p, p〉Cp+ 〈p, p〉Cp+ 〈p, p〉Cp) =

4(1 + iγ)

1 +Kτei(β−φ)

which gives (2.24).
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We can now apply Lemma 2.3.4 to compute the value of µ2 for values (λ, τ) for which we have a Hopf
bifurcation of system (2.2). We note that, in order to apply Theorem 2.3.1 we should only vary one parameter.
As in Lemma 2.2.2, we leave K,β, γ and τ fixed and we only vary λ.

Lemma 2.3.5. Let (λ, τ) be a point on the Hopf bifurcation curve and let φ ∈ R satisfy (2.10)-(2.11). Let
us vary λ and leave all the other parameters fixed. Then the value of µ2 as defined in 2.16 is given by

µ2 = −4(1 +Kτ (cos(β − φ) + γ sin(β − φ))

1 +Kτ cos(β − φ)
(2.28)

Proof. Using Lemma 2.3.2, we find that

D2∆(iω0, λ) = −I

Using the values of p, q as determined in the proof of Lemma 2.3.4, we find that

q ·D2∆(iω0, λ)p = −q · p = −2α = − 1

1 +Kτei(β−φ)

which yields

Re (q ·D2∆(iω0, λ)p) = −1 +Kτ cos(β − φ)∣∣1 +Kτei(β−φ)
∣∣2

Combining this with Lemma 2.3.4 gives (2.28)

We are now able to determine the direction of the Hopf bifurcation for parameter values (λ, τ) for which
a Hopf bifurcation of the origin of system (2.2) occurs.

Corollary 2.3.1. Let (λ, τ) be such that a Hopf bifurcation of the origin of system (2.2) occurs, i.e. let the
conditions in Lemma 2.2.2 be satisfied.

1 +Kτ [cos(β − φ) + γ sin(β − φ)] > 0 (2.29)

then the Hopf bifurcation at (λ, τ) is subcritical. If

1 +Kτ [cos(β − φ) + γ sin(β − φ)] < 0 (2.30)

the Hopf bifurcation at (λ0, τ0) is supercritical.

Proof. If the conditions in Lemma 2.2.2 are satisfied, we have in particular that (2.13) holds, i.e.

1 +Kτ cos(β − φ) > 0

Combining this with Lemma 2.3.5, we find that µ2 < 0 if (2.29) holds. Applying Theorem 2.3.1, we conclude
that the Hopf bifurcation is subcritical. If (2.30) holds, we have that µ2 > 0 and by Theorem 2.3.1 the Hopf
bifurcation is supercritical.

Corollary 2.3.1 gives us a criterion to decide upon the direction of the Hopf bifurcation. In the next
Section, we determine the orientation of the Pyragas curve with respect to the Hopf bifurcation curve.
Combining this with Corollary 2.3.1, we can determine for which parameter values the periodic solution
(2.4) of (2.2) is (un)stable.
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2.4 Stability of the periodic solution

In Section 2.2, we introduced the Hopf bifurcation curve in the (λ, τ) parameter plane (see Definition 2.2.1);
points (λ, τ) on the Hopf bifurcation curve are candidate parameter values for the occurence of a Hopf
bifurcation. Furthermore, we introduced the Pyragas curve in the (λ, τ)-plane (see Definition 2.2.2); for
(λ, τ) on the Pyragas curve, (2.4) is by construction a periodic solution of (2.2). We saw that the Pyragas
curve ended on the Hopf bifurcation curve at (λ, τ) = (0, 2π). This motivates us to try to choose the
parameter values K,β in such a way that the periodic solution (2.4) emmanates from a supercritical Hopf
bifurcation. If this is the case, it follows that (2.4) is a stable solution of (2.2) for parameter values near the
bifurcation point.

In Section 2.2, we studied the conditions for the occurence of a Hopf bifurcation; in Section 2.3, we
determined the direction of the Hopf bifurcation. In this Section, we are interested in the orientation of the
Pyragas curve with respect to the Hopf bifurcation curve. In particular, we determine the parameter values
for which the Pyragas curve is locally to the right of the Hopf bifurcation curve and for which the Hopf
bifurcation at (λ, τ) = (0, 2π) is supercritical. We will see that for these parameter values, the solution (2.4)
of (2.2) is stable for small λ.

We introduce the following terminology:

Definition 2.4.1. We define the critical value Kc to be the value of K such that the slope of the Hopf
bifurcation curve and the slope of the Pyragas curve coincide. We refer to (Kc, τc = 2π, λc = 0) as the
critical point.

Lemma 2.4.1. For β ∈ (0, π), the critical value is given by

Kc = − 1

2π (cosβ + γ sinβ)
(2.31)

Proof. Denote by λP , τP the values of λ, τ on the Pyragas curve as given in Definition 2.2.2 and denote by

dτP
dλP

:=
dτP
dλP

∣∣∣∣
(λP=0,τP=2π)

the slope of the Pyragas curve at (0, 2π). Similarly, denote by λH , τH the values of λ, τ on the Hopf bifurcation
curve as given by (2.10) and (2.11) and denote by

dτH
dλH

:=
dτH
dλH

∣∣∣∣
(λH=0,τH=2π)

the slope of the Hopf bifurcation curve at (0, 2π).
We can straightforwardly compute dτP

dλP
:

dτP
dλP

=
d

dλ

(
2π

1− γλ

)∣∣∣∣
λ=0

=
2π

(1− γλ)2
· γ
∣∣∣∣
λ=0

= 2πγ (2.32)

On the Hopf bifurcation curve, we use (2.10) and (2.11) to find that

dλH
dφ

∣∣∣∣
φ=2π

= −K sin(β − φ)|φ=2π = −K sinβ

dτH
dφ

∣∣∣∣
φ=2π

=

(
1

1−K [sinβ − sin(β − φ)]
− φ

(1−K [sinβ − sin(β − φ)])
2 (−K cos(β − φ))

)∣∣∣∣∣
φ=2π

= 1 + 2πK cosβ
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We note that for β ∈ (0, π), (2.10) is invertible for φ in a neighbourhood of φ = 2π. Combining this with
expression (2.11), we find that we can locally write τ as a function over λ around (λ, τ) = (0, 2π). By the
chain rule, we have that

dτH
dλH

∣∣∣∣
(λH=0,τH=2π)

dλH
dφ

∣∣∣∣
φ=2π

=
dτH
dφ

∣∣∣∣
φ=2π

If dλH
dφ

∣∣∣
φ=2π

6= 0, we can divide both sides by dλH
dφ

∣∣∣
φ=2π

to obtain

dτH
dλH

∣∣∣∣
(λH=0,τH=2π)

=
dτH
dφ

∣∣∣∣
φ=2π

/
dλH
dφ

∣∣∣∣
φ=2π

= − 1

K sinβ
− 2π

tanβ
(2.33)

as the slope of the Hopf bifurcation curve at (0, 2π).
By Definition 2.4.1, we now find that the critical value Kc satisfies

2πγ = − 2π

tanβ
− 1

Kc sinβ

(note that tanβ 6= 0, sinβ 6= 0 for β ∈ (0, π)), which gives the expression

Kc = − 1

2π(cosβ + γ sinβ)

By looking at the values of dτH
dλH

and dτP
dλP

, we can determine whether the Pyragas curve is locally left

or right to the Hopf bifurcation curve If dτH
dλH

< 0, then the Pyragas curve is locally to the left of the Hopf

bifurcation curve if and only if it is locally below it. For dτH
dλH

> 0 the Pyragas curve is locally to the left if
and only if it locally above the Hopf bifurcation curve (see Figures 2.2 and 2.3). Since the Pyragas curve is
only defined for λ < 0, the inequality dτP

dλP
< dτH

dλH
implies that the Pyragas curve is locally above the Hopf

bifurcation curve. Similarly, dτP
dλP

> dτH
dλH

implies that the Pyragas curve is locally below the Hopf bifurcation
curve. We can thus distinguish between several cases, as summarized in Table 2.1.

dτH
dλH

< 0
dτP
dλP

< dτH
dλH

Pyragas curve right to Hopf curve
dτP
dλP

> dτH
dλH

Pyragas curve left to Hopf curve

dτH
dλH

> 0
dτP
dλP

< dτH
dλH

Pyragas curve left to Hopf curve
dτP
dλP

> dτH
dλH

Pyragas curve right to Hopf curve

Table 2.1: Orientation of the Pyragas curve with respect to the Hopf bifurcation curve

As an example, we apply Lemma 2.4.1 and 2.1 to the case γ = −10, β = π
4 .

Proposition 2.4.2. Let γ = −10, β = π
4 and denote by K0 the value of K such that dτH

dλH
= 0. Then

for K > Kc and K < K0, the Pyragas curve is locally to the right of the Hopf bifurcation curve. For
K0 < K < Kc, the Pyragas curve is locally to the left of the Hopf bifurcation curve.

Proof. For γ = −10, β = π
4 , we have that cosβ + γ sinβ < 0. Using the expressions (2.32), (2.33), we find

for K > Kc that dτP
dλP

< dτH
dλH

. As seen in Figure 2.4, we have that dτH
dλH

< 0 for K > Kc. Using Table 2.1, we
find that the Pyragas curve is locally to the right of the Hopf bifurcation curve.

A similar analysis shows that the Pyragas curve is to the left of the Hopf bifurcation curve for K0 < K <
Kc. For K < K0, we find that the Pyragas curve is locally to the right of the Hopf bifurcation curve at the
point (0, 2π) (see also Figure 2.3).
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Figure 2.2: Pyragas curve and Hopf Bifurcation curve in (λ, τ)-plane with Kc < 0 (in particular, γ = 1
4π , β =
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Having determined the orientation of the Pyragas curve with respect to the Hopf bifurcation curve, we
can now combine this knowledge with the direction of Hopf bifurcation at (0, 2π) to determine parameter
values K,β for which the periodic solution (2.4) of (2.2) is stable for small λ.

Corollary 2.4.1. Let the conditions in Lemma 2.2.2 be satisfied for φ = 2π and let 1+2πK [cosβ + γ sinβ] <
0. Furthermore, assume that the Pyragas curve is locally to the right of the Hopf bifurcation curve. Then
the periodic solution (2.4) of (2.2) is stable for small λ.

Proof. By (2.10) and (2.11), we have that (λ, τ) = (0, 2π) is a point on the Hopf bifurcation curve with
φ = 2π. If we assume that

1 + 2πK [cosβ + γ sinβ] = 1 + 2πK [cos(β − 2π) + γ sin(β − 2π)] < 0

we find by continuity of the map φ 7→ 1+τ(φ)K [cos(β − φ) + γ sin(β − φ)] that there exist a neighbourhood
U of 2π such that

1 + τ(φ)K [cos(β − φ) + γ sin(β − φ)] < 0

for all φ ∈ U . By choosing this neighbourhood small enough, we can ensure that (2.12) and (2.13) are also
satisfied for all φ ∈ U . By applying Corollary 2.3.1, we find a supercritical Hopf bifurcation for all φ ∈ U .
This means that we find a stable periodic solution for λ in a small neighbourhood to the right of the point
λ(φ) on the Hopf bifurcation curve for all φ ∈ U . By Remark 2.2.2, these periodic solutions are unique. Since
by assumption the Pyragas curve is locally to the right of the Hopf bifurcation curve, we find for small λ
that (2.4) is in fact the periodic orbit coming from the Hopf bifurcation. Therefore, for small λ, the periodic
orbit (2.4) of (2.2) is stable.

Corollary 2.4.2. Let us assume that the conditions in Lemma 2.2.2 are for φ = 2π, satisfied 1+2πK [cosβ + γ sinβ] >
0 and the Pyragas curve is locally to the right of the Hopf bifurcation curve. Then the periodic solution (2.4)
of (2.2) is unstable for small λ.

Proof. A similar argument as in the proof of Corollary 2.4.1 yields the result.

Remark 2.4.1. By combining Lemma 2.4.1 with Corollary 2.3.1, we find that the critical value K = Kc

marks the transition from sub– to supercritical behaviour at the point (λ, τ) = (0, 2π).

To conclude this Chapter, we combine the Corollary 2.4.1-2.4.2 with Proposition 2.4.2 to study the case
γ = −10, β = π

4 in more detail. The behaviour for general parameter values is discussed in Section 3.3.

Proposition 2.4.3. Let us assume that (2.12), (2.13) hold for φ = 2π and denote by K0 the value of K
such that dτH

dλH
= 0. For K0 < K < Kc, the solution (2.4) of (2.2) is unstable for small λ. For K > Kc, the

the solution (2.4) of (2.2) is stable for small λ.

Proof. By Remark 2.4.1 we have that

1 + 2πKc [cosβ + γ sinβ] = 0

If we choose γ = −10, β = π
4 , we have that cosβ + γ sinβ < 0. This implies that{

1 + 2πKc [cosβ + γ sinβ] < 0 for K > Kc

1 + 2πKc [cosβ + γ sinβ] > 0 for K < Kc

Combining this with Corollary 2.3.1, we find that the Hopf bifurcation at the poin (0, 2π) is subcritical for
K < Kc and supercritical for K > Kc.

As shown in Proposition 2.4.2, we have for K < K0 that the Pyragas curve is locally to the right of the
Hopf bifurcation curve at (λ, τ) = (0, 2π). The fact that the Hopf bifurcation is subcritical for these values
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of K, i.e. an unstable periodic orbit appears for parameter values to the left of the Hopf bifurcation curve,
gives us thus no information about the stability of the Pyragas curve for K < K0.

For K0 < K < Kc, we recall from Proposition 2.4.2 that the Pyragas curve is locally to the left of the
Hopf bifurcation curve at (λ, τ) = (0, 2π). Since for K0 < K < Kc the Hopf bifurcation at the point (0, 2π)
is subcritical, we can apply Corollary 2.4.2 to see that the solution (2.4) of (2.2) is unstable for small λ.

For K > Kc, it was shown in 2.4.2 that the Pyragas curve is locally to the right of the Hopf bifurcation
curve at (λ, τ) = (0, 2π). Since the Hopf bifurcation at(λ, τ) = (0, 2π) is subcritical for K > Kc by Corollary
2.3.1, we find by Corollary 2.4.1 that for K > Kc, the solution (2.4) of (2.2) is stable small λ.
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tan β for γ = −10, β = π

4 .
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Chapter 3

Dynamics of the controlled system

In Chapter 2, we studied the Pyragas control scheme applied to system (2.1). Using the Hopf bifurcation,
we were able to find values of K,β such that the Pyragas control scheme is succesfull for small λ, i.e. the
periodic solution (2.4) of (2.2) is stable for small λ. As an example, we applied this method to a specific
choice of parameters, see Proposition 2.4.3.

In this Chapter, we study the dynamics of the controlled system (2.2) in more detail. This analysis will
give us more insight in the mechanisms by which the stabilization of the periodic orbit (2.4) is achieved. In
Section 3.3 we combine these results to give a complete overview of the bifurcation diagram and we extend
the result from Proposition 2.4.3 to general parameter values. In Sections 3.1 and 3.2 we mostly follow [10].

3.1 Stability on the Pyragas curve

In Chapter 2, we determined the stability of the periodic solution (2.4) of (2.2) by using the Hopf bifurcation
theorem. In principle, the stability of periodic solutions can also be determined by looking at the characterstic
multipliers (see Section A.5 for a discussion of characteristic multipliers for ordinary differential equations).
In this Section, we have a closer look at the characterstic multipliers of the periodic solution (2.4) of (2.2).
We find that an infinite number of characterstic multipliers exists. Although we cannot determine all these
multipliers analytically, we will study the real multipliers. This gives us an interesting insight in the dynamics
of system (2.2).

Lemma 3.1.1. Suppose there exists a point (λt, τt) on the Pyragas curve satisfying

τt = − 1

K(cosβ + γ sinβ)
(3.1)

then for the parameter values (K,λt, τt), the periodic solution (2.4) of (2.2) has a non-trivial characteristic
multiplier on the unit circle.

If we furthermore assume that ∣∣1 +Kτte
iβ
∣∣2 + λtτt > 0

and that there exist a neighbourhood U of (λt, τt) satisfying

1 +Kτ(cosβ + γ sinβ) > 0

for all (λ, τ) ∈ U , then for points (λ, τ) ∈ U on the Pyragas curve, the periodic solution (2.4) of system (2.2)
is unstable.
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Proof. To find the linear variational equation, we look at small deviations around the periodic solution (2.4).
We write the small deviations as:

z(t) = Rpe
iωpt [1 + r(t) + iφ(t)]

with r(t), φ(t) ∈ R and where Rp, ωp denote the radius and the angular frequency of (2.4). We expand (2.2)
for z(t) to linear order.

Denote by τp the period of (2.4), i.e. τp = 2π
ωp

. For z(t) to be a solution of the system (2.2) with τ = τp,

its equation of motion should read

ż(t) = Rpe
iωpt

(
iωp (1 + r(t) + iφ(t)) + ṙ(t) + iφ̇(t)

)
= (λ+ i)Rpe

iωpt (1 + r(t) + iφ(t)) + (1 + iγ)R3
pe
iωpt |1 + r(t) + iφ(t)|2 (1 + r(t) + iφ(t)) (3.2)

−KeiβRpeiωpt
[
1 + r(t) + iφ(t)−Re−ωpτp (1 + r(t− τp) + iφ(t− τp)

]
which we can simplify by cancelling the terms Rpe

iωpt on both sides. Using that we have chosen r(t), φ(t) ∈ R,
we find that:

|1 + r(t) + iφ(t)|2 (1 + r(t) + iφ(t)) =
(
(1 + r(t))2 + φ(t)2

)
(1 + r(t) + iφ(t))

= 1 + 3r(t)2 + 3r(t) + φ(t)2 + r(t)3 + r(t)φ(t)2 + iφ(t) + iφ(t)r(t)2 + 2iφ(t)r(t) + iφ(t)3

Up to order 2, (3.2) reduces to

iωp(1 + r(t) + iφ(t)) + ṙ(t) + iφ̇(t) = λ+ λr(t)− φ(t) + i (1 + r(t) + λφ(t)) + (1 + iγ)R2
p (1 + 3r(t) + iφ(t))

−Keiβ
[
1 + r(t) + iφ(t)−Re−ωpτp (1 + r(t− τp) + iφ(t− τp)

]
From the fact that u(t) = Rpe

iωpt satisfies (2.2) with τ = τp, it follows that

iωp = λ+ i+ (1 + iγ)R2
p −Keiβ

(
1− eiωpτp

)
Using this, in combination with the fact that R2

p = −λ (see (2.4)) and eiωpτp = 1, we find that

iωp(r(t) + iφ(t)) + ṙ(t) + iφ̇(t) = λr(t)− φ(t) + i (r(t) + φ(t) + λφ(t))− λ(1 + iγ)(3r(t) + iφ(t))

−Keiβ [r(t) + iφ(t)− r(t− τp)− iφ(t− τp)]

Taking real and imaginary parts and using that ωp = 1 − γλ (see (2.4)) results in the linear variational
equation: (

ṙ(t)

φ̇(t)

)
=

(
−2λ 0
−2λγ 0

)(
r(t)
φ(t)

)
−K

(
cosβ − sinβ
sinβ cosβ

)(
r(t)− r(t− τp)
φ(t)− φ(t− τp)

)
(3.3)

We note that the linear variational equation is autonomous.
Suppose that for the ordinary differential equation ẋ(t) = f(x(t)) with periodic solution u(t) the linear

variational equation is autonomous, i.e. given by

ẋ(t) = Ax(t)

with A a constant matrix. Then the monodromy matrix C (see also Definition A.4.2 in the Appendix)
is given by C = eAT and we can choose the characterstic multipliers as the eigenvalues of A. Extending
this idea to differential delay equations, the characteristic exponents of (3.3) are given by the roots of the
characteristic equation corresponding to (3.3). This characteristic equation is given by

(µ+ 2λ+K cosβ(1− e−µτp)
(
µ+ cosβ(1−Ke−µτp)

)
+
(
2λγ +K sinβ(1− e−µτp)

)
K sinβ(1− e−µτp) = 0
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which we can rewrite as

0 =
(
µ+Keiβ(1− e−µτp)

) (
µ+Keiβ(1− e−µτp)

)
+ 2λ

(
µ+K(cosβ + γ sinβ)

[
1− e−µτp

])
We note that this is a transcedental equation which, for general parameter values, has an infinite number of
solutions. We cannot expect to find all the solutions analytically. To gain more insight in the behaviour of
the solutions, we expand the right hand side up to second order terms:

0 =

(
µ+Keiβ(µτ − 1

2
µ2τ2 + . . .)

)(
µ+Ke−iβ(µτ − 1

2
µ2τ2 + . . .)

)
+ 2λ(µ+K(cosβ + γ sinβ)(µτ − 1

2
µ2τ2 + . . .)

= µ2(1 +Keiβτ)(1 +Ke−iβτ) + 2λµ(1 +K(cosβ + γ sinβ))τ)− µ2τ2Kλ(cosβ + γ sinβ) +O(µ3)

= 2λµ (1 +Kτ(cosβ + γ sinβ)) + µ2
(∣∣1 +Keiβ

∣∣2 − λKτ2(cosβ + γ sinβ)
)

+O(µ3)

We note that µ = 0 is always a solution, corresponding to the trivial characteristic multiplier. For (λt, τt)
satisfying (3.1), the coefficient of the first order term vanishes and the characteristic equation reduces further
to

0 = µ2
(∣∣1 +Keiβ

∣∣2 + λtτt

)
+O(µ3) (3.4)

Thus, for (λt, τt) on the Pyragas curve satisfying (3.1), we find that µ = 0 is a zero of multiplicity 2, i.e.
there is also a non-trivial characteristic multiplier located on the unit circle.

We note that 3.1 implies that∣∣1 +Keiβ
∣∣2 − λtKτ2t (cosβ + γ sinβ) =

∣∣1 +Kτte
iβ
∣∣2 + λtτt

Thus, if we assume that
∣∣1 +Kτte

iβ
∣∣2 + λtτt > 0, then

∣∣1 +Keiβ
∣∣2 − λKτ2(cosβ + γ sinβ) > 0 in a small

enough neighbourhood of the transcritical point. If we now vary the parameters in this neighbourhood
in such a way that 1 + Kτ(cosβ + γ sinβ) > 0, then (3.4) implies that the non-trivial solution becomes
positive (note that λ < 0 on the Pyragas curve). Thus, in a neighbourhood of the transcritical point with
1 + Kτ(cosβ + γ sinβ) > 0, one of the characteristic multipliers lies outside the unit circle, and for these
parameter values the periodic solution (2.4) of system (2.2) is unstable.

Definition 3.1.1. We define the transcritical point to be the point (λ, τ) on the Pyragas curve satisfying
(3.1).

Remark 3.1.1. For the critical value K = Kc, we find the transcritical point at (λ, τ) = (0, 2π).

Remark 3.1.2. We can choose the values of the parameters (K, γ, τ) in such a way that there does not exists
a point on the Pyragas curve satisfying (3.1), i.e. the transcritical point does not exist. This is explored in
more detail in Section 3.3.

Remark 3.1.3. We note that in Lemma 3.1.1 we have only adressed real characteristic multipliers. The
condition for instability given in Lemma 3.1.1 is therefore not a necesary condition; instability can also be
caused by non-real multipliers outside the unit circle.

As an example, we apply Lemma 3.1.1 to the case γ = −10, β = π
4 .

Proposition 3.1.2. Let γ = −10, β = π
4 . For K < Kc, the transcritical point exists. Under the assumptions

that K < Kc and
∣∣1 +Kτte

iβ
∣∣2+λtτt > 0 the periodic solution (2.4) of system (2.2) is unstable for parameter

values (λ, τ) on the Pyragas curve in a neighbourhood to the right of the transcritical point.
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Proof. Since we have chosen γ < 0 and all points on the Pyragas curve satisfy λ < 0, we have that

τ =
2π

1− γλ
> 2π

on the Pyragas curve and for all real numbers r > 2π we can find a point on the Pyragas curve satisfying
τ = r. As stated in Remark 3.1.1, we have for K = Kc that τt = 2π. For the parameters γ = −10, β = π

4 ,
cosβ+γ sinβ < 0 holds. Applying (3.1), we find that for K < Kc a transcritical point exists on the Pyragas
curve, satisfying τt > 2π.

Since γ < 0, we have that τ < τt for points on the Pyragas curve to the right of the transcritical
point. Since the transcritical point satisfies (3.1) by definition and cosβ + γ sinβ < 0, we find that 1 +
Kτ(cosβ + γ sinβ) > 0 for points on the Pyragas curve to the right of the transcritical point. Thus, if∣∣1 +Kτte

iβ
∣∣2 + λtτt > 0 is satisfied, we apply Lemma 3.1.1 to find that for paramter values (λ, τ) on the

Pyragas curve in a neighbourhood to the right of the transcritical point, the periodic orbit (2.4) has at least
one positive multiplier and is thus unstable.

3.2 Saddle – Node Bifurcations

In Chapter 2, we extensively used the Hopf bifurcations of the fixed point z = 0 of system (2.2). For a
complete understanding of the bifurcation diagram, we now study the saddle–node bifurcations of system
(2.2).

Lemma 3.2.1. If there exists a φ ∈ R such that the parameters (K,λ, τ) satisfy

Kτ = − 1

γ sin(β − φ) + cos(β − φ)
(3.5)

τ(1− γλ) = φ−Kτ [γ cosβ − sinβ − γ cos(β − φ) + sin(β − φ)] (3.6)

λ ≤ K [cosβ − cos(β − φ)] (3.7)

then a saddle–node bifurcation of system (2.2) occurs.

Proof. Since the periodic solution (2.4) of (2.2) is of the form z(t) = Reiωt with R,ω ∈ R, we are interested
in knowing whether other solutions of this form exist. We insert z(t) = Reiωt in (2.2) to obtain:

ż(t) = iωReiωt = (λ+ i)Reiωt + (1 + iγ)R3eiωt −Keiβ
[
Reiωt −Reiωte−iωτ

]
Cancelling the factors Reiωt on both sides and taking real and imaginary parts yields the conditions

R2 = −λ+K [cosβ − cos(β − φ)] (3.8)

φ = τ(1− λγ) +Kτ [γ cosβ − sinβ − γ cos(β − φ) + sin(β − φ)] (3.9)

with φ = ωτ . We note that if the diagonal touches the graph generated by the RHS of (3.9) for a certain
value of K, changing the value of K will result in either the appearance or disappearance of a solution of
(3.9), as is illustrated in Figure 3.1. Thus, if the diagonal touches the graph, a saddle – node bifurcation
takes place. Since for a general function f the diagonal touches the graph of f if there exists a φ satisfying
φ = f(φ) and dφ

dφ = 1 = df
dφ , we find that a saddle–node bifurcation occurs if there exists a φ satisfying

(3.5), (3.6). The inequality (3.7) comes from (3.8) in combination with the assumption that R ∈ R, i.e.
R2 ≥ 0.

For a fixed value of K, a given value of φ gives us a value of τ via (3.5). The pair (τ, φ) gives us a
value of λ via (3.6). In combination with the constaint (3.7), we find that the equations (3.5), (3.6), (3.7)
parametrize curves in (λ, τ)-parameter space. In analogy to Definition 2.2.1, we now define the following:
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Figure 3.1: Diagonal and RHS of (3.9) for fixed τ, λ, γ and different values of K (see proof of Lemma 3.2.1).
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Figure 3.2: Pyragas curve and saddle–node curve around the transcritical point in distorted coordinates for
γ = −10, β = π

4 and different values of K.

Definition 3.2.1. We define the saddle – node curves as the curves in (λ, τ)-parameter space parametrized
by equations (3.5), (3.6), (3.7).

In Section 2.4, we studied the orientation of the Pyragas curve with respect to the Hopf bifurcation curve.
We now turn towards the position of the saddle–node curve with respect to Pyragas curve and the Hopf
bifurcation curve.

Lemma 3.2.2. Let (λ, τ) be a point on the Hopf bifurcation curve where a transition from sub– to super-
critical behaviour occurs. Then (λ, τ) also lies on a saddle–node curve.

Proof. By definition of the Hopf curve, there exists a φ ∈ R such that (2.10) and (2.11) are satisfied.
Rewriting the latter, we find for point on the Hopf bifurcation curve that

φ−Kτ [γ cosβ − sinβ − γ cos(β − φ) + sin(β − φ)]

= −Kτγ [cosβ − cos(β − φ)] + φ+Kτ [sinβ − sin(β − φ)]

= −τγλ+ τ = τ(1− γλ)

i.e. (3.6) is satisfied. Trivially, (2.10) implies (3.7). Thus, all points on the Hopf bifurcation curve satisfy
(3.6) and (3.7). We recall from Corollary 2.3.1 that a transition from sub- to supercritical behaviour on
the Hopf bifurcation curve occurs when 1 +Kτ [cos(β − φ) + γ sin(β − φ)] = 0 which is equivalent to (3.5).
Using Definition 3.1.1, we conclude that the sub–supercritical Hopf transition points lie on the saddle–node
curve.

Lemma 3.2.3. A saddle–node curve intersects the Pyragas curve at the transcritical point.
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Figure 3.3: Bifurcation diagram in (λ, τ)-plane for K = 0.019, β = π
4 , γ = −10.

Proof. We recall that for all points on the Pyragas curve satisfy (2.14) with λ < 0. Thus, they satisfy (3.6)
and (3.7) for φ = 2π. The transcritical point on the Pyragas curve satisfies (3.1), which is equivalent to
(3.5) for φ = 2π. We conclude that a saddle–node curve intersects the Pyragas curve at the transcritical
point.

The behaviour described in Lemmata 3.2.2, 3.2.3 is summarized in Figure 3.3: the saddle–node curves
emmanate from the Hopf bifurcation curve at points where the direction of the Hopf bifurcation transitions
from sub- to supercritical. Furthermore, the transcritical point on the Pyragas curve lies also on the saddle-
node curve (see Figure 3.2a).

3.3 Varying parameter values

In the previous Sections, we developed methods to study the bifurcation diagram of system (2.2). In this
section, we combine the results from Sections 2.2-3.2 to obtain a complete view of the bifurcation diagram
of system (2.2). In Example 3.3.1, we give an overview of the bifurcation diagram with parameter values
γ = −10, β = π

4 . Thereupon, we study how the bifurcation diagram changes when we vary the parameters.

Example 3.3.1 (Overview of the bifurcation diagram for γ = −10, β = π
4 ). For 0 < K < Kc, where Kc

denotes the critical value, there exists a transcritical point on the Pyragas curve satisfying (3.1). Let us
assume that 2.13 holds. For parameter values (λ, τ) on the Pyragas curve in a neighbourhood to the right of
the transcritical point, the solution (2.4) of (2.2) is then unstable (see Proposition 3.1.2). For 0 < K < Kc

the Pyragas curve is locally to the left of the Hopf bifurcation curve (see Proposition 2.4.2). Furthermore,
the Hopf bifurcation at the point (λ, τ) = (0, 2π) is subcritical, i.e. a unstable periodic orbit is generated to
the left of the Hopf bifurcation curve. These remarks imply that the periodic solution (2.4) of (2.2) is also
unstable for parameter values (λ, τ) on the Pyragas curve in a neighbourhood to the left of (λ, τ) = (0, 2π)
(see Proposition 2.4.3).

As K → Kc, the transcritical point moves towards the point (λ, τ) = (0, 2π). For K = Kc, the transcriti-
cal point coincides with the critical point (0, 2π) (see Remark 3.1.1) and this point also marks the transition
between sub- and supercritical behaviour on the Hopf bifurcation curve (see Remark 2.4.1).

If we increase the value of K further, i.e. K > Kc, the saddle–node curve detaches from the Pyragas
curve (see Figure 3.2) and no transcritical point exists on the Pyragas curve. At the point (λ, τ) = (0, 2π),
the Pyragas curve is locally to the right of the Hopf bifurcation curve (Proposition 2.4.2). The point
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Figure 3.4: Bifurcation diagram of (2.2) in (K, τ) parameter plane for γ = −10, β = π
4 , λ = −0.02.

(λ, τ) = (0, 2π) on the Hopf bifurcation curve is now supercritical, i.e. a stable periodic orbit emmanates to
the right of the Hopf bifurcation curve. This geometry indicates that the Pyragas curve is now stable near
the Hopf bifurcation curve (see Proposition 2.4.3).

So far, we studied the behaviour in the five-dimensional (λ, β,K, γ, τ)-parameter space by looking at the
behaviour in (λ, τ)-parameter space for fixed values of (γ, β, K); see Figure 3.3. We can also study different
two-dimensional sections of the five-dimensional parameter space, for example by looking at (K, τ)-parameter
space. This is done in Figure 3.4 and summarizes the behaviour described in Example 3.3.1.

In the following Proposition, we extend the results obtained in Proposition 2.4.3 to general parameter
values.

Proposition 3.3.1. As indicated in Figure 3.5, we can distinguish between six different cases if we want to
study the stability of the solution (2.4) of (2.2) for parameter values (λ, τ) near (0, 2π).

Proof. We recall from Table 2.1 that the orientation of the Pyragas curve with respect to the Hopf bifurcation
curve is determine by the sign of dτH

dλH
and the sign of dτH

dλH
− dτP

dλP
. We note that the asymptote of dτH

dλH
(K) =

− 2π
tan β −

1
K sin β is given by − 2π

tan β . We are therefore able to distinguish between several cases in the (γ, β)-

plane. Below the curve 2πγ −
(
− 2π

tan β

)
= 0, we have that dτP

dλP
= 2πγ > dτH

dλH
= − 2π

tan β , i.e. the tangent to

the Pyragas curve is above the asymptote of dτH
dλH

. Since both dτP
dλP

and the asymptote of dτH
dλH

can be either
negative or positive, we can distinguish between six cases. These different cases are summarized in Figure
3.5, with typical examples of dτP

dλP
(K), dτH

dλH
(K). For a given value of K, we can use Table 2.1 to determine in

each case whether the Pyragas curve is locally left or right to the Hopf bifurcation curve, as is also indicated
in Figure 3.5.

Since by asumption we have β ∈ (0, π), we have that sinβ > 0 for all values of β. We can thus
multiply the expression 2πγ < 2π

tan β by sinβ and rearrange terms to find that 2πγ < 2π
tan β if and only if

cosβ + γ sinβ < 0. We now apply Corollary 2.3.1 to find that below the curve 2πγ + 2π
tan β = 0 in the (γ, β)-

plane, we have cosβ+γ sinβ > 0 and thus that the Hopf bifurcation at (0, 2π) is subcritical for K > Kc and
supercritical for K < Kc. Similarly, above the curve 2πγ + 2π

tan β = 0 we have cosβ + γ sinβ < 0. Therefore,
the Hopf bifurcation is supercritical for K > Kc and subcritical for K < Kc by Corollary 2.3.1.

Using the Corollary 2.4.1-2.4.2, we are able to determine upon the stability of 2.4 for parameter values
(λ, τ) on te Pyragas curve near (0, 2π), see Figure 3.5.

We note that the results found in Proposition 3.3.1 indeed do depend on the parameters: in some cases,
we are not able to determine by the methods used here to determine whether the periodic solution (2.4) of
(2.2) is stable for any value of K (see for example Figure 3.5c), whereas in other cases we are. Furthermore,
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is non-dashed, we are able to determine the stability of the Pyragas

curve near (0, 2π) by studying the direction of the Hopf bifurcation at that point. Red/blue non-dashed lines
correspond to stability/instability, respectively. For the dashed regions, we have to resort to other techniques
to determine the stability.

35



we note that for cosβ + γ sinβ < 0, i.e. above the line cosβ + γ sinβ = 0, stability is achieved for K > Kc.
However, for cosβ + γ sinβ > 0, i.e. below the line cosβ + γ sinβ = 0, stablity is achieved for K < Kc.

In Proposition 3.1.2 we were able to achieve additional inside in the stabilisation of the Pyragas curve
by looking at the characteristic multipliers of (2.2).

As mentioned in Remark 3.1.2, for general values of K the transcritical point need not always to exist.
This is studied in more detail in the following Proposition:

Proposition 3.3.2. Let γ > 0 and cosβ + γ sinβ > 0. Then the transcritical point only exists for K ≤ Kc.

Proof. Since γ > 0 and all points on the Pyragas curve satisfy λ < 0, we have that

0 < τ =
2π

1− γλ
< 2π

for all points (λ, τ) on the Pyragas curve. Furthermore, for all real numbers 0 < r < 2π, there exist a point
(λ, τ) on the Pyragas curve such that τ = r.

As stated in Remark 3.1.1, we have that τt = 2π for K = Kc. Since we have by assumption that
cosβ + γ sinβ, we find that

− 1

K [cosβ + γ sinβ]
> 2π

for Kc < K < 0. Thus, if a transcritical point would exists for Kc < K < 0, it should satisfy τt > 2π. Since
τ < 2π on the Pyragas curve, we conclude that the transcritical point does not exist for Kc < K < 0.

Similarly, we see that if a transcritical point exists for K > 0, it should satisfy τt < 0. Since τ > 0 for all
points on the Pyragas curve, we conclude that the transcritical point does not exist for K > 0.

For K ≤ Kc we find that − 1
K[cos β+γ sin β] ≤ 2π. Since for all real numbers 0 ≤ r ≤ 2π there exists a

point (λ, τ) on the Pyragas curve such that τ = r, we find that for all K < Kc there exists a point (λ, τ) on
the Pyragas curve satisfying (3.1). For K = Kc, we find the transcritical point at (λ, τ) = (0, 2π), i.e. at the
end of the Pyragas curve. We conlude that for all K ≤ Kc the transcritical point exists.

By doing a similar analysis, we can distinguish between the cases indicated in Figure 3.6.
For γ = −10 β = π

4 , we found in Proposition 3.1.2 that a transcritical point existed for K < Kc. Under
the assumption that (2.12), (2.13) hold, we found that for parameter values (λ, τ) on the Pyragas curve in a
neighbourhood to the right of the transcritical point, the solution (2.4) of (2.2) is unstable. This fits nicely
with the earlier observation in Proposition 2.4.3 that for K < Kc, the solution (2.4) of (2.2) is unstable for
parameter values (λ, τ) on the Pyragas curve near (0, 2π). By comparing Figures 3.5 and 3.6 we find the
existence of parameter values γ, β such that a transcritical point lies on the Pyragas curve, while for (λ, τ)
near (0, 2π) the solution (2.4) of (2.2) is stable.

Proposition 3.3.3. Let β, γ be such that β > π
2 , γ > 0 and cosβ + γ sinβ > 0 and assume that (2.12),

(2.13) hold for φ = 2π. Then for K ≤ Kc, the solution (2.4) of (2.2) is stable for parameter values on the
Pyragas curve near (0, 2π). For K ≤ Kc, a transcritical point exists. For K in a small enough neighbourhood
of Kc with K ≤ Kc and for parameter values (λ, τ) on the Pyragas curve in a neighbourhood to the right of
the transcritical point, the solution (2.4) of system (2.2) is unstable.

Proof. Since the choice of parameter values is an example of Case 1 of Figure 3.5, we find that the solution
(2.4) of (2.2) is stable for parameter values on the Pyragas curve near (0, 2π).

By Figure 3.6, we find that the transcritical point exists for K ≤ Kc. As mentioned in Remark 3.1.1, we
have for K = Kc that (λt, τt) = (0, 2π). Thus we find that∣∣1 +Kce

iβ
∣∣2 − λtKcτ

2
t (cosβ + γ sinβ) =

∣∣1 +Kce
iβ
∣∣2 = 0

Thus, for K in a small enough neighbourhood of Kc with K ≤ Kc, we have that∣∣1 +Keiβ
∣∣2 − λtKτ2t (cosβ + γ sinβ) > 0 (3.10)
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values of the parameters γ, β, as indicated above.

Let us now fix K in this small enough neighbourhood of K with K ≤ Kc. Since γ > 0, we have that
τ > τt to the right of the transcritical point. By assumption we have that cosβ + γ sinβ > 0 and thus that
1 + Kτ [cosβ + γ sinβ] > 0 for τ to the right of τt. By choosing τ in a small enough neighbourhood of τt,
(3.10) implies that ∣∣1 +Keiβ

∣∣2 − λKτ(cosβ + γ sinβ) > 0

Thus, for K ≤ Kc in a small enough neighbourhood of Kc and by choosing τ in a small enough neighbourhood
of τt we can apply Lemma 3.1.1. We conclude that for K ≤ Kc in a small enough neighbourhood of Kc and
(λ, τ) on the Pyragas curve in a small enough neighbourhood to the right of τt, the solution (2.4) of (2.2) is
unstable.

Remark 3.3.1. We note that Proposition 3.3.3 implies the existence of a point (λ, τ) on the Pyragas curve
between the transcritical point and the point (0, 2π), such that the solution (2.4) of (2.2) changes stability.
In particular, we find that at this point the multiplier studied in Lemma 3.1.1 moves back into the unit circle,
since near (λ, τ) = (0, 2π) the solution (2.4) of (2.2) is stable and therefore all the non–trivial multipliers lie
inside the unit circle.
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Chapter 4

Weaker conditions for stability of the
periodic solution

In Section 2.2, we determined parameter values (λ, τ) for which a Hopf bifurcation of the origin of (2.2) occurs.
In Section 2.3, we determined the direction of the Hopf bifurcation (i.e. whether the Hopf bifurcation is sub–
or supercritical) at the Hopf bifurcation points. Here, we used Theorem 2.3.1. Since this Theorem applies
to scalar parameters and we are interested in Hopf bifurcation points in the two–dimensional (λ, τ) plane,
we had to choose a curve over which to approach the Hopf bifurcation points. In Section 2.3, we approached
the bifurcation points parallel to the λ–axis, i.e. we only varied the parameter λ, as was done in [10].

We note that there are many possible ways to approach the point (λ, τ) = (0, 2π) in the (λ, τ)-parameter
plane. In general, the value of µ2 as defined in Theorem 2.3.1 depends on the chosen path of approach. In
this Chapter, we approach the bifurcation point (λ, τ) over a different curve than was done in Section 2.3. It
turns out that by doing so, we can can considerably weaken the conditions for (2.4) to be a stable solution
of (2.2) for small λ.

We recall from Definition 2.2.2 that the Pyragas curve in (λ, τ)-parameter space is given by the graph of
λ(τ) = 2π

1−γλ for λ < 0. We introduce the following terminology:

Definition 4.0.1. We define the extended Pyragas curve as the curve in (λ, τ)-space given by the graph of

τ(λ) =
2π

1− γλ

with λ in the domain R\{ 1γ }.

We note that the extended Pyragas curve intersects the Hopf bifurcation curve (see Definition 2.2.1) at
(λ, τ) = (0, 2π). The main idea is now to approach the Hopf bifurcation point (λ, τ) = (0, 2π) over the
extended Pyragas curve. In doing so, we treat the delay τ as a parameter. In the statement of Theorems
2.2.1 and 2.3.1, the delay is left fixed. To show that we can apply Theorem 2.3.1 if the delay τ is treated as
a parameter, we prove the following Lemma:

Lemma 4.0.1. For τ 6= 0, system (2.2) is equivalent to the system

ż(t) = τ
[
(λ+ i)z(t) + (1 + iγ) |z(t)|2 z(t)−Keiβ [z(t)− z(t− 1)]

]
(4.1)

Proof. Let t = τ t̂. Using the chain rule, we find

dz(t)

dt
=
dz(τ t̂)

dt̂

dt̂

dt
=

1

τ

dz(τ t̂)

dt̂
= (λ+ i)z(τ t̂) + (1 + iγ)

∣∣z(τ t̂)∣∣2 z(τ t̂)−Keiβ [z(τ t̂)− z(τ(t̂− 1))
]
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Multiplying both sides by τ 6= 0 and setting z(τ t̂) = ẑ(t̂) gives

dẑ(t̂)

dt̂
= τ

[
(λ+ i)ẑ(t̂) + (1 + iγ)

∣∣ẑ(t̂)∣∣2 ẑ(t̂)−Keiβ [ẑ(t̂)− ẑ(t̂− 1)
]]

Dropping the hats gives (4.1). Since all transforms are invertible for τ 6= 0, we see that system (4.1) is in
fact equivalent to system (2.2) for τ 6= 0.

We note that in (4.1), τ is no longer the delay but has the role of a ‘normal’ parameter. The equivalence
between (4.1) and (2.2) implies in particular that we can apply Theorems 2.2.1 and 2.3.1 to (2.2) with τ as
a parameter.

Lemma 4.0.2. Let

1 + 2πKeiβ 6= 0 (4.2)

If

1 + 2πK [cosβ + γ sinβ] > 0 (4.3)

then we find a Hopf bifurcation at (λ, τ) = (0, 2π) if we approach the point (λ, τ) = (0, 2π) over the extended
Pyrags curve from the left.

If

1 + 2πK [cosβ + γ sinβ] < 0 (4.4)

then we find a Hopf bifurcation at (λ, τ) = (0, 2π) if we approach the point (λ, τ) = (0, 2π) over the extended
Pyragas curve from the right.

Proof. We only have to check 2.9 in Theorem 2.2.1. That all the other conditions are satisfied if (4.2) holds,
follows from the proof of Lemma 2.2.2.

We note that the choice of p, q as in (2.8) is independent of the curve of approach; thus, the values of p, q
are as in the proof of Lemma 2.2.2.

If we approach the point (λ, τ) = (0, 2π) over the extended Pyragas curve from the left, we can parametrize
the path as

(λ, τ) =

(
θ,

2π

1− γθ

)
, θ ∈ R\

{
1

γ

}
(4.5)

Using (2.19), we find that for parameter values on this curve the characteristic function is given by

∆(µ, θ) = µI −
(
θ −K cosβ −1 +K sinβ
1−K sinβ θ −K cosβ

)
−Ke−µτ(θ)

(
cosβ − sinβ
sinβ cosβ

)
We are interested in the Hopf bifurcation at (λ, τ) = (0, 2π). We note that the path parametrized by (4.5)
reaches this point for θ = 0. We recall from (2.10), (2.11) that for (λ, τ) = (0, 2π), we find a root of the
characteristic equation given by µ = iω with ω = 1. We find that

D2∆(i, 0) = − d

dθ

(
θ −K cosβ −1 +K sinβ
1−K sinβ θ −K cosβ

)
−Ke−iτ(0)

(
cosβ − sinβ
sinβ cosβ

)(
−i dτ

dθ

∣∣∣∣
θ=0

)
= −I + 2πiKγ

(
cosβ − sinβ
sinβ cosβ

)
We note that

q

(
cosβ − sinβ
sinβ cosβ

)
p = α(1, i)

(
cosβ − sinβ
sinβ cosβ

)(
1
−i

)
= α(1, i)

(
cosβ + i sinβ
sinβ − i cosβ

)
= 2α(cosβ + i sinβ) = 2αeiβ
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Using that α is as in the proof of Lemma 2.2.2 with τ = 2π, we find that

q ·D2∆(i, 0)p = −2α+ 4πiKγαeiβ =
−1 + 2πiγKeiβ

1 +Kτeiβ

which gives

Re (q ·D2∆(i, 0)p) = −1 + 2πK(cosβ + γ sinβ)

|1 +K2πeiβ |2

If we approach the point (λ, τ) = (0, 2π) over the extended Pyragas curve from the right, we can
parametrize the path by (4.5) with the replacement φ 7→ −φ. Denote by ∆̃ the characteristic function
of system (2.2) for parameter values (λ, τ) on this path. A similar argument then shows that

Re (q ·D∆̃2(i, 0)p) =
1 + 2πK(cosβ + γ sinβ)

|1 +K2πeiβ |2

If (4.3) holds, we find that Re (q ·D2∆(i, 0)p) < 0 and thus that we find a Hopf bifurcation if we approach
the point (λ, τ) = (0, 2π) over the extended Pyragas curve from left. If (4.4) holds, we find that Re (q ·
D2∆̃(i, 0)p) < 0 and thus that we find a Hopf bifurcation if we approach the point (λ, τ) = (0, 2π) over the
extended Pyragas curve from right.

Having determined conditions for the occurence of a Hopf bifurcation, we can now compute the direction
of the Hopf bifurcation at (λ, τ) = (0, 2π).

Lemma 4.0.3. Let us approach the Hopf bifurcation point (λ, τ) = (0, 2π) over the extended Pyragas curve
from the left. Then the value of µ2 as defined in Theorem 2.3.1 is given by

µ2 = −4

Proof. If we approach the point (λ, τ) = (0, 2π) over the extended Pyragas curve from the left, we find as in
the proof of Lemma 4.0.2 that

Re (q ·∆2(i, 0)p) = −1 + 2πK(cosβ + γ sinβ)

|1 +K2πeiβ |2

Since the value of Re c is independent of the curve of approach and we are interested in the bifurcation at
(λ, τ) = (0, 2π), we find that Re c is given as in Lemma 2.3.4 with φ = τ = 2π, i.e.

Re c =
4(1 + 2πK (cosβ + γ sinβ)

|1 + 2πKeiβ |2

The claim now follows.

Lemma 4.0.4. Let us approach the Hopf bifurcation point (λ, τ) = (0, 2π) over the extended Pyragas curve
from the right. Then the value of µ2 as defined in Theorem 2.3.1 is given by

µ2 = 4

Proof. If we approach the point (λ, τ) = (0, 2π) over the extended Pyragas curve from the right, we find as
in the proof of Lemma 4.0.2 that

Re (q ·∆2(i, 0)p) =
1 + 2πK(cosβ + γ sinβ)

|1 +K2πeiβ |2

Combining this with the result of Lemma 2.3.4, the claim follows.
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Corollary 4.0.1. Let 1 + 2πKeiβ 6= 0. If

1 + 2πK [cosβ + γ sinβ] > 0 (4.6)

then for small λ, (2.4) is an unstable periodic solution of (2.2). Furthermore, if

1 + 2πK [cosβ + γ sinβ] < 0 (4.7)

then for small λ, (2.4) is a stable periodic solution of (2.2).

Proof. If (4.6) is satisfied, we have by Lemma 4.0.2 that we find a Hopf bifurcation at the point (λ, τ) = (0, 2π)
if we approach this point over the extended Pyragas curve from the left. Combining Lemma 4.0.3 with
Theorem 2.3.1, we find that this Hopf bifurcation is subcritical. Thus, there exists an unstable periodic
solution for parameter values (λ, τ) on the (extended) Pyragas curve to the left of the point (0, 2π). By the
Hopf bifurcation theorem, the periodic solution for these parameter values is unique (see Remark 2.2.2). By
definition of the Pyragas curve, (2.4) is a periodic solution of (2.2) for (λ, τ) near (0, 2π), i.e. this is the
periodic solution generated by the Hopf bifurcation. We conclude that for (λ, τ) on the Pyragas curve near
(0, 2π), (2.4) is an unstable periodic solution of (2.2), i.e. (2.4) is an unstable periodic solution of (2.2) for
small λ.

If (4.7) is satisfied, we have by Lemma 4.0.2 that we find a Hopf bifurcation at the point (λ, τ) = (0, 2π)
if we approach this point over the extended Pyragas curve from the right. Combining Lemma 4.0.3 with
Theorem 2.3.1, we find that this Hopf bifurcation is supercritical. Therefore, we find an unique, stable
periodic solution of (2.2) for (λ, τ) on the Pyragas curve near (0, 2π). Since (2.4) is a periodic solution of
(2.2) for (λ, τ) on the Pyragas curve, we conclude that for (λ, τ) on the Pyragas curve near (0, 2π), this
solution is in fact stable.

In Chapter 2, we approached the points on the Hopf bifurcation curve by varying the parameter λ
and leaving all the other parameters fixed. In Corollary 2.4.1 we saw that if (2.12), (2.13) are satisfied,
1 + 2πK [cosβ + γ sinβ] < 0 and the Pyragas curve is locally to the right of the Hopf bifurcation curve, that
then the periodic solution (2.4) of (2.2) is stable for small λ. In Corollary 2.4.2 we saw that if (2.12), (2.13)
are satisfied, 1 + 2πK [cosβ + γ sinβ] > 0 and the Pyragas curve is locally to the left of the Hopf bifurcation
curve, that then the periodic solution (2.4) of (2.2) is unstable for small λ.

By approaching the Hopf bifurcation point (λ, τ) = (0, 2π) over the extended Pyragas curve, we are able
to weaken the conditions for (2.4) to be a (un)stable solution of (2.2) for small λ. Comparing Corollary
2.4.1 and Corollary 2.4.2 with Corollary 4.0.1, we see in particular that we can drop the condition (2.13).
Furthermore, we no longer have to study the orientation of the Pyragas curve with respect to the Hopf
bifurcation curve to determine the stability of the periodic solution (2.4) of (2.2), which simplifies the
analysis considerably.
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Discussion

To conclude, we discuss some of the aspects of the analysis presented in this thesis. Furthermore, we look
at possible extensions and questions related to the topic of Pyragas control.

Local information and the calculation of characteristic multipliers

We note that the Hopf bifurcation theorem gives us local information on the stability of the arising periodic
solution, i.e. it only tells whether the periodic solution is (un)stable for parameter values near the bifurcation
point. Since we use the Hopf bifurcation theorem to determine the stability of the periodic solution (2.4)
of (2.2), we can only determine the stability for parameter values near the bifurcation point, as we saw in
Section 2.4.

We could try to circumvent this problem by calculating the characteristic multipliers of (2.2) for general
values of λ. In Section 3.1 we were able to give information on a real characteristic multiplier; see Lemma
3.1.1. In order to deterine the stability by looking at the characterstic multipliers, all the characteristic
multipliers (including non–real ones) have to be taken into account and we have not determined all those
characteristic multipliers. It is virtually impossible to do so by analytical means, since the characteristic
multipliers are defined as roots of a transcedental equation (see Section 3.1). Therefore, if we do not want to
use numerical methods but stick to analytic means, an analysis in terms of bifurcation theory as discussed
here presents a good possibility to give information on the stability of (2.4) for small λ.

Direction of the Hopf bifurcation and weaker conditions for the stability of the
periodic orbit

The direction of the Hopf bifurcation at (λ, τ) = (0, 2π) is a crucial element in the analysis presented in this
thesis. In [10], a normal form reduction is used to determine the direction of the Hopf bifurcation that occurs
when we only vary λ and leave all the other parameters fixed. In Section 2.3, we reproduce the result from
[10], not by performing a normal form reduction, but by using a closed–form formula from [3] that enables
us to determine the direction of the Hopf bifurcation. Since we are also able to determine the orientation
of the Pyragas curve with respect to the Hopf bifurcation curve, we can combine this with the direction of
the Hopf bifurcation at (λ, τ) = (0, 2π) to determine the stability of the periodic solution (2.4) of (2.2) (see
Corollary 2.4.1, 2.4.2).

We stress that varying λ and leaving all the other parameters fixed is one of the many possible ways to
approach the Hopf bifurcation point (λ, τ) = (0, 2π). In Chapter 4, we approach the point (λ, τ) = (0, 2π)
over the extended Pyragas curve (see Definition 4.0.1) and determine the direction of the Hopf bifurcation.
The result is that we can weaken the conditions for the periodic solution (2.4) of (2.2) to be (un)stable.
In particular, we do not longer have to take into account the orientation of the Pyragas curve with respect
to the Hopf bifurcation curve. This considerably simplifies the analysis of the (in)stability of the periodic
solution (2.4).
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Variations in the control term

Let us return to the general problem of Pyragas control as formulated in the Introduction, i.e. let us study
the system

ẋ(t) = f(x(t)), x(0) = x0 (4.8)

with f : Rn → Rn. Let us assume that a periodic solution u(t) of this system exists; denote its period by T .
For the Pyragas control scheme, we write

ẋ(t) = f(x(t)) +K [x(t)− x(t− T )] (4.9)

There are several variations to this control scheme possible. If g : Rn → Rn satisfies g(0) = 0, then u(t) is
also a periodic solution of the system

ẋ(t) = f(x(t)) +Kg (x(t)− x(t− T )) (4.10)

Furthermore, for h : Rn → Rn, we have that u(t) is a solution of the system

ẋ(t) = f(x(t)) +K [h(x(t))− h(x(t− T ))] (4.11)

We can explore for which values of K the solution u(t) of (4.8) is stable as a solution of (4.10) and (4.11),
respectively. In particular, we can ask ourselves whether there exist values of K for which u(t) is unstable
as a solution of (4.9) but stable as a solution of (4.10) or (4.11). Furthermore, it is interesting to study
the overall dynamics of (4.9), (4.10) and (4.11). For example, if we can find a value of K such that u(t) is
stable as a solution of both (4.9) and (4.10), the basin of attraction of u(t) can still be different in the two
sytems. By adressing such questions, we gain more insight in the possibilities for succesfull feedback–control
mechanisms.
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Appendices



Appendix A

Stability theory for ordinary
differential equations

Suppose we study a system described by the ordinary differential equation

ẋ(t) = f(x(t)), x(0) = x0 (A.1)

with f ∈ C1 (Rn,Rn) and x(t) ∈ Rn. In this chapter, we will study the stability of two classes of solutions of
this differential equation: equilibria and periodic solutions.

We call x0 an equilibrium of (A.1) if f(x0) = 0. It turns out that we can often determine the stability
of the equilibrium by studying the differential equation ẋ(t) = Df(x0)x(t). Since this is a linear differential
equation with constant coefficients, we will first look at this class of differential equations in Section A.2.
From there, we will move on to the study of equilibria of general ordinary differential equations in Section
A.3.

We call a solution u(t) of (A.1) periodic if there exists a T > 0 such that u(t+ T ) = u(t) for all t. In the
same way as we study the stability of the fixed point x0 by looking at the linearization ẋ(t) = Df(x0)x(t),
there exists a relation between the stability of the periodic orbit u(t) of (A.1) and the stability of ẋ(t) =
Df(u(t))x(t). Since this is a linear differential equation with periodic coefficients, we will study this class of
differential equations in Section A.4. In Section A.5 we will then turn to stability of periodic orbits.

We start by making some introductory remarks on ordinary differential equations that will be helpful
throughout the rest of the discussion.

A.1 The state space and flow maps

In Section 1.1, we introduced the state space of a differential equation; see Definition 1.1.1. If the state space
of a system is given, we can try to define a map that maps a state to another state ‘along the solution’ of
the differential equation. Thus, we can define a family of maps from the state space to itself. In the case of
ordinary differential equations, we can use this idea to define the so-called flow maps:

Definition A.1.1. If x(t) is a solution of (A.1) with initial condition x(0) = x0, we define the flow map for
system (A.1) as

φ : R× Rn → Rn, φ(t, x0) = x(t)

We note that for fixed t ∈ R, the map

φ(t, .) : Rn → Rn
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is a map from the state space to itself. Thus we can construct a family of maps from the state space to itself:

{φ(t, .) | t ∈ R}

We note that the map φ(t, .) translates along the solution of (A.1). If we assume that for all x0 ∈ Rn the
solution of (A.1) is defined for all t ∈ R, we find that the following properties hold for all t, s ∈ R:

φ(0, .) = I

φ(t, .)φ(s, .) = φ(t+ s, .)

where I : Rn → Rn denotes the identity map. In particular, we find that

φ(t, .)φ(−t, .) = φ(−t, .)φ(t, .) = I

Combining these three properties, we find that the set {φ(t, .) | t ∈ R} is in fact a group under composition
of functions.

A.2 Equilibria of linear differential equations with constant coef-
ficients

We now turn to the system

ẋ(t) = Ax(t) (A.2)

where A is a n×n-matrix (with respect to the standard basis of Rn). Defining the exponent of a matrix via
its power series expansion, the solution of Eq. (A.2) with initial condition x(0) = x0 is given by x(t) = eAtx0.
[9] To be able to say more about the properties of this solution, we recall the following definition and lemma
from linear algebra:

Definition A.2.1. Let A be a n × n-matrix and λ be one of its eigenvalues. Denote by r(λ) the least
integer k such that that N((A− λI)k) = N((A− λI)k+1), where N denotes the null-space. The generalized
eigenspace Mλ(A) of A for the eigenvalue λ is defined to be the set N((A− λI)r(λ)).

Lemma A.2.1. Let A be a n × n-matrix and λ1, . . . , λs be its distinct eigenvalues. Then the generalized
eigenspaces Mλ1

(A), . . . ,Mλs(A) are linearly independent, invariant under the matrix A and any x0 ∈ Rn
can be represented uniquely as:

x0 =

s∑
j=1

x0,j for x0,j ∈Mλj (A)

For a proof of the lemma, see for example [9]. Using this lemma, we can prove the following:

Proposition A.2.2. With notation as defined above, the solution of Eq. (A.2) with initial condition x(0) =
x0 is given by:

x(t) =

s∑
j=1

r(λj)−1∑
k=1

(A− λjI)
k t

k

k!

 eλjtx0,j

Proof. Using the general properties of exponents of matrices, we note that for x0,j ∈Mλj (A) we have that

eAtx0,j = e(A−λjI)teλjtx0,j =

( ∞∑
k=1

1

k!
(A− λjI)ktk

)
eλjtx0,j

Using that the solution of (A.2) can also be written as x(t) = eAtx0, that (A− λjI)k = 0 for k ≥ r(λj) and
that x0 =

∑s
j=1 x0,j , the statement follows. [6]
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We can now use this property to study stability of equilibria. Intuitively speaking, an equilibrium solution
is stable if all solutions that start nearby x0, stay nearby x0. This is made more precise in the following
definition (which is stated for autonomous differential equations).

Definition A.2.2. Let x0 ∈ Rn be an equilibrium point of the differential equation ẋ(t) = f(x(t)) with
f : Rn → Rn, i.e. f(x0) = 0. Denote by S its state space of the system and by φ(t, x) its flow. The equilibrium
x0 ∈ Rn = S is said to be stable if for every ε > 0 there exists a δ > 0 such that x ∈ B(x0, δ) ⊆ Rn = S
implies that φ(t, x0) ∈ B(x0, ε) ⊆ Rn = S for all t ≥ 0. The equilibrium x0 is said to be asymptotically stable
if it is stable and there exists a b > 0 such that x ∈ Bb(x0) ⊆ Rn = S implies that limt→∞ φ(t, x) = x0. The
equilibrium point x0 is said to be unstable if it is not stable.

This definition formalizes the intuitive understanding of the concept of stability, but is often not very
useful in concrete situations. For linear differential equations with constant coefficients, the following propo-
sitions give a computational tool for determining stability of the equilibrium x0 = 0 of Eq. (A.2).

Proposition A.2.3. If Re(λ) < 0 for all eigenvalues λ of A, then the equilibrium x0 = 0 is asymptotically
stable. Furthermore, there exist constants K,α > 0 such that

∥∥eAtx∥∥ ≤ K−αt ‖x‖.
Proof. We denote by λ1, . . . , λs the distinct eigenvalues of A and write x =

∑s
j=1 xj , xj ∈Mλj (A). We can

define the following norm:

‖.‖′ : Rn → R, ‖x‖′ =

s∑
j=1

‖xj‖

where ‖.‖ denotes the standard Euclidean norm on Rn. Using that the decomposition of x in generalized
eigenvectors is unique, and that ‖.‖ is a norm, we can readily see that the map x 7→ ‖x‖′ is well-defined and
in fact a norm. Since all norms on Rn are equivalent, it follows that there exists a constant C > 0 such that
‖x‖′ ≤ C ‖x‖ for all x ∈ Rn.

Since Re(λj) < 0 for all j, we have that
∣∣∣ tkk! eλjt∣∣∣ → 0 as t → ∞. By definition, there exists a δj,k > 0

such that
∣∣∣ tkk! eλjt∣∣∣ < 1 for all t ≥ δj,k. We define

aj,k = max

({ ∣∣∣∣ tkk!
eλjt

∣∣∣∣ | t ∈ [0, δj,k]
}
∪ {1}

)
Furthermore, we have that

∥∥(A− λjI)kxj
∥∥ ≤ ∥∥(A− λjI)k

∥∥ ‖xj‖, where
∥∥(A− λjI)k

∥∥ denotes the operator
norm of (A− λjI)k. Introducing the notation

A = max
j=1,...,s

r(λj)−1∑
k=1

∥∥(A− λjI)k
∥∥

a = max
j=1,...,s

k=1,...,r(λj)−1

aj,k

Using Proposition A.2.2, we make the following estiame:

‖φ(t, x)‖ ≤
s∑
j=1

r(λj)−1∑
k=1

∥∥(A− λjI)k
∥∥ ∣∣∣∣ tkk!

eλjt
∣∣∣∣ ‖xj‖ ≤ s∑

j=1

‖xj‖
r(λj)−1∑
k=1

∥∥(A− λjI)k
∥∥ aj,k

≤ aA
s∑
j=1

‖xj‖ = aA ‖x‖′ ≤ aAC ‖x‖

Choosing δ = ε
aAc shows that x0 = 0 is stable. Since Re(λj) < 0 for all j, it follows that 1

k! (A −
λjI)ktkeλjtx0,j → 0 as t → ∞. We conclude that φ(t, x) → 0 as t → ∞ for any x ∈ Rn. Thus x0 = 0 is
asymptotically stable.
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To prove the inequality
∥∥eAtx0∥∥ ≤ K−αt ‖x0‖, we rewrite eλjt = e

λjt

2 e
λjt

2 . As before, we remark that

Re(λj) < 0 implies that limt→∞

∣∣∣ tkk! eλjt2 ∣∣∣ = 0 and thus that there exists a δ′j,k such that
∣∣∣ tkk! eλjt2 ∣∣∣ < 1 for all

t ≥ δ′j,k. We define

a′j = max

({ ∣∣∣∣ tkk!
e
λjt

2

∣∣∣∣ | t ∈ [0, δj,k]
}
∪ {1}

)
a′ = max

j=1,...,s
k=1,...,r(λj)−1

a′j,k

A′ = max
j=1,...,s

r(λj)−1∑
k=1

∥∥(A− λjI)k
∥∥

−α = max
j=1,...,s

Re

(
λj
2

)

Note that α > 0. We now obtain the estimate:

‖φ(t, x0)‖ =
∥∥eAtx0∥∥ ≤ s∑

j=1

r(λj)−1∑
k=1

∥∥(A− λjI)k
∥∥ ∣∣∣∣ tkk!

e
λjt

2

∣∣∣∣ ∣∣∣eλjt2 ∣∣∣ ‖x0,j‖
≤

s∑
j=1

a′A′e
λjt

2 ‖x0,j‖ ≤ a′A′e−αt
s∑
j=1

‖x0,j‖ ≤ a′A′e−αtC ‖x‖ = Ke−αt ‖x‖

where we have set K = a′A′C > 0.

Proposition A.2.4. If the matrix A has an eigenvalue with Re(λj) > 0, then the equilibrium point x0 = 0
is unstable.

Proof. We need to prove that there exists an ε > 0 such that for all δ > 0, we can find a pair (x, t0) such
that ‖x‖ < δ but ‖φ(t0, x)‖ ≥ ε.

We choose ε = 1. Denote by λN the eigenvalue with Re(λN ) > 0 and by vN a corresponding eigenvector.
We choose x = x(δ) = vN

‖vN‖
δ
2 ; then ‖x‖ < δ. Using Proposition (A.2.2), we find that φ(t, x) = eλN tvN .

But since Re(vN ) > 0, we have that limt→∞
∥∥eλN tvn∥∥→∞. Thus, there exists an t0 such that ‖φ(t, x)‖ =∥∥eλN tvn∥∥ ≥ 1 for all t ≥ t0, which proves the claim.

We can use these results to obtain a more geometric view of stability. Intuitively speaking, we would like
to decompose the state space in such a way that the origin of the system (A.2) is stable on one part of the
decomposition, and unstable on the other part. To formalize this idea, we introduce the following concepts
for general ordinary differential equations.

Definition A.2.3. Let x0 be an equilibrium of ẋ(t) = f(x(t)). The stable manifold of x0 is defined as:

W s(x0) = {x ∈ Rn | φ(t, x)→ x0 as t→∞}

Similarly, we define the unstable manifold as

Wu(x0) = {x ∈ Rn | φ(t, x)→ x0 as t→ −∞}

[8]
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To apply these concepts to the case of a linear system with constant coefficients, denote by {λ1, . . . , λs}
the eigenvalues of A. We choose the indices in such a way that

Re (λi) < 0 for 1 ≤ i < n1

Re (λi) > 0 for n1 ≤ i < n2

Re (λi) = 0 for n2 ≤ i < s

Using Lemma A.2.1, we see that we can write the state space Rn as a direct sum of the generalized eigenspaces,
i.e.

Rn = Mλ1
(A)⊕ . . .⊕Mλs(A)

In the case that there exists an eigenvalue λ of A on the imaginary axis, we can use Propositions A.2.3 and
A.2.4 to see that

Mλ1
(A)⊕ . . .⊕Mλn1−1

(A) ⊆W s(0)

Mλn1
(A)⊕ . . .⊕Mλn2−1

(A) ⊆Wu(0)

We do not have an equality in this case since the generalized eigenspaces of the eigenvalues on the imaginary
axes can belong to the (un)stable manifold. This problem disappears if all eigenvalues λ of A satisfy
Re (λ) 6= 0. In this case n2 = s and we know completely how to decompose the state space in an unstable
and stable manifold:

W s(0) = Mλ1
(A)⊕ . . .⊕Mλn1−1

(A)

Wu(0) = Mλn1
(A)⊕ . . .⊕Mλs(A)

A.3 Equilibria of autonomous differential equations; linearization

In the previous section, we studied the fixed point x = 0 of the system ẋ(t) = Ax(t), where A was some
constant matrix. It turns out that this can help us to determine the stability of an equilibrium point x0 of
the ordinary differential equation ẋ(t) = f(x(t)). We first need to introduce some terminology (see also [7]).

Definition A.3.1. Let x0 ∈ Rn be an equilibrium of the differential equation ẋ(t) = f(x(t)) with f ∈
C1(Rn,Rn). Then x0 is called hyperbolic if the linear map Df(x0) has no eigenvalues on the imaginary axis.

Definition A.3.2. Let f, g : Rn → Rn. Two differential equations ẋ(t) = f(x(t)) and ẋ(t) = g(x(t))
defined on open sets U, V ⊆ Rn, respectively, are called topologically equivalent if there is a homeomorphism
h : U → V that maps orbits of f onto orbits of g, preserving the direction of time.

We are now able to state the following theorem:

Theorem A.3.1 (Grobman-Hartman). Let f ∈ C∞ (Rn,Rn) and let x0 be an hyperbolic equilibrium point
of ẋ(t) = f(x(t)). Then there exists a neighbourhood of x0 in which f is topologically equivalent to the linear
vector fields ẋ(t) = Df(x0)x(t).

A proof can be found in [2].
This implies that for a hyperbolic equilibrium, we now also have a computational tool to determine the

stability of the equilibrium.

Corollary A.3.1. Let f ∈ C∞ (Rn,Rn) and let x0 be an hyperbolic equilibrium of the differential equation
ẋ(t) = f(x(t)). Denote by λ1, . . . , λn the eigenvalues of Df(x0). If Re (λj) < 0 for all 1 ≤ j ≤ n, then x0 is
stable. If there exists a 1 ≤ j ≤ n such that Re (λj) > 0, then x0 is an unstable equilibrium.
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Proof. Denote by φ(t, x) the flow of ẋ(t) = f(x(t)) and by ψ(t, x) the flow of ẋ(t) = Df(x0)x(t). Then
we can parafrase the Grobman-Hartman theorem by saying that there exists a neighbourhood U of x0, a
neighbourhood V of 0 and a homeomorphism h : U → V with h(x0) = 0 such that ψ(t, h(x)) = h(φ(t, x)).
Using this, we prove that (in)stability of the equilibrium 0 of ẋ(t) = Df(x0)x(t) implies (in)stability of the
equilibrium x0 of ẋ(t) = f(x(t)).

Assume that 0 is a stable equilibrium of ẋ(t) = Df(x0)x(t). Let ε > 0. Since h−1 is continuous and
h−1(0) = x0, there exists a δ1 > 0 such that ‖x‖ < δ1 implies that

∥∥h−1(x)− x0
∥∥ < ε. Since 0 is by

assumption a stable equilibrium of ẋ(t) = Df(x0)x(t), there exists a δ2 > 0 such that ‖x‖ < δ2 implies
that ‖ψ(t, x)‖ < δ1 for all t ≥ 0. Since h is continuous and h(x0) = 0, there exist a δ3 > 0 such that
‖x− x0‖ < δ3 implies that ‖h(x)‖ < δ2. Wrapping things up, we find that ‖x− x0‖ < δ3 implies that
‖φ(t, x)− x0‖ =

∥∥h−1(ψ(t, h(x)))− x0
∥∥ < ε. A similar argument shows that instability of the equilibrium 0

of ẋ(t) = Df(x0)x(t) implies instability of the equilibrium x0 for ẋ(t) = f(x(t)).
Thus, if all eigenvalues of Df(x0) have negative real part, we recall from Proposition A.2.3 that the origin

is a stable equilibrium of ẋ(t) = Df(x0)x(t). This implies that x0 is a stable equilibrium of ẋ(t) = f(x(t)).
Similarly, if an eigenvalue of Df(x0) has positive real part, we conclude that x0 is unstable.

The proof of the Grobman-Hartman theorem is quite involved. However, we can prove a part of the
corollary directly (i.e. without using Grobman-Hartman):

Proposition A.3.2. Let f ∈ C1 (Rn,Rn). Let x0 ∈ Rn be an equilibrium of the differential equation
ẋ(t) = f(x(t)) with the property that all the eigenvalues of Df(x0) have strictly negative real part. Then x0
is asymptotically stable.

For the proof, we need the following lemma on linear algebra:

Lemma A.3.3. Let A : Rn → Rn a linear map such that there exists a constant a ∈ R with the property that
Re(λ) < a for all eigenvalues λ of A. Then there exists a basis of Rn such that the induced inner product

〈. , .〉′ and norm ‖.‖′ satisfy 〈Ax, x〉′ ≤ a ‖x‖′2 for all x ∈ Rn.

For a proof of the lemma, see for example [9].

Proof. (of Proposition A.3.2). [9] Assume without loss of generality that x0 = 0, the general situation can be
reduced to this case by appropriate translation of the coordinate system. Denote by λ1, . . . , λs the distinct
eigenvalues of Df(x0). By assumption, we can choose b > 0 such that max1,...,s Re(λj) < −b. It follows by

the lemma that there exists a basis of Rn such that 〈Df(x0)x, x〉′ < −b ‖x‖′2 for all x ∈ Rn, where 〈. , .〉′
and ‖x‖′ denote the inner product resp. norm induced by this basis.

We note that if an equilibrium is (un)stable with respect to a norm, it is (un)stable with respect to any
equivalent norm. Since all norms on Rn are equivalent, it is sufficient to prove stability of x0 with respect
to the norm ‖.‖′.

Since f is differentiable and x0 = 0 an equilibrium point (i.e. f(x0) = 0), we have by definition of the
derivative Df(x0) that

lim
x→x0

‖f(x)− f(x0)−Df(x0)(x− x0)‖′

‖x‖′
= lim
x→0

‖f(x)−Df(0)(x)‖′

‖x‖′
= 0

(note that this also holds in the norm ‖.‖′ since all norms on Rn are equivalent). Using the Cauchy-Schwarz
inequality, we can make the following estimate:∣∣〈f(x)−Df(0)(x), x〉′

∣∣
‖x‖′2

≤ ‖f(x)−Df(0)(x)‖′ ‖x‖′

‖x‖′2
=
‖f(x)−Df(0)(x)‖′

‖x‖′

Thus, we find that 〈f(x)−Df(0)(x),x〉
′

‖x‖′2 → 0 as x→ 0. We now choose ε > 0 such that −b+ ε < 0. Then there

exists a δ > 0 such that for ‖x‖ < δ, we have that 〈f(x)−Df(0)(x),x〉
′

‖x‖′2 < ε. From here we obtain the estimate:

ε ‖x‖′2 > 〈f(x)−Df(0)(x), x〉′ = 〈f(x), x〉′ − 〈Df(0)(x), x〉′ ≥ 〈f(x), x〉′ + b ‖x‖′2
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Thus 〈f(x), x〉′ ≤ (ε − b) ‖x‖′2 for ‖x‖′ < δ. Denoting the flow of ẋ(t) = f(x(t)) by φ(t, x) and using the
chain rule, we find that

d

dt
‖φ(t, x)‖′ =

d

dt

√
〈φ(t, x), φ(t, x)〉′ =

〈
d
dtφ(t, x), φ(t, x)

〉′
‖φ(t, x)‖′

=
〈f(x), φ(t, x)〉′

‖φ(t, x)‖′
≤ (ε− b) ‖φ(t, x)‖′

as ‖φ(t, x)‖′ < δ. This leads to the inequality ‖φ(t, x)‖′ ≤ e(ε−b)t ‖x‖′. We recall that ε − b < 0. For any
given ε′ > 0, we choose δ′ = min(ε′, δ). Then ‖φ(t, x)‖ ≤ e(ε−b)t ‖x‖′ ≤ ‖x‖′ < ε′ for all t ≥ 0 if ‖x‖′ < δ′.
Since the estimate ‖φ(t, x)‖′ ≤ e(ε−b)t ‖x‖′ holds for ‖x‖′ < δ, we find that φ(t, x) → 0 for such x. We
conclude that x0 = 0 is asymptotically stable.

A.4 Linear differential equations with periodic coefficients

After studying equilibria of ordinary differential equations, we now turn to another class of solutions, namely
periodic ones. In the previous sections we saw that to analyse the stability of an equilibrium for an ordinary
differential equation, it was helpful to study its linearization. Similarly, it turns out that the so-called linear
variational equation can help us to determine the stability of a periodic orbit. Since the linear variational
equation is a linear differential equation with periodic coefficients, we study this class of ordinary differential
equations in more detail. We will mostly follow [6].

We first introduce some terminology.

Definition A.4.1. Let B(t) : Rn → Rn be a linear map for all t ∈ R (we make no assumptions on the
periodicity of B(t)). We call the n × n-matrix a matrix solution of ẋ(t) = B(t)x(t) if all its columns are
solutions of this differential equation. We call X(t) the fundamental matrix solution of ẋ(t) = B(t)x(t) if it
is a matrix solution and satisfies X(0) = I.

We summarize some of the properties of the properties of the fundamental matrix solution in the following
lemmata.

Lemma A.4.1. If X(t) is the fundamental matrix solution of ẋ(t) = B(t)x(t), then the columns of X(t)
are linearly independent for all t ≥ 0.

Proof. Denote by v1(t), . . . , vn(t) the columns of X(t) and assume by contradiction that there exists a t0 ≥ 0
such that the columns of X(t0) are not linearly independent. By definition, there exists λ1, . . . , λn such that
not all λi equal zero simultaneously and

0 = λ1v1(t0) + . . .+ λnvn(t0)

Since B(t) is a linear map, we see that the associated flow map φ(t, .) : Rn → Rn is a linear map for all
t ∈ R. By the definition of the fundamental matrix solution, we have that vi(t0) = φ(t0, vi(0)) = φ(t0, ei)
for all 1 ≤ i ≤ n. Thus we find that

φ(−t0, 0) = 0 = φ (−t0, λ1v1(t0) + . . .+ λnvn(t0)) = λ1φ(−t0, v1(t0)) + . . .+ λnφ(−t0, vn(t0))

= λ1φ(−t0, φ(t0, e1)) + . . .+ λnφ(−t0, φ(t0, en)) = λ1e1 + . . .+ λnen

where we have used that x = 0 is an equilibrium of ẋ(t) = B(t)x(t). The statement that 0 = λ1e1+. . .+λnen
is clearly a contradiction with the assumption that λi 6= 0 for all 1 ≤ i ≤ n simultaneously. We conclude
that v1(t), . . . , vn(t) are linearly independent for all t ≥ 0.

Lemma A.4.2. Let B(t) : Rn → Rn be a linear map for all t ∈ R. If X(t), Y (t) are matrix solutions of
ẋ(t) = B(t)x(t) such that detX(0) 6= 0, detY (0) 6= 0, then there exists an invertible matrix C such that
Y (t) = X(t)C.
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Proof. Denote by {e1, . . . , en} a basis of Rn and fix i ∈ {1, . . . , n}. By definition of the fundamental
matrix solution, Y (t)ei is a solution of the linear differential equation ẋ(t) = B(t)x(t) with initial condition
Y (0)ei. However, X(t)X(0)−1Y (0)ei is also a solution of ẋ(t) = B(t)x(t) with initial condition Y (0)ei.
Since solutions of ẋ(t) = B(t)x(t) are uniquely determined once an initial condition is given, we find that
Y (t)ei = X(t)X(0)−1Y (0)ei. Since this argument holds for all basis vectors ei, and since a linear map is
completely determined by its behaviour on the basis vectors, we find that Y (t) = X(t)X(0)−1Y (0). We set
C = X(0)−1Y (0). Since detX(0),detY (0) 6= 0 by assumption, we have that C = X(0)−1Y (0) is invertible
and the claim follows.

We now turn to the system

ẋ(t) = A(t)x(t) (A.3)

where A(t) : Rn → Rn is a linear map for all t ∈ R with the property that A(t+ T ) = A(t) for some T > 0.
This kind of ordinary differential equation is – not suprisingly – called a linear differential equation with
periodic coefficients. We assume that A(t) is integrable, such that the solutions of (A.3) exist for all t ∈ R
(see [6]).

We recall that in the discussion of linear differential equations with constant coefficents, Proposition
A.2.2 gave a general form for the solutions. For the case of linear periodic coefficients, we similarly find the
following result:

Theorem A.4.3. Let X(t) be the fundamental matrix solution of Eq. (A.3). Then there exist matrices
B,P (t) such that P (t+ T ) = P (t), B is constant and

X(t) = P (t)eBt

Proof. Let X(t) be the fundamental matrix solution of Eq. (A.3). Since A(t) = A(t + T ), it follows that
X(t+T ) is also matrix solution of this system. By the remarks made in the previous lemmata, we find that
detX(t) 6= 0, detX(t) 6= 0 and there exists an invertible matrix C such that X(t + T ) = X(t)C for all t.
Since C is invertible, we have that detC 6= 0 and we can use a result from linear algebra to see that there
exists a matrix B such that C = eBT (for a proof, see for example [6]), i.e. X(t+ T ) = X(t)eBT . We define
P (t) = X(t)e−Bt, then we have that P (t)eBt = X(t). Using the properties of the exponent of a matrix, we
furthermore find that

P (t+ T ) = X(t+ T )e−B(t+T ) = X(t+ T )e−Bte−BT = X(t)eBT e−BT e−Bt = X(t)e−Bt = P (t)

Thus, P (t), B have the required properties. [6]

Using this, we can prove the following corollary:

Corollary A.4.1. There exists an (invertible) coordinate transform that transforms Eq. (A.3) into a linear
differential equation with constant coefficients.

Proof. We set x(t) = P (t)y(t). Recalling that P (t) = X(t)e−Bt and that X(t) is invertible for all t ≥ 0, we
see that P (t) is invertible. Thus this is indeed an (invertible) coordinate transform. To see that it transforms
Eq. (A.3) into a linear differential equation with constant coefficients, we first note that

Ṗ (t) = Ẋ(t)e−Bt +X(t)(−B)e−Bt

Since X(t) is the fundamental matrix solution of (A.3) and any matrix commutes with its exponent, we can
rewrite this as

Ṗ (t) = A(t)X(t)−Bt −X(t)e−BtB = A(t)P (t)− P (t)B
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Using this, we find that

ẋ(t) = Ṗ (t)y(t) + P (t)ẏ(t) = (A(t)P (t)− P (t)B) y(t) + P (t)ẏ(t) = A(t)x(t) = A(t)P (t)y(t)

We conclude that P (t)ẏ(t) = P (t)By(t) and, since P (t) is invertible, that ẏ(t) = By(t). Since this a linear
differential equation with constant coefficients, the claim follows. [6]

Using this transformation, we can try to determine the stability of a periodic orbit of Eq. (A.3) using
stability theory of equilibria for linear differential equations with constant coefficients. To this end, we
introduce the following terminology.

Definition A.4.2. Let X(t) be the fundamental matrix solution of Eq. (A.3). The monodromy matrix
associated with X(t) is the matrix C such that X(t + T ) = X(t)C. The eigenvalues ρ of C are referred to
as characteristic multipliers. A number λ such that ρ = eλT is called a characteristic exponent of Eq. (A.3).

We recall that in Lemma A.4.2 we gave an explicit form for C; applying this to C in the definition
above, we find that C = X(T ). We also note that the characteristic exponents are not uniquely determined.
Indeed, let λ, µ be two complex numbers such that eλT = eµT = ρ, then e(λ−µ)T = 1. Thus we find that
(λ − µ)T = 2πik for some k ∈ Z. Hence two characteristic exponents for one characteristic multiplier
can only differ by 2πik

T for some k ∈ Z. We recall from complex analysis that the complex logarithm
log(reiθ) = log(r) + iθ satisfies elog z = z. [11] Since C is invertible, we find that ρ 6= 0 for any eigenvalue of
C, i.e. for any characteristic multiplier. Therefore, we can write ρ = r0e

iθ0 with r0 6= 0. All the corresponding
characteristic exponents can now be written as

λk =
1

T
(log r0 + i(θ0 + 2πk)) , k ∈ Z

In particular, we see that if |ρ| < 1, then all the associated characteristic exponents lie in the left half plane;
if |ρ| > 1, then all its characteristic exponents lie in the right half plane. We now note that if B has the
property that C = eBT , then the eigenvalues of B are characteristic exponents. Thus, if all the eigenvalues
ρ of C satisfy |ρ| < 1, then all the characteristic exponents and therefore all the eigenvalues of B will lie in
the left half plane. If there exists an eigenvalue ρ of C such that |ρ| > 1, we can always find an eigenvalue
of B in the right half plane. Using this, we can prove the following theorem:

Theorem A.4.4. If all the characteristic multipliers of Eq. (A.3) ρ satisfy |ρ| < 1, then the equilibrium
x = 0 is asympotically stable. If one of the characteristic multipliers satisfy |ρ| > 1, then the equilibrium
x = 0 is unstable.

Proof. The main ingredient for the proof is Corollary A.4.1. Since X(t) is a fundamental matrix solution,
the map t 7→ X(t) is differentiable, hence continuous. Therefore, the transformation P (t) = X(t)e−Bt is
continous. Since the map P (t) is also periodic, we have that ‖P (t)‖ ≤ sup{‖P (t)‖ | t ∈ [0, T ]} := K < ∞
for all t. Thus, we find that ‖x(t)‖ ≤ K ‖y(t)‖ and that asymptotically stability of the y = 0 for the linear
differential equation ẏ(t) = By(t) implies asymptotically stability of x = 0 for Eq. (A.3). If |ρ| < 1 for all
eigenvalues ρ of C, the discussion above implies that all the eigenvalues of B are in the left half plane. Using
Proposition A.2.3 we find that y = 0 is an asymptotically stable solution of ẏ(t) = By(t). Thus, x = 0 is an
asymptotically stable solution of Eq. (A.3).

Since P (t) invertible, we can rewrite the transformation as y(t) = P (t)−1x(t). Since P (t) is continuous
and periodic, the same holds for P (t)−1 and thus

∥∥P (t)−1
∥∥ ≤ sup{

∥∥P (t)−1
∥∥ | t ∈ [0, T ]} := K ′ <∞ for all t.

Thus we find that ‖y(t)‖ ≤ K ′ ‖x(t)‖ for all t. It follows that stability of x = 0 implies stability of y = 0, and
thus by contraposition that instability of y = 0 implies instability of x = 0. If there exists a characteristic
multiplier ρ of Eq. (A.3) with |ρ| > 1, it follows by remarks made above that B has an eigenvalue in the
right half plane. By Proposition A.2.4 y = 0 is an unstable solution of ẏ(t) = By(t). We conclude that x = 0
is an unstable solution of Eq. (A.3)
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Although this theorem gives us a computational tool to determine the stability of the equilibrium x = 0
of Eq. (A.3), performing this computation is in general not simple. To determine the monodromy matrix
C, we first need to determine the fundamental matrix, which involves finding n independent solutions of Eq.
(A.3). Hence, the case of linear differential equations with periodic coefficients is certainly more involved
than the case of linear differential equations with constant coefficients.

A.5 Stability of periodic orbits

Suppose that u(t) is a periodic solution of the ordinary differential equation ẋ(t) = f(x(t)) with (minimal)
period given by T > 0. In the following, we will study the stability of this periodic orbit. Although intuitively
clear, we will formalize some concepts first.

Definition A.5.1. Let f : Rn → Rn and let u(t) be a periodic solution with period T > 0 of ẋ(t) = f(x(t)),
i.e. a solution with the property that u(t + T ) = u(t) for all t. We define the corresponding periodic orbit
as Γ = {u(t) | t ∈ R} ⊆ Rn.

Definition A.5.2. Let S be the state space of the differential equation (A.1) and φ(t, .) : S → S the
associated flow maps. We call a set U ⊆ S invariant if {φ(t, x) | x ∈ U} ⊆ U for all t ∈ R.

If Γ denotes a periodic orbit of the ordinary differential equation ẋ(t) = f(x(t)), then in particular Γ is a
invariant set of the state space Rn. To see this, we note that by definition of flow maps φ(t, u(0)) = u(t) holds
for all t ∈ R. Now, let p ∈ Γ, then by definition of Γ there exists a tp ∈ [0, T ] such that p = u(tp) = φ(tp, u(0)).
By remarks made in Section A.1, we find that

φ(t, p) = φ(t, φ(tp, u(0))) = φ(t+ tp, u(0)) = u(t+ tp) ∈ Γ

We conclude that {φ(t, x) | x ∈ Γ} ⊆ Γ for all t ∈ R, thus Γ is an invariant set.
Furthermore, since u(t) is continuous and [0, T ] compact, it follows that Γ is compact and in particularly

closed. Thus we can define the following function:

dist(x0,Γ) = min{‖x0 − p‖ | p ∈ Γ}

Using this, we define stability of a periodic orbit (which is sometimes also called orbital stability).

Definition A.5.3. Let f : Rn → Rn and Γ ⊆ Rn be a periodic orbit of ẋ(t) = f(x(t)). We call Γ stable
if for every ε > 0 there exists a δ > 0 such that dist(x,Γ) < δ implies that dist(φ(t, x),Γ) < ε for all
t ≥ 0. We call Γ asymptotically stable if it is stable and there exist a neighbourhood W of Γ such that
limt→∞ dist(φ(t, x),Γ) = 0 for all x ∈W .

Suppose u(t) is given periodic solution of ẋ(t) = f(x(t)). We can try to find other solutions to this ODE
by adding small pertubation terms to the periodic solutions, i.e. by using the Ansatz x(t) = u(t) + v(t) with
‖v(t)‖ ‘small enough’ for all t. For x(t) = u(t) + v(t) to be a solution of the system, it should satisfy

ẋ(t) = u̇(t) + v̇(t) = f(u(t)) + v̇(t) = f(u(t) + v(t))

If f is smooth enough, we can use Taylor’s theorem to expand the right hand side as

f(u(t) + v(t)) = f(u(t)) +Df(u(t))v(t) + higher order terms

Cancelling the terms f(u(t)), we find that v(t) should satisfy

v̇(t) = Df(u(t))v(t) + higher order terms

Thus, if we can argue that the higher order terms can be disregarded in a small enough neighbourhood of
u(t), and v(t) satisfies the linear differential equation v̇(t) = Df(u(t))v(t), we find that x(t) = u(t) + v(t)
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gives is a solution of ẋ(t) = f(x(t)) in a neighbourhood of u(t). This prompts us to study the so-called linear
variational equatoin

ẋ(t) = Df(u(t))x(t) (A.4)

and look if it locally shares properties with the system (A.1).
Since Df(u(t + T )) = Df(u(t)) for all t, Eq. (A.4) is a linear differential equation with periodic coeffi-

cients. In resemblance with Corollary A.3.1, we will prove the following result in this Section:

Theorem A.5.1. Let f ∈ C1(Rn,Rn), u(t) a periodic solution of ẋ(t) = f(x(t)) with (minimal) period
given by T > 0. If n − 1 characterstic multipliers ρ of Eq. (A.4) satisfy |ρ| < 1, then the periodic solution
u(t) is asymptotically stable.

We first give an outline of the proof. In a neighbourhood of Γ, we define an orthonormal basis moving
along Γ such that one basis vector is tangent to Γ at every point. This enables us to rewrite the differential
equation ẋ(t) = f(x(t)) as a a system of two differential equations, one describing the motion parallel to Γ,
the other describing the motion in the plane perpendicular to Γ. We note that to determine the stability of
the periodic orbit Γ, it is sufficient to analyze the motion in the plane perpendicular to Γ at each point. It
turns out that (in the coordinate frame moving along Γ), we can describe the motion perpendicular to Γ by
ρ̇(θ) = A(θ)ρ(θ) + f(θ, ρ), where A(θ+ T ) = A(θ) for all θ. Using linearization theory, we find that stability
of ρ̇(θ) = A(θ)ρ(θ) implies stability of of ρ̇(θ) = A(θ)ρ(θ)+f(θ, ρ). We will show that 1 is always a multiplier
of Eq. (A.4) and that if 1, µ2, . . . , µn are the multipliers of Eq. (A.4), then µ2, . . . , µn are multipliers of
ρ̇(θ) = A(θ)ρ(θ). Thus, if n − 1 multipliers µ2, . . . , µn of Eq. (A.4) satisfy |µi| < 1, then µ2, . . . , µn are
multipliers of ρ̇(θ) = A(θ)ρ(θ) and the ρ̇(θ) = A(θ)ρ(θ) is stable. From there, it follows that the periodic
orbit Γ is stable.

We now state the proof formally, using the following lemma:

Lemma A.5.2. Let f : Rn ⊃ U → Rn, let u(t) be a periodic solution of period T of ẋ(t) = f(x(t)) and
denote by Γ its orbit. If u ∈ Cp(R,Rn), then there exists a moving orthonormal system along Γ which is
Cp−1, i.e. there exists an orthonormal basis {e1(θ), . . . , en(θ)} such that the map ei(θ) ∈ Cp−1(R,Rn) for

each i, e1(θ) = du(θ)
dθ

/∥∥∥du(θ)dθ

∥∥∥ for all θ and ei(θ + T ) = ei(θ) for all i, θ.

A proof can be found in [6]. However, for the case n = 3 we can also explicitly construct the basis
{e1(θ), . . . , e3(θ)}.

Proof. (case n = 3) We note that the map u : [0, T ) → Rn, is a Cp parametrization of Γ. Thus, du(θ)
dθ is

tangent to Γ for all θ. Therefore, we define e1(θ) = du(θ)
dθ

/∥∥∥du(θ)dθ

∥∥∥. Since du(θ)
dθ 6= 0 for all θ, it follows that

e1(θ) 6= 0 for all θ. We note that 〈e1(θ), e1(θ)〉 = 1 for all θ ∈ [0, ω), thus d
dθ 〈e1(θ), e1(θ)〉 = 0. We define

h : Rn × Rn → R, h(x, y) = 〈x, y〉
g : Rn → Rn × Rn, g(x) = (x, x)

Since h, g are (multi)-linear maps, respectively, we recall that their total derivatives are given by

Dh(x, y)(u, v) = 〈x, v〉+ 〈u, y〉
Dg(x)v = (v, v)

We note that 〈e1(θ), e1(θ)〉 = h ◦ g ◦ e1(θ). Using the chain rule, we thus find that

0 =
d

dθ
〈e1(θ), e1(θ)〉 = Dh(g ◦ e1(θ))Dg(e1(θ))

de1(θ)

dθ
= Dh(e1θ, e1θ)(

de1(θ)

θ
,
de1(θ)

dθ
)

=

〈
e1(θ),

de1(θ)

dθ

〉
+

〈
de1(θ)

dθ
, e1(θ)

〉
= 2

〈
e1(θ),

de1(θ)

dθ

〉
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We conclude that de1(θ)
dθ ⊥ e1(θ) for all θ. Therefore, we define e2(θ) = de1(θ)

dθ

/∥∥∥de1(θ)dθ

∥∥∥. We note that

e2(θ) ∈ Cp−1. Furthermore, we define e3(θ) = e1(θ)× e2(θ), then ‖e3(θ)‖ = 1. Since taking outer products
is a bilinear, hence smooth, operation, we conclude that e3 ∈ Cp−1. Thus, the set {e1(θ), e2(θ), e3(θ)}
satisfies the requirements. [5]

We now define Z(θ) = [e1(θ), . . . , en−1(θ)]. Using this, we can define a map transform R × Rn−1 3
(θ, ρ) 7→ u(θ) + Z(θ)ρ. It is proven in [6] that this is in fact a coordinate transform in a sufficiently small
neighbourhood of Γ, and that there exists functions f1, f2 such that we can rewrite ẋ(t) = f(x(t)) as

θ̇ = 1 + f1(θ, ρ)

ρ̇ = A(θ)ρ+ f2(θ, ρ)

with A(θ) given by

A(θ) = ZT (θ)

(
−dZ(θ)

dθ
+Df(u(θ))Z(θ)

)
and f2 such that f2(θ, 0) = 0 and Dρf2(θ, 0) = 0 for all θ. We note that A(θ + T ) = A(θ) for all θ, i.e.
dρ
dθ = A(θ)ρ is a linear differential equation with periodic coefficients. Using this, we prove the following
lemma:

Lemma A.5.3. At least one of the characteristic multipliers of the linear variational equation (A.4) is equal
to 1. If 1, µ2, . . . , µn are the characteristic multipliers of Eq. (A.4), then the characteristic multipliers of the
(n− 1)-dimensional system

dρ

dθ
= A(θ)ρ

are given by µ2, . . . , µn.

Proof. We first note that du(θ)
dθ is a solution of the linear variational equation (A.4). Indeed, since du(θ)

dθ =
f(u(θ)), we have that:

d2u(θ)

dθ2
=

d

dθ
f(u(θ)) = Df(u(θ))

du(θ)

dθ

Therefore, a fundamental matrix solution Y (t) of Eq. (A.4) is given by Y (θ) = [du(θ)dθ , w2(θ), . . . , wn(θ)],

where w2, . . . , wn are solutions of Eq. (A.4). Denote the monodromy matrix by K. Since du(T )
dθ = du(0)

dθ , it
follows that K can be written as

K =

(
1 K2

0 K1

)
where K2 is a 1× (n−1) block and K1 a (n−1)× (n−1) block. It follows that the eigenvalues of K (i.e. the
characteristic multipliers) are given by 1 and the eigenvalues of K1. To complete the proof, we now claim

that K1 is a monodromy matrix for dρ
dθ = A(θ)ρ(θ). Indeed, since du(θ)

dθ

/∥∥∥du(θ)dθ

∥∥∥ and the columns of Z(θ)

constitute an orthonormal system, there exists a unique α ∈ R, ρ ∈ Rn−1 such that y = du(θ)
dθ α + Z(θ)ρ.

Thus, if y(θ) = du(θ)
dθ α(θ) + Z(θ)ρ(θ) satisfies (A.4), we find that

Df(u(θ))y(θ) = Df(u(θ))

(
du(θ)

dθ
α(θ) + Z(θ)ρ(θ)

)
=
dy(θ)

dθ
=

d

dθ

(
du(θ)

dθ
α(θ) + Z(θ)ρ(θ)

)
=
d2u(θ)

dθ2
α(θ) +

du(θ)

dθ

dα(θ)

dθ
+
dZ(θ)

dθ
ρ(θ) + Z(θ)

dρ(θ)

dθ
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Using that d2u(θ)
dθ2 = Df(u(θ))du(θ)dθ and cancelling terms on both sides, we find that

du(θ)

dθ

dα(θ)

dθ
+
dZ(θ)

dθ
ρ(θ) + Z(θ)

dρ(θ)

dθ
= Df(u(θ))Z(θ)ρ(θ)

However, since du(θ)
dθ is perpendicular to the plane spanned by the columns of Z(θ), we find that the motion

in the plane spanned by the columns of Z(θ) is given by

dZ(θ)

dθ
ρ(θ) + Z(θ)

dρ(θ)

dθ
= Df(u(θ))Z(θ)ρ(θ)

Using that Z(θ) is orthogonal, i.e. Z(θ)−1 = Z(θ)T , we find that ρ(θ) satisfies dρ(θ)
dθ = A(θ)ρ(θ). We can

write

Y1(θ) = [w2(θ), . . . , wn(θ)] =
du(θ)

dθ
(α2(θ), . . . , αn(θ)) + Z(θ)(ρ2(θ), . . . , ρn(θ)) :=

du(θ)

dθ
α(θ) + Z(θ)ρ(θ)

By the remarks above, ρ(θ) is a matrix solution of dρ(θ)
dθ = A(θ)ρ(θ). Since Y1(θ) has linearly independent

columns and the coordinate transform is bijective, we find that ρ(θ) has linearly independent columns. Thus,
ρ(θ) is in fact a fundamental matrix solution. Using the form of the monodromy matrix K, we have that

Y1(T ) =
du(T )

dθ
α(T ) + Z(T )ρ(T ) =

du(0)

dθ
K2 + Y1(0)K1 =

du(0)

dθ
(K2 + α(0)K1) + Z(0)ρ(0)K1

Using again that du(θ)
dθ and the columns of Z(θ) form an orthonormal basis we can uncouple the equation to

obtain Z(T )ρ(T ) = Z(0)ρ(0)K1. Since Z(T ) = Z(0), we find that ρ(T ) = ρ(0)K1, i.e. K1 is a monodromy

matrix for dρ(θ)
dθ = A(θ)ρ(θ). Recalling that the eigenavlues of K are given by 1 and the eigenvalues of K1,

the statement of the theorem follows. [6]

Before concluding with the proof of Theorem A.5.1, we first state the following Lemma, whose proof can
be found in [6].

Lemma A.5.4. Suppose the equilibrium of ẋ(t) = A(t)x(t) is uniformly asymptotically stable for t ≥ β,
β ∈ (−∞,∞). If f(t, x) is continuous and for any ε > 0 there exists a δ > 0 such that ‖x‖ < δ implies that
‖f(t, x)‖ ≤ ε ‖x‖ for all t, then the solution of x = 0 of ẋ(t) = A(t)x + f(t, x) is uniformly asymptotically
stable for all t0 ≥ β.

Proof. (of Theorem A.5.1) Denote by µ1, . . . , µn the multipliers of the linear variational equation (A.4). By
Lemma A.5.3, exactly one of them, say µ1, equals one, and µ2, . . . , µn are multipliers of ρ̇ = A(θ)ρ(θ). By
the assumptions of the theorem, we have that |µi| < 1 for all 2 ≤ i ≤ n. We can apply Theorem A.4.4 to
see that the equilibrium x = 0 of dρ

dθ = A(θ)ρ(θ) is asymptotically stable.
We recall that in a neighbourhood of Γ, the motion in the plane perpendicular to Γ can be described by

dρ
dθ = A(θ)ρ + f2(θ, ρ), where A(θ + T ) = A(θ) for all θ, f2(θ, 0) = 0, Dρf2(θ, 0) = 0 and f2 has continuous
derivatives with respect to ρ. Using this, it follows that for every ε > 0 we can find a δ > 0 such that
‖Dρf(θ, ρ)‖ < ε for all ρ with ‖ρ‖ < δ. Applying the Mean Value Theorem for several variables (see for
example [5]), it follows that

‖f(θ, ρ)− f(θ, 0)‖ = ‖f(θ, ρ)‖ ≤ ε ‖ρ− 0‖ = ε ‖ρ‖

Combining this with the stability of the equilibrium x = 0 of dρdθ = A(θ)ρ(θ), it follows by Lemma A.5.4 that

there exist K,α, η > 0 such that ‖φ(θ, θ0, ρ0)‖ ≤ Ke−α(θ−θ0) ‖ρ0‖ for all θ ≥ θ0 and ρ0 with ‖ρ0‖ < η. Since
only the motion in the plane perpendicular to Γ describes the stability, it follows that Γ is asymptotically
stable. [6]
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A.6 The Hopf Bifurcation Theorem for ordinary differential equa-
tions

In Section A.5, we studied the stability of periodic solutions of a differential equation. Throughout this
discussion, we assumed that such a periodic solution was known to exist. Deciding on the existence of a
periodic orbit is, however, in general not an easy task. The Hopf bifurcation theorem helps us to decide
upon the existence of a periodic solution.

We start by studying the linear case

ẋ(t) = A(λ)x(t), x(0) = x0 (A.5)

where A(λ) is a 2 × 2-matrix for all λ ∈ R. If there exists a λ0 ∈ R such that the eigenvalues of A(λ0) are
given by µ± = ±iω, with ω 6= 0, we find that for all x0 ∈ R2, the solution of (A.5) with λ = λ0 is periodic:
we recall from Section A.2 that the solution of (A.5) with λ = λ0 is given by

x(t) = eA(λ0)tx0

Since ω 6= 0, we have that A(λ0) has two distinct eigenvalues; thus the corresponding eigenvectors v± are
linearly independent. Therefore, we can write x0 = x1v+ + x2v− with x1, x2 ∈ R and the solution of (A.5)
is given by

x(t) = eA(λ0)t(x1v+ + x2v−) = x1e
iωtv1 + x2e

−iωtv2

We note that this solution is periodic with period given by T = 2π
ω .

If we now perturb the system by adding a non-linear term to (A.5) to obtain the system

ẋ(t) = A(λ)x(t) + f(λ, x), x(0) = x0 (A.6)

we can ask ourselves the question whether we can still decide upon the existence of a periodic solution by
looking at the eigenvalues of A(λ). Under certain conditions, this turns out to be the case, as is stated in
the following theorem:

Theorem A.6.1 (Hopf Bifurcation Theorem). Let

ẋ(t) = A(λ)x+ f(λ, x)

with f : R × Rn → Rn, λ ∈ R and A(λ) a n × n-matrix for all λ ∈ R. Let A(λ), f(λ, x) be such that they
have continuous first derivatives and f(λ, 0) = 0 for all λ. Furthermore, assume that there exists a λ0 > 0
such that Dxf(λ, 0) = 0 for |λ| < λ0 and that the eigenvalues of A(λ) are given by µ(λ)± iν(λ) such that

ν(0) > 0, µ(0) = 0, Dµ(0) 6= 0

Then there are constants a0 > 0, λ0 > 0, δ0 > 0 and functions λ(a) ∈ R, ω(a) ∈ R that are continuously
differentiable for |a| < a0 with λ(0) = 0, ω(0) = 2π. Furthermore, for |a| < a0, there exists a ω(a)-periodic
function x∗(a) that is a solution of (A.6) with λ = λ(a). For |a| < α0, |ω − 2π| < δ0, every ω(a)-periodic
solution of (A.6) such that |x(t)| < δ0 is given by x∗(a) except for a possible translation in phase.

A proof can be found in [2].
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Appendix B

Notes

Since the discussion of stability theory for differential delay equations in Chapter 1 is not always sufficient
for the discussion in Chapter 2, we do not always completly validate the methods used in Chapter 2. The
fact that the state space of a differential delay equation is given by an infinite dimensional Banach space
makes the theory for delay equations more involved. However, the results needed in Chapter 2 tend to be
roughly the same as those for ordinary differential equations and in Chapter 2 we point out the similarities
between the theory of differential delay equations and ordinary differential equations. More details on the
theory of differential delay equations can be found in [8] and [3].

To apply the Pyragas control scheme, one needs to know beforehand that a periodic orbit exists and
what the period of this orbit is. In Chapter 2, we therefore study the normal form of the subcritical Hopf
bifurcation, see (2.2), since we know that an unstable periodic orbit exists for λ < 0. However, other systems
that are known to have an unstable periodic orbit can, and have been, used to study Pyragas control, see
for example [14].

We study parameter values satisfying γλ < 1, since for γλ > 1, the target periodic orbit (2.4) of (2.1) is
already stable. Furthermore, as noted in [1], if we would study (2.2) with τ = 2π

1−γλ and γλ > 1, (2.2) would
in fact become a ‘forward equation’ instead of a delay equation.

The Pyragas control scheme can be implemented experimentally. This was, for example, done in [12],
where a periodic orbit of a system of the form of (2.1) was stabilized.

The analysis presented in Chapter 2 can be generalized for n-dimensional systems, see for example [1].
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