Dr. Jörg Härterich
Research interests
- Hyperbolic conservation laws with source terms
- Singular perturbations
- Singular limits in scalar reaction- diffusion- equations
- Global attractors
- Reversible systems
- Homoclinic bifurcations
|
Address |
Freie Universität Berlin
Institut für Mathematik I
Arnimallee 2-6
D - 14195 Berlin
|
Office |
136 |
Phone |
+ 49 - 30 - 838 75406 |
E-mail |
haerter at math.fu-berlin.de
(replace the "at" by a @) |
Projects
Some Recent Teaching:
Preprints and Publications
- J.Härterich:
-
Kaskaden homokliner Orbits in reversiblen dynamischen
Systemen
Diplomarbeit, Universität Stuttgart, 1993
- J.Härterich:
-
Cascades
of homoclinic orbits in reversible
dynamical systems
Physica D (1998), Vol.112, p.187-200
- A.R.Champneys, J.Härterich, B.Sandstede:
-
A
non-transverse homoclinic orbit to a saddle-node
equilibrium
Ergod. Th. and Dynam. Sys. (1996), Vol.16, p.431-450
- J. Härterich
-
Attractors
of viscous balance laws
Dissertation, FU Berlin 1997
- J. Härterich
-
Attractors
of viscous balance laws:
Uniform estimates for the dimension
J.Diff.Equ. (1998), Vol.142, p.188-211
- J. Härterich
-
Equilibrium
solutions of viscous scalar balance laws
with a convex flux
NoDEA (1999), Vol.6, p.413-436
- J.Härterich:
-
Heteroclinic
orbits between rotating waves
for hyperbolic balance laws
Proc. Royal Soc. Edinburgh (1999), Vol.129A, p.519-538
- A.R.Champneys, J.Härterich:
-
Cascades
of homoclinic orbits to a saddle-center
for reversible and perturbed Hamiltonian systems
Dyn.Stab.Syst. (now: Dynamical Systems) (2000), Vol.15, No.3, p.231-252
- J.Härterich:
-
Viscous
profiles for traveling waves of scalar balance laws:
The uniformly hyperbolic case
Electr. J. Diff. Eq., 2000, No.30, p.1-22
- J.Härterich:
-
Admissibility
of traveling waves for scalar balance laws
Proc. Equadiff 99, B.Fiedler, K.Gröger, J.Sprekels (eds.),
World Scientific, Singapore (2000), p.295-297
- H. Fan, J.Härterich:
-
Scalar
conservation laws with a degenerate source: Traveling waves,
large-time behavior and zero relaxation limit
Nonlinear Analysis, Vol.63, No.8 (2005), p.1042-1069
- J.Härterich:
-
Viscous
and relaxation approximations to heteroclinic traveling waves
of conservation laws with source terms
Proceedings of Hyp 2000 (Eds.: G.Warnecke and H.Freistühler),
Birkhäuser (2001)
- J.Härterich, B.Sandstede and A.Scheel:
-
Exponential
Dichotomies for linear non-autonomous functional
differential equations of mixed type
Indiana Univ. Math. J. (2002), Vol.51, No.5, p.1081-1109
- J.Härterich:
-
Viscous
profiles for traveling waves
of scalar balance laws: The canard case
Methods and Applications of Analysis (2003), Vol.10, No.1, p.97-118
- J.Härterich, M.Wolfrum:
-
Describing
a class of global attractors via symbol sequences
Discr. Cont. Dynam. Systems A (2005), Vol.12, No.3, p.531-554
- J.Härterich, C.Mascia:
-
Front
Formation and Motion in Quasilinear Parabolic Equations
J. Math. Analysis Appl. (2005), Vol.307, No.2, p.395-414
- J.Härterich:
-
Existence of
rollwaves in a viscous shallow water equation
Proceedings Equadiff 2003, World Scientific 2005, p.511-516
- J.Härterich, S.Liebscher:
-
Travelling
Waves in Systems of Hyperbolic Balance Laws (gzipped ps)
(pdf 3.1MB)
in: Analysis and Numerics for Conservation Laws (G.Warnecke, Ed.), Springer 2005,
p.281-300
- J. Ehrt, J.Härterich:
-
Asymptotic
Behavior of Spatially Inhomogeneous Balance Laws (PS) or
PDF version
J. Hyperbolic Diff. Equ. (2005), Vol.2, No.3, p.645-672
- J.Härterich, K.Sakamoto:
-
Front Motion in Viscous
Conservation Laws with Stiff Source Terms (PS) or
PDF version
Advances in Differential Equations (2006), Vol.11, No.7, p.721-750
- J. Ehrt, J.Härterich:
-
Convergence to Stationary
States in Spatially Inhomogeneous Balance Laws (PS) or
PDF version
Hyperbolic Problems: Theory, Numerics and applications (2006), Yokohama Publishers, p.367-374.
|