Nonlinear Dynamics at the Free University Berlin

Winter 2009/2010

V 19006: Analysis III

Prof. Dr. Bernold Fiedler

Übungen: Dr. Stefan Liebscher


Termine

Vorlesung:
Dienstag & Donnerstag, 10-12, Arnimallee 3, HS 001
Übungsgruppen:
Montag, 14-16, Arnimallee 6, SR 032 (Stefan Liebscher)
Mittwoch, 14-16, Arnimallee 3, SR 119 (Bernhard Brehm)
Freitag, 12-14, Arnimallee 6, SR 032 (Stefan Liebscher)
Klausur/Nachklausur:
Dienstag, 9. Februar 2010, 10-12
Mittwoch, 21. April 2010, 16-18
Ergebnisse
Sei f: R → R eine differenzierbare Funktion. W
elche (notwendige) Bedingung ist erfüllt, wenn f an der Stelle x0 ein lokales Maximum besitzt?
Unter welcher (hinreichenden) Bedingung besitzt f an der Stelle x0 ein lokales Maximum?

Inhalt

Die Analysis ist eine der beiden wesentlichen Einführungsvorlesungen der Mathematik. Im Vorlesungszyklus Analysis I-III geht es um vollständige Induktion, Konvergenz, Folgen und Reihen, Kompaktheit, Differentiation und Integration, Transformationssätze, Sätze über implizite Funktionen und vieles mehr. Das ist Handwerkszeug, ohne das kein Mathematiker auskommt. Wirklich erlernt wird das Handwerk aber erst durch das Lösen der Übungsaufgaben und den Besuch der Gruppen!

Die Vorlesung Analysis III ist die abschließende Vorlesung aus dem Zyklus Analysis I-III. Behandelt werden Differentiation und Integration im Rn, Extrema mit und ohne Nebenbedingungen, Integration auf Flächen, die Integralsätze von Gauß und Stokes und vieles mehr. Diese Grundlagen sind für ein erfolgreiches Mathematikstudium unverzichtbar.

Gib Beispiele für Funtionen f: R → R an, die
(a) stetig, aber in x0=0 nicht differenzierbar;
(b) differenzierbar, aber nicht gleichmäßig stetig;
(c) differenzierbar, aber in x0=0 nicht stetig differenzierbar sind.

Literatur

  • H. Amann, J. Escher: Analysis III, Birkhäuser Verlag, 1998
  • R. Courant: Vorlesungen und Differential- und Integralrechnung, Springer, 1984
  • J. Dieudonne: Grundzüge der modernen Analysis, Vieweg Verlag, Braunschweig, 1972
  • O. Forster: Analysis 3, Vieweg, Wiesbaden, 1983
  • H. Grauert, I. Lieb: Differential- und Integralrechnung 3, Springer Verlag, 1977
  • H. Heuser: Lehrbuch der Analysis II, Teubner, Stuttgart, 1984
  • S. Hildebrandt: Analysis 2, Springer Verlag, 2002
  • K. Königsberger: Analysis 2, Springer Verlag, 1990
  • S. Lang: Analysis, Inter European Editions, Amsterdam, 1977
  • E.H. Lieb, H. Loss: Analysis, 2nd ed., American Math. Soc., Providence, 2001
  • W. Rudin: Analysis, Oldenbourg Verlag, München, 1998
  • W. Walter: Analysis II, Springer Verlag, 1992

und für geschichtlich Interessierte:

  • O. Becker: Grundlagen der Mathematik, Verlag Karl Alber, Freiburg, 1964
  • E. Hairer, G. Wanner: Analysis by its History, Springer, 2000
  • V.J. Katz: A History of Mathematics, Harper Collins, New York, 1993
Wie ist die allgemeine Potenz xα für komplexe α und positive, reelle x definiert?

Übungsblätter

freiwilliges Extrablatt aus dem vorigen Semester (PDF)

  1. Blatt, Abgabe am 22.10.2009 (PDF)
  2. Blatt, Abgabe am 29.10.2009 (PDF)
  3. Blatt, Abgabe am 05.11.2009 (PDF)
  4. Blatt, Abgabe am 12.11.2009 (PDF)
  5. Blatt, Abgabe am 19.11.2009 (PDF)
  6. Blatt, Abgabe am 25.11.2009 (PDF)
  7. Blatt, Abgabe am 02.12.2009 (PDF)
  8. Blatt, Abgabe am 09.12.2009 (PDF)
  9. Blatt, Abgabe am 16.12.2009 (PDF)
    komplett freiwilliges Blatt zum Fest, Abgabe am 06.01.2010 (PDF), Lösungen zählen zu den Ist- aber nicht den Soll-Punkten.
  10. Blatt, Abgabe am 13.01.2010 (PDF)
  11. Blatt, Abgabe am 20.01.2010 (PDF)
  12. Blatt, Abgabe am 27.01.2010 (PDF)
  13. Blatt, Abgabe am 02.02.2010 (PDF)
    komplett freiwilliges Blatt zur Überbrückung der vorlesungsfreien Zeit (PDF)

Bitte auf den abgegebenen Zetteln das Tutorium (Mo/Mi/Fr) vermerken.

Für Interessierte gibt es auch eine statistische Auswertung.

Sind endliche/abzählbare/beliebige Durchschnitte/Vereinigungen kompakter Mengen wieder kompakt?

Kernfragen zur Vorlesung

Bitte auch die Kapitel 1 bis 7(i) aus der Analysis I/II nicht vergessen...

  1. Kapitel "Zahlen" (PDF)
  2. Kapitel "Folgen und Reihen" (PDF)
  3. Kapitel "Stetigkeit" (PDF)
  4. Kapitel "Differentiation" (PDF)
  5. Kapitel "Integration" (PDF)
  6. Kapitel "Metrische Räume" (PDF)
  7. Kapitel "Differentiation im Banachraum" (Teil 1) (PDF)
    sowie "Differentiation im Banachraum" (Teil 2) (PDF) (beide Teile Klausur-relevant)
  8. Kapitel "Integration im Rn" (PDF) (Klausur-relevant)
  9. Kapitel "Mannigfaltigkeiten" (PDF) (Klausur-relevant)
  10. Kapitel "Lebesgue-Integral" (PDF) (Klausur-relevant)
Wie lauten Cauchy-, Majoranten-, Verdichtungs- und Leibniz-Kriterium für die Konvergenz unendlicher Reihen?

Links

switch Last change: Apr. 28, 2010
This page strictly conforms to the XHTMLswitch1.0 standard and uses style sheets. Valid XHTML 1.0! Valid CSS!