Nonlinear Dynamics at the Free University Berlin

Dr. Jörg Härterich

Research interests

  • Hyperbolic conservation laws with source terms
  • Singular perturbations
  • Singular limits in scalar reaction- diffusion- equations
  • Global attractors
  • Reversible systems
  • Homoclinic bifurcations


Freie Universität Berlin
Institut für Mathematik I
Arnimallee 2-6
D - 14195 Berlin
Office 136
Phone + 49 - 30 - 838 75406
E-mail haerter at
(replace the "at" by a @)


Some Recent Teaching:

Preprints and Publications

Kaskaden homokliner Orbits in reversiblen dynamischen Systemen
Diplomarbeit, Universität Stuttgart, 1993
Cascades of homoclinic orbits in reversible dynamical systems
Physica D (1998), Vol.112, p.187-200
A.R.Champneys, J.Härterich, B.Sandstede:
A non-transverse homoclinic orbit to a saddle-node equilibrium
Ergod. Th. and Dynam. Sys. (1996), Vol.16, p.431-450
J. Härterich
Attractors of viscous balance laws
Dissertation, FU Berlin 1997
J. Härterich
Attractors of viscous balance laws: Uniform estimates for the dimension
J.Diff.Equ. (1998), Vol.142, p.188-211
J. Härterich
Equilibrium solutions of viscous scalar balance laws with a convex flux
NoDEA (1999), Vol.6, p.413-436
Heteroclinic orbits between rotating waves for hyperbolic balance laws
Proc. Royal Soc. Edinburgh (1999), Vol.129A, p.519-538
A.R.Champneys, J.Härterich:
Cascades of homoclinic orbits to a saddle-center for reversible and perturbed Hamiltonian systems
Dyn.Stab.Syst. (now: Dynamical Systems) (2000), Vol.15, No.3, p.231-252
Viscous profiles for traveling waves of scalar balance laws: The uniformly hyperbolic case
Electr. J. Diff. Eq., 2000, No.30, p.1-22
Admissibility of traveling waves for scalar balance laws
Proc. Equadiff 99, B.Fiedler, K.Gröger, J.Sprekels (eds.), World Scientific, Singapore (2000), p.295-297
H. Fan, J.Härterich:
Scalar conservation laws with a degenerate source: Traveling waves, large-time behavior and zero relaxation limit
Nonlinear Analysis, Vol.63, No.8 (2005), p.1042-1069
Viscous and relaxation approximations to heteroclinic traveling waves of conservation laws with source terms
Proceedings of Hyp 2000 (Eds.: G.Warnecke and H.Freistühler), Birkhäuser (2001)
J.Härterich, B.Sandstede and A.Scheel:
Exponential Dichotomies for linear non-autonomous functional differential equations of mixed type
Indiana Univ. Math. J. (2002), Vol.51, No.5, p.1081-1109
Viscous profiles for traveling waves of scalar balance laws: The canard case
Methods and Applications of Analysis (2003), Vol.10, No.1, p.97-118
J.Härterich, M.Wolfrum:
Describing a class of global attractors via symbol sequences
Discr. Cont. Dynam. Systems A (2005), Vol.12, No.3, p.531-554
J.Härterich, C.Mascia:
Front Formation and Motion in Quasilinear Parabolic Equations
J. Math. Analysis Appl. (2005), Vol.307, No.2, p.395-414
Existence of rollwaves in a viscous shallow water equation
Proceedings Equadiff 2003, World Scientific 2005, p.511-516
J.Härterich, S.Liebscher:
Travelling Waves in Systems of Hyperbolic Balance Laws (gzipped ps) (pdf 3.1MB)
in: Analysis and Numerics for Conservation Laws (G.Warnecke, Ed.), Springer 2005, p.281-300
J. Ehrt, J.Härterich:
Asymptotic Behavior of Spatially Inhomogeneous Balance Laws (PS) or PDF version
J. Hyperbolic Diff. Equ. (2005), Vol.2, No.3, p.645-672
J.Härterich, K.Sakamoto:
Front Motion in Viscous Conservation Laws with Stiff Source Terms (PS) or PDF version
Advances in Differential Equations (2006), Vol.11, No.7, p.721-750
J. Ehrt, J.Härterich:
Convergence to Stationary States in Spatially Inhomogeneous Balance Laws (PS) or PDF version
Hyperbolic Problems: Theory, Numerics and applications (2006), Yokohama Publishers, p.367-374.
switch Last change: Nov. 8, 2006
This page strictly conforms to the XHTMLswitch1.0 standard and uses style sheets. Valid XHTML 1.0! Valid CSS!